1
|
Kraft A, Kirschner MB, Orlowski V, Ronner M, Bodmer C, Boeva V, Opitz I, Meerang M. Exploring RNA cargo in extracellular vesicles for pleural mesothelioma detection. BMC Cancer 2025; 25:212. [PMID: 39920655 PMCID: PMC11804012 DOI: 10.1186/s12885-025-13617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Pleural Mesothelioma (PM) is a highly aggressive cancer, for which effective early detection remains a challenge due to limited screening options and low sensitivity of biomarkers discovered so far. While extracellular vesicles (EVs) have emerged as promising candidates for blood-based biomarkers, their role in PM has not been studied yet. In this study, we characterized the transcriptomic profile of EVs secreted by PM primary cells and explored their potential as a biomarker source for PM detection. METHODS We collected cell culture supernatant from early-passage PM cell cultures derived from the pleural effusion of 4 PM patients. EVs were isolated from the supernatant using Qiagen exoEasy Maxi kit. RNA isolation from EVs was done using the mirVana PARIS kit. Finally, single-end RNA sequencing was done with Illumina Novaseq 6000. RESULTS We identified a range of RNA species expressed in EVs secreted by PM cells, including protein-coding RNA (80%), long non-coding RNA (13%), pseudogenes (4.5%), and short non-coding RNA (1.6%). We detected a subset of genes associated with the previously identified epithelioid (32 genes) and sarcomatoid molecular components (36 genes) in PM-EVs. To investigate whether these markers could serve as biomarkers for PM detection in blood, we compared the RNA content of PM-EVs with the cargo of EVs isolated from the plasma of healthy donors (publicly available data). Majority of upregulated genes in PM-EVs were protein-coding and long non-coding RNAs. Interestingly, 25 of them were the sarcomatoid and epithelioid marker genes. Finally, functional analysis revealed that the PM-EV RNA cargo was associated with Epithelial-Mesenchymal transition, glycolysis, and hypoxia. CONCLUSIONS This is the first study to characterize the transcriptomic profile of EVs secreted by PM primary cell cultures, demonstrating their potential as biomarker source for early detection. Further investigation of the functional role of PM-EVs will provide new insights into disease biology and therapeutic avenues.
Collapse
Affiliation(s)
- Agnieszka Kraft
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Vanessa Orlowski
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Manuel Ronner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Caroline Bodmer
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
- UMR 8104, UMR-S1016, Cochin InstituteCNRSParis Descartes University, Inserm U1016, 75014, Paris, France
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Zhu J, Mo L, Li M, Wang Y, Zhang G, Tao Z, Liao X, Du M, He H. Long non-coding RNA Snhg15 promotes preosteoblast proliferation by interacting with and stabilizing nucleolin. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119847. [PMID: 39288892 DOI: 10.1016/j.bbamcr.2024.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
The proliferation and mineralization of preosteoblasts is crucial for bone formation and has attracted extensive attentions for decades. However, the roles of numerous long non-coding RNAs (lncRNAs) in preosteoblasts have not been fully determined. This study aimed to investigate the function of lncRNA Snhg15 in preosteoblasts as well as the potential underlying mechanism. LncRNA Snhg15 was dynamically expressed during preosteoblast proliferation and mineralization, and its transcripts were localized mainly in the cytoplasm. LncRNA Snhg15 knockdown significantly inhibited the proliferation and mineralization of preosteoblasts in both a cellular model and a murine ectopic bone formation model. RNA-seq showed that lncRNA Snhg15 knockdown downregulated multiple proliferation-related genes, and cell cycle deregulation was verified by flow cytometry. Mechanistically, we found that lncRNA Snhg15 could bind to nucleolin (NCL), thereby block NCL ubiquitination and decrease its degradation. Furthermore, the overexpression of NCL in lncRNA Snhg15-knockdown preosteoblasts ameliorated GO/G1 phase cell cycle arrest. Moreover, experiments in an in situ bone formation model confirmed the negative effects of lncRNA Snhg15 deficiency on bone formation. In conclusion, this study revealed an important regulatory role of lncRNA Snhg15/NCL complex in preosteoblast proliferation and may provide insights into the molecular mechanisms underlying bone formation.
Collapse
Affiliation(s)
- Jiaqi Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lijuan Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengying Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yunlei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gengming Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhendong Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaozhu Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Liu W, Zhang Y, Li Q, Wang X, Wu Y, Shen H, Wang P. Advances of long non-coding RNAs in osteoclast differentiation and osteoporosis. Pathol Res Pract 2024; 260:155413. [PMID: 38981344 DOI: 10.1016/j.prp.2024.155413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Osteoclasts, which are responsible for bone resorption, are specialized multinucleated cells generated from monocyte/macrophage progenitor cells or hematopoietic stem cells (HSCs). Physiological bone remodeling can become pathological, such as osteoporosis, when osteoclastogenesis is out of balance. Thousands of long noncoding RNAs (lncRNAs) influence important molecular and biological processes. Recent research has revealed gene expression regulation function that numerous lncRNAs regulate nuclear domain organization, genome stability. Furthermore, the research of lncRNAs has substantial clinical implications for the treatment of existing and new diseases. AREAS COVERED In this review, we gather the most recent research on lncRNAs and their potential for basic research and clinical applications in osteoclast and osteoporosis. We also discuss the findings here in order to fully understand the role of lncRNAs in osteoclast differentiation and osteoporosis, as well as to provide a solid basis for future research exploring associated mechanisms and treatments. EXPERT OPINION LncRNA has been considered as an important role in the regulation of osteoclast differentiation and osteoporosis. It is exciting to investigate pathophysiological processes in osteoporosis and the therapeutic potential of lncRNAs. We hope that this review will offer promising prospects for the development of precision and individualized approaches to treatment.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
5
|
Yu Y, Cai Y, Zhou H. LncRNA SNHG15 regulates autophagy and prevents cerebral ischaemia-reperfusion injury through mediating miR-153-3p/ATG5 axis. J Cell Mol Med 2024; 28:e17956. [PMID: 37845831 PMCID: PMC10902582 DOI: 10.1111/jcmm.17956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/18/2023] Open
Abstract
Ischaemic stroke is a common cerebrovascular disease. Long non-coding RNA (lncRNA) of small nucleolar RNA host gene (SNHG15) has been supposedly performed a regulatory role in many diseases. Nonetheless, the function of SNHG15 in cerebral ischaemia-reperfusion injury has not been clarified. The OGD/R of Neuro2A cells simulated the ischaemic and reperfused states of the brain. Neuro2a cell line with stable transfection of plasmid with silent expression of SNHG15 was constructed. Neuro2a cell lines transfected with miR-153-3p mimic (miR-153-3p-mimics) and miR-153-3p inhibitor (miR-153-3p-inhibition) were constructed. Expression of SNHG15, mi R-200a, FOXO3 and ATG7 in mouse brain tissue and N2a cells was identified by qRT-PCR. Western blot (WB) analysis of mouse brain tissue and Neuro2a cells revealed the presence of the proteins ATG5, Cle-caspase-3, Bax, Bcl-2, LC3 II/I and P62 (WB). The representation and distribution of LC3B were observed by immunofluorescence. The death of cells was measured using a technique called flow cytometry (FACS). SNHG15 was highly expressed in cerebral ischaemia-reperfusion injury model. Down-regulation of SNHG15 lead to lower apoptosis rate and decreased autophagy. Dual luciferase assay and co-immunoprecipitation (CoIP) found lncRNA SNHG15/miR-153-3p/ATG5. Compared to cells transfected with NC suppression, cells transfected with miR-153-3p-inhibition had substantially greater overexpression of LC 3 II/I, ATG5, cle-Caspase-3, and Bax, as determined by a recovery experiment, the apoptosis rate was elevated, yet both P62 and Bcl-2 were significantly lower and LC3+ puncta per cells were significantly increased. Co-transfection of miR-153-3p-inhibition and sh-SNHG15 could reverse these results. LncRNA SNHG15 regulated autophagy and prevented cerebral ischaemia-reperfusion injury through mediating the miR-153-3p/ATG5 axis.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| | - Yunpeng Cai
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| | - Hang Zhou
- Neurosurgery DepartmentPeople's Hospital of Honghuagang District of ZunyiZunyiPR China
| |
Collapse
|
6
|
Xu JY, Lv YF, Cao Y, Ma HM, Hao XL, Huang L, Tang XF, Guo QN. Long noncoding RNA XLOC_006786 inhibits the proliferation, invasion and metastasis of osteosarcoma cells through NOTCH3 signaling pathway by targeting miR-491-5p. Hum Cell 2023; 36:2140-2151. [PMID: 37573513 DOI: 10.1007/s13577-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Recent research has indicated that Long noncoding RNAs (LncRNAs) are crucial in many disorders, especially tumors. However, the exact role of LncRNA XLOC_006786 (LncRNA-SPIDR-2:1) in malignancies, especially in human osteosarcoma, is unclear. The results of RT‒qPCR, western blotting, CCK-8 assays, and Transwell assays showed that LncRNA XLOC_006786 inhibited osteosarcoma cell proliferation, invasion, and migration, indicating that it may be a tumor suppressor gene in osteosarcoma. We found that LncRNA XLOC_006786 negatively regulated NOTCH3, which is an oncogenic gene in osteosarcoma, as we previously reported. Bioinformatics analysis showed that miR-491-5p may be a direct target of LncRNA XLOC_006786, while NOTCH3 is a key target of miR-491-5p. Then, we verified that LncRNA XLOC_006786 could prevent lung metastatic osteosarcoma in vivo. Taken together, our research showed that LncRNA XLOC_006786 suppresses osteosarcoma proliferation, invasion, and metastasis through the NOTCH3 signaling pathway by targeting miR-491-5p.
Collapse
Affiliation(s)
- Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong-Min Ma
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue-Feng Tang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
7
|
Almansa-Gómez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:13827. [PMID: 37762129 PMCID: PMC10531374 DOI: 10.3390/ijms241813827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.
Collapse
Affiliation(s)
| | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| |
Collapse
|
8
|
Chen D, Zhang Z, Lu X, Yang X. Long non-coding RNA SNHG15 regulates cardiomyocyte apoptosis after hypoxia/reperfusion injury via modulating miR-188-5p/PTEN axis. Arch Physiol Biochem 2023; 129:283-290. [PMID: 32970504 DOI: 10.1080/13813455.2020.1819336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nowadays the most effective way to cure myocardial infarction (MI) is reperfusion, which inevitably leads to cardiomyocyte apoptosis. In this study, we discussed the functions of SNHG15 in regulating cardiomyocyte apoptosis through the modulation of miR-188-5p/PTEN axis. We examined the links between SNHG15 and miR-188-5p/PTEN in mice with MI. Extensive experiments, measurements and comparisons were performed, including RT-PCR, western blotting, luciferase reporter assay, flow cytometry analysis etc. Through a series of comparisons and analysis, we discovered that SNHG15 could interact with the miR-188-5p/PTEN axis and impact the cellular physiology of cardiomyocyte apoptosis. PTEN was upregulated in hypoxia cells, but this effect was attenuated by miR-188-5p. MiR-188-5p could combine with SNHG15 and PTEN, and form a SNHG15-miR-188-5p-PTEN axis, which regulated the apoptosis of MCs. These results suggest that LncRNA SNHG15 regulates cardiomyocyte apoptosis induced by hypoxia or reperfusion injury through modulating of miR-188-5p/PTEN axis.
Collapse
Affiliation(s)
- Dapeng Chen
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, PR China
| | - Zhengjun Zhang
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, PR China
| | - Xiaorui Lu
- Department of Internal Medicine-Cardiovascular, Ningxia Yongning County People's Hospital, Ningxia, PR China
| | - Xinbin Yang
- Department of Internal Medicine-Cardiovascular, Ningxia Yongning County People's Hospital, Ningxia, PR China
| |
Collapse
|
9
|
Zhang N, Lei T, Xu T, Zou X, Wang Z. Long noncoding RNA SNHG15: A promising target in human cancers. Front Oncol 2023; 13:1108564. [PMID: 37056344 PMCID: PMC10086267 DOI: 10.3389/fonc.2023.1108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
As oncogenes or tumor suppressor genes, lncRNAs played an important role in tumorigenesis and the progression of human cancers. The lncRNA SNHG15 has recently been revealed to be dysregulated in malignant tumors, suggesting the aberrant expression of which contributes to clinical features and regulates various oncogenic processes. We have selected extensive literature focused on SNHG15 from electronic databases, including studies relevant to its clinical significance and the critical events in cancer-related processes such as cell proliferation, apoptosis, autophagy, metastasis, and drug resistance. This review summarized the current understanding of SNHG15 in cancer, mainly focusing on the pathological features, known biological functions, and underlying molecular mechanisms. Furthermore, SNHG15 has been well-documented to be an effective diagnostic and prognostic marker for tumors, offering novel therapeutic interventions in specific subsets of cancer cells.
Collapse
Affiliation(s)
- Niu Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianwei Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoteng Zou
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhaoxia Wang,
| |
Collapse
|
10
|
Kumar A, Girisa S, Alqahtani MS, Abbas M, Hegde M, Sethi G, Kunnumakkara AB. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023; 12:cells12050810. [PMID: 36899946 PMCID: PMC10000689 DOI: 10.3390/cells12050810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer has become a global health hazard accounting for 10 million deaths in the year 2020. Although different treatment approaches have increased patient overall survival, treatment for advanced stages still suffers from poor clinical outcomes. The ever-increasing prevalence of cancer has led to a reanalysis of cellular and molecular events in the hope to identify and develop a cure for this multigenic disease. Autophagy, an evolutionary conserved catabolic process, eliminates protein aggregates and damaged organelles to maintain cellular homeostasis. Accumulating evidence has implicated the deregulation of autophagic pathways to be associated with various hallmarks of cancer. Autophagy exhibits both tumor-promoting and suppressive effects based on the tumor stage and grades. Majorly, it maintains the cancer microenvironment homeostasis by promoting viability and nutrient recycling under hypoxic and nutrient-deprived conditions. Recent investigations have discovered long non-coding RNAs (lncRNAs) as master regulators of autophagic gene expression. lncRNAs, by sequestering autophagy-related microRNAs, have been known to modulate various hallmarks of cancer, such as survival, proliferation, EMT, migration, invasion, angiogenesis, and metastasis. This review delineates the mechanistic role of various lncRNAs involved in modulating autophagy and their related proteins in different cancers.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| |
Collapse
|
11
|
Luo Q, Tian Y, Qu G, Huang K, Hu P, Li L, Luo S. MiR-141-3p promotes hypoxia-induced autophagy in human placental trophoblast cells. Reprod Biol 2023; 23:100712. [PMID: 36427432 DOI: 10.1016/j.repbio.2022.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder and a significant contributor to maternal, fetal and neonatal morbidity and mortality worldwide. Its pathogenesis is generally accepted as insufficient trophoblast invasion of the maternal endometrium and inadequate remodeling of the maternal spiral arteries. These impairments lead to elevated levels of hypoxia and oxidative stress. Autophagy has become a highly researched field in obstetrics, and this process may be essential for preimplantation development beyond the four- and eight-cell stages, and for blastocyst survival, extra-villous trophoblast functions, invasion and vascular remodeling. Several studies have shown that autophagy activation, shown by an increase in autophagy vacuoles or microtubule-associated protein 1 A/1B-light chain 3 (LC3) dots, was more common in PE than in normal pregnancy. Thus, changes in autophagic status are seen in preeclamptic placentas. MicroRNA-141-3p (miR-141-3p), a multifunctional miRNA, is involved in a variety of physiological and pathological processes, including PE and autophagy. However, the influence of miR-141-3p on autophagy regulation in trophoblast cells has yet to be described. Therefore, the objective of our study was to investigate the role of miR-141-3p in autophagy induced by hypoxia in human placental trophoblast cells. Our results found that hypoxia induced autophagy in trophoblast cells and dramatically elevated the expression of miR-141-3p. Overexpression of miR-141-3p improved autophagic activity, whereas low expression of miR-141-3p inhibited autophagic activity. Therefore, our data demonstrated that miR-141-3p promoted hypoxia-induced autophagy in placental trophoblast cells, which may be related to the development of preeclampsia.
Collapse
Affiliation(s)
- Qiqi Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yu Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Guangjin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Kun Huang
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Panpan Hu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Lianghai Li
- Dianjiang County People's Hospital, Chongqing 408300, PR China
| | - Shanshun Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
12
|
Zhu M, Xiang H, Peng Z, Ma Z, Shen J, Wang T, Chen L, Cao D, Gu S, Wang M, Cao J. Silencing the expression of lncRNA SNHG15 may be a novel therapeutic approach in human breast cancer through regulating miR-345-5p. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1173. [PMID: 36467335 PMCID: PMC9708471 DOI: 10.21037/atm-22-5275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) short nucleolar RNA host gene 15 (SNHG15) has been found to have an oncogenic function in numerous malignancies. Nevertheless, the biological function and regulatory mechanisms of SNHG15 in breast cancer have not been fully elucidated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of SNHG15 and in MDA-MB-231 breast cancer cells. The expression of SNHG15 was silenced using small interfering RNA (siRNA) technology. The proliferation and migration of the cells were examined by colony formation assays, cell counting kit 8 (CCK-8) assays, and transwell assays. For the zebrafish xenograft injection experiments, cultured cells labelled with the fluorescent dye CM-DiI were injected into the perivitelline space of the larvae. RESULTS This present study revealed that the expression of lncRNA SNHG15 (lnc-SNHG15) was significantly upregulated in breast cancer cells, and its overexpression was associated with the tumor. The relative expression of lnc-SNHG15 could be downregulated using siRNAs, and silencing lnc-SNHG15 inhibited the proliferation and the migration of MDA-MB-231 cells. In vivo experiments using the zebrafish xenograft model showed similar results. Mechanistically, the knockdown effect of lnc-SNHG15 could be restored by inhibiting the expression of the miR-345-5p, confirming the negative regulation between lnc-SNHG15 and miR-345-5p. Interestingly, cisplatin treatment combined with SNHG15 knockdown effectively inhibited MDA-MB-231 cell proliferation and migration in the zebrafish xenograft compared to negative controls. CONCLUSIONS In conclusion, lnc-SNHG15 knockdown increased miR-345-5p expression and negated cisplatin resistance in breast cancer cells, and thus, lnc-SNHG15 may be a potential novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Minshu Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Haifei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Zheng Peng
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhaosheng Ma
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Jianfei Shen
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tingting Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Donghang Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shanye Gu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Jianbin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| |
Collapse
|
13
|
Zhang H, Zhou L, Hu S, Gu W, Li Z, Sun J, Wei X, Wang Y. The crosstalk between LINC01089 and hippo pathway inhibits osteosarcoma progression. J Bone Miner Metab 2022; 40:890-899. [PMID: 36399257 DOI: 10.1007/s00774-022-01377-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Osteosarcoma is the most common malignancy in children, with high morbidity worldwide. Researches indicated that long non-coding RNAs (lncRNAs) played crucial roles in various cancers. Nevertheless, study investigating lncRNA long intergenic non-protein coding RNA 1089 (LINC01089) in osteosarcoma is extremely rare. Thus, the research of LINC01089 is of great significance. MATERIALS AND METHODS qRT-PCR and western blot were done to test the expression of RNAs and proteins in osteosarcoma cells. Functional assays were carried out to evaluate biological behaviors of hFOB1.19 and osteosarcoma cells with or without LINC01089 knockdown and overexpression. In vitro and in vivo experiments in a rescue manner were performed to reveal the influences of LINC01089 and Hippo pathway on osteosarcoma cell phenotype and tumor growth. RESULTS LINC01089 was down-regulated in osteosarcoma cells and overexpressing LINC01089 was validated to restrain cell growth in vitro and tumor growth in vivo. Additionally, silencing LINC01089 could exacerbate cell malignant behaviors. Correlation of LINC01089 and Hippo pathway was proved. Overexpressing LINC01089 could activate Hippo pathway to exert antitumor effects. CONCLUSION LINC01089 could restrain the progression of osteosarcoma through activating Hippo pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200120, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200120, China
| | - Shaopu Hu
- Department of Oncology, Dongfang Hospital Affiliated to Beijing University of TCM, Beijing, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China
| | - Zhiqiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of TCM, Shanghai, 200000, China.
| | - Yongjun Wang
- Shanghai University of TCM, Shanghai, 200032, China.
| |
Collapse
|
14
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Diamantis E, Sarantis P, Georgakopoulou VE, Patsouras A, Despotidis M, Prevezanos D, Syllaios A, Marinos G, Koustas E, Vallilas C, Antoniou EA, Kontzoglou K, Savvanis S, Kouraklis G. The Role of SNHG15 in the Pathogenesis of Hepatocellular Carcinoma. J Pers Med 2022; 12:753. [PMID: 35629174 PMCID: PMC9145272 DOI: 10.3390/jpm12050753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides which cannot be translated into proteins. Small nucleolar RNA host gene 15 (SNHG15) is a lncRNA whose dysregulation has been found to have an important impact on carcinogenesis and affect the prognosis of cancer patients in various cancer types. Hepatocellular carcinoma (HCC) is one of the most common cancers with a poor long-term prognosis, while the best prognostic factor of the disease is its early diagnosis and surgery. Consequently, the investigation of the mechanisms of hepatocarcinogenesis, as well as the discovery of efficient molecular markers and therapeutic targets are of great significance. An extensive literature search was performed in MEDLINE in order to identify clinical studies that tried to reveal the role of SNHG15 in HCC. We used keywords such as 'HCC', 'hepatocellular carcinoma', 'SNHG15' and 'clinical study'. Finally, we included four studies written in English, published during the period 2016-2021. It was revealed that SNHG15 is related to the appearance of HCC via different routes and its over-expression affects the overall survival of the patients. More assays are required in order to clarify the potential role of SNHG15 as a prognostic tool and therapeutic target in HCC.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece;
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Diamantis
- Endocrinology Unit, Academic Department of Internal Medicine, Agioi Anargyroi General Oncology Hospital, National and Kapodistrian University of Athens, 14564 Kifisia, Greece;
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | | | | | - Markos Despotidis
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.D.); (A.S.)
| | | | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.D.); (A.S.)
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | - Efstathios A. Antoniou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Kontzoglou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Spyridon Savvanis
- Internal Medicine Department, Elpis General Hospital, 11522 Athens, Greece;
| | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Tang J, Zhu Z, Dong S, Wang Y, Wang J, Chen H, Duan G. Long non-coding RNA long intergenic non-coding 00641 mediates cell progression with stimulating cisplatin-resistance in osteosarcoma cells via microRNA-320d/myeloid cell leukemia-1 axis. Bioengineered 2022; 13:7238-7252. [PMID: 35266447 PMCID: PMC9208475 DOI: 10.1080/21655979.2022.2045090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a staple chemotherapy medicine, cisplatin (DDP) is extensively applied in cancer patients, but its drug resistance is limited. Numerous studies have elucidated that long non-coding RNA (lncRNA) performs as a pivotal agent in osteosarcoma (OS). Nevertheless, lncRNA long intergenic non-coding 00641 (LINC00641)’s functions in DDP resistance for OS remain obscure. The purpose of this study was to investigate the effect and mechanism of LINC00641 on drug resistance of OS. The tissues of both clinical cancer patients and the normal control were gathered. Detection of LINC00641, microRNA-320d (miR-320d) and myeloid cell leukemia-1 (MCL1) was conducted. After the selection of OS cell lines, the detection of cell advancement was applied. Series of experiments were conducted to verify the interaction of LINC00641, miR-320d and MCL1. Xenografted tumor model in vivo was utilized to determine the function of LINC00641. The data displayed, LINC00641 was prominently elevated in OS tissues and cells, especially in DDP-resistant tumors and cell lines. Knock-down LINC00641 was able to attenuate progression of DDP-resistant OS cells thus dampening their drug resistance toward DDP. Moreover, knock-downing LINC00641 gene was also able to manifest antagonism toward DDP-resistance in vivo. On the grounds of bioinformatics prediction, a direct binding of LINC00641 with miR-320d existed, whose target was MCL1. Meanwhile, LINC00641 modulated MCL1 via targeting miR-320d. Additionally, repressive LINC00641 blocked MCL1 via emulative interaction with miR-320d, thus expediting DDP-sensitivity of OS cells. All in all, it is found that LINC00641 is available to escalate drug resistance of DDP-resistant OS cells via mediation of miR-320d/MCL1 axis.
Collapse
Affiliation(s)
- JinShan Tang
- Department of Orthopedic, The Second People's Hospital of Huai'an, Huai'an City, Jiangsu Province, China.,Department of Orthopedic, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, Jiangsu Province, China
| | - ZiQiang Zhu
- Department of Orthopedic, General Hospital of Xuzhou Mining Group, Xuzhou City, Jiangsu Province, China.,Department of Orthopedic, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Suwei Dong
- Department of Orthopedic, General Hospital of Xuzhou Mining Group, Xuzhou City, Jiangsu Province, China.,Department of Orthopedic, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - YunQing Wang
- Department of Orthopedic, General Hospital of Xuzhou Mining Group, Xuzhou City, Jiangsu Province, China.,Department of Orthopedic, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - JianQang Wang
- Department of Orthopedic, General Hospital of Xuzhou Mining Group, Xuzhou City, Jiangsu Province, China.,Department of Orthopedic, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - HongLiang Chen
- Department of Orthopedic, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Gang Duan
- Department of Orthopedic, General Hospital of Xuzhou Mining Group, Xuzhou City, Jiangsu Province, China.,Department of Orthopedic, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| |
Collapse
|
17
|
Sun YF, Wang Y, Li XD, Wang H. SNHG15, a p53-regulated lncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 axis. Am J Cancer Res 2022; 12:816-828. [PMID: 35261804 PMCID: PMC8899989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023] Open
Abstract
Small nucleolar RNA host gene 15 (SNHG15) is upregulated in many malignancies and mediates the development of multiple cancers, including osteosarcoma (OS). However, data on the regulatory mechanisms and role of SNHG15 in the chemoresistance of OS remain scarce. Here, we show that p53 binds to the SNHG15 promoter, leading to decreased SNHG15 expression. Decreased SNHG15 expression promotes cisplatin-induced apoptosis and reactive oxygen species (ROS) accumulation in OS cells. Furthermore, SNHG15 sponges and inhibits the activity of endogenous miR-335-3p, leading to the upregulation of zinc finger protein 32 (ZNF32). Taken together, these findings reveal that p53 downregulates SNHG15 expression in OS. In addition, SNHG15 suppresses cisplatin-induced apoptosis and ROS accumulation through the miR-335-3p/ZNF32 pathway.
Collapse
Affiliation(s)
- Yue-Feng Sun
- Department of Spine Surgery, First Affiliated Hospital & Institute of Cancer Stem Cell Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Yuan Wang
- The Second Affiliated Hospital, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Xiao-Dong Li
- Department of Spine Surgery, First Affiliated Hospital & Institute of Cancer Stem Cell Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Hong Wang
- Department of Spine Surgery, Dalian Municipal Central HospitalDalian 116022, Liaoning, China
| |
Collapse
|
18
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
19
|
Xu H, Yu X, Yang Z, Song Q, Cheng S, He Z, Dai L. PAX5-activated lncRNA ARRDC1-AS1 accelerates the autophagy and progression of DLBCL through sponging miR-2355-5p to regulate ATG5. Life Sci 2021; 286:119932. [PMID: 34499929 DOI: 10.1016/j.lfs.2021.119932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/07/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) has high cancer-related mortality. Studies have supported that lncRNAs can regulate cancer progression by affecting autophagy of cells. ARRDC1 antisense RNA 1 (ARRDC1-AS1) was found to be upregulated in DLBCL tissues in GEPIA, but it has never been detected in DLBCL. AIM In this study, we aimed to explore the regulatory mechanism of ARRDC1-AS1 in DLBCL cells. MAIN METHODS RT-qPCR was taken to measure the expression of ARRDC1-AS1, microRNA-2355-5p (miR-2355-5p) and autophagy-related gene 5 (ATG5) in DLBCL cells. Western blot was conducted to detect protein levels. The malignant behaviors of DLBCL cells were estimated through functional assays. The molecular interactions were detected by Chromatin immunoprecipitation (ChIP), RNA pull-down, RNA immunoprecipitation (RIP) and luciferase reporter assays. RESULTS We found that ARRDC1-AS1 was upregulated in DLBCL tissues and cell lines. ARRDC1-AS1 was activated by transcription factor PAX5. Knockdown of ARRDC1-AS1 suppressed DLBCL autophagy to aggravate proliferation, repress apoptosis, and facilitate invasion and migration. Furthermore, ARRDC1-AS1 sponged miR-2355-5p to upregulate ATG5. CONCLUSION Present study first showed that PAX5-activated ARRDC1-AS1 accelerates the autophagy and progression of DLBCL via sponging miR-2355-5p to regulate ATG5, revealing a novel molecular mechanism of ARRDC1-AS1 in DLBCL and suggested ARRDC1-AS1 as a potential target in DLBCL.
Collapse
Affiliation(s)
- Huazhen Xu
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Xiaojing Yu
- Department of E.N.T. Department, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Zhuangzhi Yang
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Qingjie Song
- Department of Neurology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Shijuan Cheng
- Operating Room of Anesthesia and Perioperative, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Zhenzhen He
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China
| | - Lixia Dai
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China.
| |
Collapse
|
20
|
Establishment of an Autophagy-Related Clinical Prognosis Model for Predicting the Overall Survival of Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5428425. [PMID: 34604383 PMCID: PMC8485141 DOI: 10.1155/2021/5428425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Purpose Osteosarcoma is the most common primary and highly invasive bone tumor in children and adolescents. The purpose of this study is to construct a multi-gene expression feature related to autophagy, which can be used to predict the prognosis of patients with osteosarcoma. Materials and methods. The clinical and gene expression data of patients with osteosarcoma were obtained from the target database. Enrichment analysis of autophagy-related genes related to overall survival (OS-related ARGs) screened by univariate Cox regression was used to determine OS-related ARGs function and signal pathway. In addition, the selected OS-related ARGs were incorporated into multivariate Cox regression to construct prognostic signature for the overall survival (OS) of osteosarcoma. Use the dataset obtained from the GEO database to verify the signature. Besides, gene set enrichment analysis (GSEA) were applied to further elucidate the molecular mechanisms. Finally, the nomogram is established by combining the risk signature with the clinical characteristics. Results Our study eventually included 85 patients. Survival analysis showed that patients with low riskScore had better OS. In addition, 16 genes were included in OS-related ARGs. We also generate a prognosis signature based on two OS-related ARGs. The signature can significantly divide patients into low-risk groups and high-risk groups, and has been verified in the data set of GEO. Subsequently, the riskScore, primary tumor site and metastasis status were identified as independent prognostic factors for OS and a nomogram were generated. The C-index of nomogram is 0.789 (95% CI: 0.703~0.875), ROC curve and calibration chart shows that nomogram has a good consistency between prediction and observation of patients. Conclusions ARGs was related to the prognosis of osteosarcoma and can be used as a biomarker of prognosis in patients with osteosarcoma. Nomogram can be used to predict OS of patients and improve treatment strategies.
Collapse
|
21
|
Han P, Zhao J, Gao L. Increased serum exosomal long non-coding RNA SNHG15 expression predicts poor prognosis in non-small cell lung cancer. J Clin Lab Anal 2021; 35:e23979. [PMID: 34551140 PMCID: PMC8605147 DOI: 10.1002/jcla.23979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Circulating long non-coding RNAs (lncRNAs) are emerging as promising biomarkers for non-small cell lung cancer (NSCLC). This study aimed to detect serum exosomal lncRNA SNHG15 expression in NSCLC and evaluate its potential clinical value. METHODS A total of 238 serum samples were collected from 118 patients with NSCLC, 40 patients with benign pulmonary lesions and 80 healthy volunteers. The expression levels of serum exosomal lncRNA SNHG15 were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Then, the relationship between serum exosomal lncRNA SNHG15 expression and clinical parameters was analyzed. RESULTS The serum exosomal lncRNA SNHG15 expression was markedly higher in NSCLC patients compared to patients with benign pulmonary lesions and normal controls. As expected, serum exosomal lncRNA SNHG15 was greatly decreased after surgery. High serum exosomal lncRNA SNHG15 expression was closely associated with poor differentiation (p=0.035), positive lymph node metastasis (p=0.009) and advanced TNM stage (p<0.001). Receiver operating characteristic (ROC) curve analysis demonstrated that serum exosomal lncRNA SNHG15 well differentiated all stage NSCLC, stage I/II NSCLC patients or stage III/IV NSCLC patients from controls, and the combination of serum exosomal lncRNA SNHG15 and CEA showed an elevated AUC for distinguishing NSCLC from healthy individuals. In univariate and multivariate analyses, serum exosomal lncRNA SNHG15 was confirmed as an independent prognostic predictor for overall survival. CONCLUSION In conclusion, our findings suggest that serum exosomal lncRNA SNHG15 might be a potential biomarker for early diagnosis and prognosis prediction of NSCLC.
Collapse
Affiliation(s)
- Pengfei Han
- Department of Respiratory and Critical Care Medicine, Baoji People's Hospital, Baoji City, Shaanxi Province, China
| | - Jia Zhao
- Department of Respiratory and Critical Care Medicine, Baoji High-tech Hospital, Baoji City, Shaanxi Province, China
| | - Lun Gao
- Department of Respiratory and Critical Care Medicine, the First Hospital of Yulin City, Yulin City, Shaanxi Province, China
| |
Collapse
|
22
|
Li Y, Zou J, Li B, Du J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J Cell Mol Med 2021; 25:9543-9556. [PMID: 34547170 PMCID: PMC8505851 DOI: 10.1111/jcmm.16894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Jilong Zou
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
23
|
Chen R, Zhang C, Cheng Y, Wang S, Lin H, Zhang H. LncRNA UCC promotes epithelial-mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. J Transl Med 2021; 101:1153-1165. [PMID: 33824420 DOI: 10.1038/s41374-021-00586-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play regulatory roles in cancers; for example, UCC was reported to promote colorectal cancer progression. However, the function of UCC in non-small-cell lung cancer (NSCLC) remains unclear. Therefore, mRNA and protein levels were assessed using qPCR and western blots. Cell viability was assessed by colony-formation assays. The interaction between lncRNAs and miRNAs was detected by dual-luciferase reporter and RIP assays. The tumorigenesis of NSCLC cells in vivo was determined by xenograft assays. LncRNA UCC was highly expressed in both NSCLC tissues and cells. Knockdown of UCC expression suppressed the proliferation of NSCLC cells. In addition, a dual-luciferase reporter system and RIP assays showed that UCC specifically bound to miR-143-3p and acted as a sponge of miR-143-3p in NSCLC cells. The miR-143-3p inhibitor rescued the inhibitory effect of sh-UCC on the proliferation of NSCLC cells. Moreover, miR-143-3p and UCC showed opposite effects on the expression of SOX5, which promoted EMT in NSCLC cells. In addition, in a mouse model, knockdown of UCC expression alleviated EMT and NSCLC progression in vivo, which was consistent with the in vitro results. In the current study, we found that UCC induced the proliferation and migration of NSCLC cells both in vitro and in vivo by inducing the expression of SOX5 via miR-143-3p and subsequently promoted EMT in NSCLC.
Collapse
Affiliation(s)
- Ri Chen
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chunfan Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China
| | - Yuanda Cheng
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, JiNing, Shandong, PR China
| | - Hang Lin
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China.
| |
Collapse
|
24
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
25
|
Zhu QQ, Lai MC, Chen TC, Wang X, Tian L, Li DL, Wu ZH, Wang XH, He YY, He YY, Shang T, Xiang YL, Zhang HK. LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increased ubiquitination of thioredoxin-interacting protein. J Transl Med 2021; 101:1142-1152. [PMID: 34103662 DOI: 10.1038/s41374-021-00614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have revealed that hyperglycemia is a pivotal driver of diabetic vascular complications. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). In this study, a downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanistically, SNHG15 reduced thioredoxin-interacting protein (TXNIP) expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of lncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. In conclusion, SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Chi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong-Lin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Hui Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yun-Yun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang-Yan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Lang Xiang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong-Kun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Mokhtar A, Kong C, Zhang Z, Du Y. Down-regulation LncRNA-SNHG15 contributes to proliferation and invasion of bladder cancer cells. BMC Urol 2021; 21:83. [PMID: 34016097 PMCID: PMC8139049 DOI: 10.1186/s12894-021-00852-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P<0.05). Up regulation was positively related to tumor stage (P=0.015). And tumor size (P=0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P=0.015), and tumor size (P=0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.
Collapse
Affiliation(s)
- Aldhabi Mokhtar
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning, 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning, 110001, P.R. China.
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning, 110001, P.R. China.
| | - Yan Du
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning, 110001, P.R. China
| |
Collapse
|
27
|
LncRNA SNHG15 modulates gastric cancer tumorigenesis by impairing miR-506-5p expression. Biosci Rep 2021; 41:228455. [PMID: 33899079 PMCID: PMC8319491 DOI: 10.1042/bsr20204177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The gastric cancer (GC) patients commonly have a poor prognosis due to its invasiveness and distant metastasis. Growing evidence proved that aberrant long non-coding RNAs (lncRNAs) expression contributes to tumor development and progression. LncRNA SNHG15 has been reported to be involved in many different kinds of cancer, while its role in GC remains unclear. In the present study, we found that SNHG15 was up-regulated in GC tissues and cell lines. Silencing SNHG15 suppressed proliferation migration, invasion and promoted apoptosis of AGS cells. More importantly, microRNA-506-5p (miR-506-5p) was predicted as a direct target of SNHG15 by binding its 3′-UTR and further verified using luciferase reporter assay. Meanwhile, the results of rescue experiments revealed that knockdown of miR-506-5p expression reversed the functional effects of SNHG15 silenced cell proliferation, migration, invasion and apoptosis. In conclusion, our findings revealed that SNHG15 executed oncogenic properties in GC progression through targeting miR-506-5p, which might provide a novel target for the GC treatment.
Collapse
|
28
|
High lncSNHG15 expression may predict poor cancer prognosis: a meta-analysis based on the PRISMA and the bio-informatics analysis. Biosci Rep 2021; 40:225716. [PMID: 32633324 PMCID: PMC7369394 DOI: 10.1042/bsr20194468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background: SNHG15 has been reported to be aberrantly expressed in various tumor tissues and could serve as a promising prognostic cancer biomarker. Previous studies on SNHG15 yielded inconsistent results with insufficient sampling. Here, a meta-analysis was conducted to investigate the prognostic value of SNHG15 in multiple cancers. Methods: Relevant studies were retrieved from six electronic databases including PubMed, Cochrane Library, Google Scholar, Embase, Web of Science and China National Knowledge Infrastructure (CNKI). Fifteen publications comprising 1318 patients were included. The publication bias was identified by the Begg’s Test, and the sensitivity analysis was also performed. Results: The results demonstrated a positive correlation between high expression level of lncSNHG15 and short overall survival (hazard ratio (HR) = 2.07, 95% confidence interval (CI), 1.48–2.88; P<0.0001) and disease-free survival (DFS) (HR = 2.32, 95% CI, 1.53–3.53; P<0.0001). The analysis based on different cancer types showed that SNHG15 had the most prominent prognostic potential in Glioma (HR = 3.81; 95% CI, 0.84–42.69; P=0.28). Moreover, the high expression level of lncSNHG15 indicated advanced TNM stage (OR = 2.52; 95% CI, 1.33–4.76; P=0.00001), lymph node metastasis (OR = 2.41, 95% CI, 0.99–4.81; P=0.05), bigger tumor size (OR = 2.06; 95% CI, 1.03–4.13; P=0.04) and poor histological grade (OR = 2.62, 95% CI, 1.90–3.59; P<0.00001), yet no association with distant metastasis (OR = 1.64, 95% CI, 0.40–6.74; P=0.49), age (OR = 0.98, 95% CI, 0.78–1.22; P=0.84) and gender (OR = 0.9, 95% CI, 0.71–1.14; P=0.3838) was found. Its conclusions further confirmed by exploring TCGA databases. Conclusion: It revealed that lncSNHG15 might be a promising prognostic biomarker of multiple cancer types, especially in Glioma.
Collapse
|
29
|
Meng F, Sun N, Liu D, Jia J, Xiao J, Dai H. BCL2L13: physiological and pathological meanings. Cell Mol Life Sci 2021; 78:2419-2428. [PMID: 33201252 PMCID: PMC11073179 DOI: 10.1007/s00018-020-03702-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
BCL2L13 is a BCL2-like protein. It has been discovered for two decades, now on the way to be a hotspot of research with its physiological and pathological meanings found in recent years. Start with the pro-apoptotic activity, there have been reported consecutively that BCL2L13 could also induce mitochondrial fragmentation, inhibit cell death and promote mitophagy. Similar to BNIP3, BCL2L13 cannot be indiscriminately categorized into pro- or anti-apoptotic proteins. It anchors in the mitochondrial outer membrane, and expresses in various cells and tissues. This article reviews for the first time that BCL2L13 functions in physiological processes, such as growth and development and energy metabolism, and its dysregulation participating in pathological processes, including cancer, bacterial infection, cardiovascular diseases and degenerative diseases, suggesting its important roles in these events.
Collapse
Affiliation(s)
- Fei Meng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Naitong Sun
- Department of Hematology, the Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jun Xiao
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
30
|
Zhu QQ, Lai MC, Chen TC, Wang X, Tian L, Li DL, Wu ZH, Wang XH, He YY, He YY, Shang T, Xiang YL, Zhang HK. LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increasing ubiquitination of thioredoxin-interacting protein. Life Sci 2021:119255. [PMID: 33636173 DOI: 10.1016/j.lfs.2021.119255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Numerous evidence indicates that hyperglycemia is a pivotal driver of the vascular complications of diabetes. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). MATERIALS AND METHODS Cell proliferation, migration, apoptosis, and tube formation were measured by cell counting kit-8 assay, transwell assay, flow cytometry, and tube formation assay, respectively. RNA pull-down and RNA-binding protein immunoprecipitation were used to detect the interaction between lncRNA SNHG15 and thioredoxin-interacting protein (TXNIP). Co-immunoprecipitation was used to detect the ubiquitination level of TXNIP and the interaction between TXNIP and E3 ubiquitin ligase ITCH. RESULTS A downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanically, SNHG15 reduced TXNIP expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of LncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. CONCLUSION SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tian-Chi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xun Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dong-Lin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Hui Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yun-Yun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yang-Yan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi-Lang Xiang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hong-Kun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
31
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M. The critical roles of lncRNAs in the development of osteosarcoma. Biomed Pharmacother 2021; 135:111217. [PMID: 33433358 DOI: 10.1016/j.biopha.2021.111217] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is rare malignancy of childhood and adolescence, with high morbidity and mortality despite accomplishment of diverse therapeutic modalities. Identification of the underlying mechanism of osteosarcoma evolution would help in better management of this rare malignancy. Lots of investigations have described abnormal regulation of long non-coding RNAs (lncRNAs) in clinical specimens of osteosarcoma and the established cell lines. This malignancy has been associated with over-expression of TUG1, LOXL1-AS1, MIR100HG, NEAT1, HULC, ANRIL and a number of other lncRNAs, while under-expression of lots of lncRNAs including LncRNA-p21, FER1L4, GAS5, LncRNA NR_136400 and LINC-PINT. Expression amounts of LUCAT1, LINC00922, SNHG12, FOXC2-AS1 and OIP5-AS1 lncRNAs have been associated with response to a number of chemotherapeutic agents. Taken together, lncRNAs are possible targets for proposing novel advanced therapeutic modalities for osteosarcoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Gao QY, Zhang HF, Chen ZT, Li YW, Wang SH, Wen ZZ, Xie Y, Mai JT, Wang JF, Chen YX. Construction and Analysis of a ceRNA Network in Cardiac Fibroblast During Fibrosis Based on in vivo and in vitro Data. Front Genet 2021; 11:503256. [PMID: 33552116 PMCID: PMC7859616 DOI: 10.3389/fgene.2020.503256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aims Activation of cardiac fibroblasts (CF) is crucial to cardiac fibrosis. We constructed a cardiac fibroblast-related competing endogenous RNA (ceRNA) network. Potential functions related to fibrosis of “hub genes” in this ceRNA network were explored. Materials and Methods The Gene Expression Omnibus database was searched for eligible datasets. Differentially expressed messenger (m)RNA (DE-mRNA) and long non-coding (lnc)RNA (DE-lncRNA) were identified. microRNA was predicted and validated. A predicted ceRNA network was constructed and visualized by Cytoscape, and ceRNA crosstalk was validated. A Single Gene Set Enrichment Analysis (SGSEA) was done, and the Comparative Toxicogenomics Database (CTD) was employed to analyze the most closely associated pathways and diseases of DE-mRNA in the ceRNA network. The functions of DE-mRNA and DE-lncRNA in the ceRNA network were validated by small interfering (si)RNA depletion. Results The GSE97358 and GSE116250 datasets (which described differentially expressed genes in human cardiac fibroblasts and failing ventricles, respectively) were used for analyses. Four-hundred-and-twenty DE-mRNA and 39 DE-lncRNA, and 369 DE-mRNA and 93 DE-lncRNA were identified, respectively, in the GSE97358 and GSE116250 datasets. Most of the genes were related to signal transduction, cytokine activity, and cell proliferation. Thirteen DE-mRNA with the same expression tendency were overlapped in the two datasets. Twenty-three candidate microRNAs were predicted and the expression of 11 were different. Only two DE-lncRNA were paired to any one of 11 microRNA. Finally, two mRNA [ADAM metallopeptidase domain 19, (ADAM19) and transforming growth factor beta induced, (TGFBI)], three microRNA (miR-9-5p, miR-124-3p, and miR-153-3p) and two lncRNA (LINC00511 and SNHG15) constituted our ceRNA network. siRNA against LINC00511 increased miR-124-3p and miR-9-5p expression, and decreased ADAM19 and TGFBI expression, whereas siRNA against SNHG15 increased miR-153-3p and decreased ADAM19 expression. ADAM19 and TGFBI were closely related to the TGF-β1 pathway and cardiac fibrosis, as shown by SGSEA and CTD, respectively. Depletion of two mRNA or two lncRNA could alleviate CF activation. Conclusions The CF-specific ceRNA network, including two lncRNA, three miRNA, and two mRNA, played a crucial role during cardiac fibrosis, which provided potential target genes in this field.
Collapse
Affiliation(s)
- Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yue-Wei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Shao-Hua Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Zhu-Zhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| |
Collapse
|
33
|
Chen D, Zhang M. GAS5 regulates diabetic cardiomyopathy via miR‑221‑3p/p27 axis‑associated autophagy. Mol Med Rep 2020; 23:135. [PMID: 33313941 PMCID: PMC7751493 DOI: 10.3892/mmr.2020.11774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the primary complications of the cardiovascular system due to diabetes‑induced metabolic injury. The present study investigated the autophagy‑associated regulatory mechanisms of long non‑coding RNAs in cardiac pathological changes in diabetes mellitus (DM). Streptozotocin (STZ)‑induced diabetic rats were intramyocardially injected and high concentration glucose (HG)‑processed H9C2 cells were infected with growth arrest specific transcript 5 (GAS5)‑loaded AAV‑9 adenovirus. HG‑processed H9C2 cells also underwent transfection with small interfering RNA‑p27. Hematoxylin and eosin and Masson staining evaluated myocardial histological changes. Quantitative PCR detected the expression levels of GAS5, fibrosis markers (collagen I, collagen III, TGF‑β and connective tissue growth factor) and microRNA (miR)‑221‑3p. Western blotting determined the expression levels of autophagy‑associated proteins [microtubule‑associated proteins 1A/1B light chain 3B (LC3B) I, LC3B II and p62] and p27. Targetscan7.2 was used to predict binding sites between miR‑221‑3 and p27. Dual luciferase reporter assayed the effect of miR‑221‑3p on luciferase activity of GAS5 and p27. GAS5 downregulated high blood glucose concentrations in STZ‑induced diabetic rats, however its expression levels decreased in both HG‑processed H9C2 cells and the myocardium of DM model rats. GAS5 attenuated the histological abnormalities and reversed the decreased LC3B II and increased p62 expression levels of DM model rats. miR‑221‑3p mimic suppressed the activity of both GAS5‑wild‑type (WT) and p27‑WT. miR‑221‑3p expression levels were increased in both HG‑processed H9C2 and diabetic myocardium. p27 expression levels decreased following HG but were upregulated by GAS5. sip27 abolished the effect of GAS5 on DCM. GAS5 promoted cardiomyocyte autophagy in DCM to attenuate myocardial injury via the miR‑221‑3p/p27 axis.
Collapse
Affiliation(s)
- Dezhi Chen
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Min Zhang
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
34
|
Zhang J, Rao D, Ma H, Kong D, Xu X, Lu H. LncRNA SNHG15 contributes to doxorubicin resistance of osteosarcoma cells through targeting the miR-381-3p/GFRA1 axis. Open Life Sci 2020; 15:871-883. [PMID: 33817274 PMCID: PMC7874549 DOI: 10.1515/biol-2020-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022] Open
Abstract
Background Osteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed. Methods Cell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo. Results Autophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo. Conclusions SNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.
Collapse
Affiliation(s)
- Jinshan Zhang
- School of Medicine, Yangtze University, 434020, Jingzhou, China
| | - Dan Rao
- Central Hospital of Edong Medical Group, Huangshi City, Hubei Province, 435000, Huangshi, China
| | - Haibo Ma
- School of Medicine, Yangtze University, 434020, Jingzhou, China
| | - Defeng Kong
- School of Medicine, Yangtze University, 434020, Jingzhou, China
| | - Xiaoming Xu
- The Second Clinical Medical College, Yangtze University, No. 1 Renmin Road, Jingzhou City, Hubei Province, 434020, Jingzhou, China
| | - Hougen Lu
- The Second Clinical Medical College, Yangtze University, No. 1 Renmin Road, Jingzhou City, Hubei Province, 434020, Jingzhou, China
| |
Collapse
|
35
|
Zhang J, Wang L, Jiang J, Qiao Z. The lncRNA SNHG15/miR-18a-5p axis promotes cell proliferation in ovarian cancer through activating Akt/mTOR signaling pathway. J Cell Biochem 2020; 121:4699-4710. [PMID: 33135285 DOI: 10.1002/jcb.29474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Here, we report the expression pattern, function and regulatory mechanism of SNHG15 together with miR-18a-5p micro RNA in ovarian cancer (OC) for the first time. We recruited 20 patients and took normal ovarian tissues and ovarian tumor tissues from them. We used cell culture, transfection, in vivo tumor xenograft assay, and multiple types of detection assays to investigate the expression and regulation of long noncoding RNA (lncRNA) SNHG15/miR-18a-5p in ovarian tissues and cells. Results: We found that the messenger RNA expression level of SNHG15 was significantly higher and miR-18 was decreased in ovarian cancer tissues and in OC cells. Functional experiments showed that SNHG15 overexpression potentiated the migration and invasion of OC cells, while SNHG15 inhibition reduced the tumor proliferation, which was restored via overexpression of miR-18a. SNHG15 was found to directly target and suppress the expression of miR-18a. Our results illustrate the possible molecular mechanism of lncRNA SNHG15/miR-18a-5p functions in cell proliferation in OC. SNHG15/miR-18a promoted the progression of OC cells via the protein kinase B/mammalian target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jingru Zhang
- The Fourth Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shengyang, Liaoning, China
| | - Ling Wang
- The Fourth Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shengyang, Liaoning, China
| | - Jing Jiang
- The Fourth Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shengyang, Liaoning, China
| | - Zhiwei Qiao
- The Fourth Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shengyang, Liaoning, China
| |
Collapse
|
36
|
El-Khazragy N, Elshimy AA, Hassan SS, Shaaban MH, Bayoumi AH, El Magdoub HM, Ghozy S, Gaballah A, Aboelhussein MM, Abou Gabal HH, Bannunah AM, Mansy AES. lnc-HOTAIR predicts hepatocellular carcinoma in chronic hepatitis C genotype 4 following direct-acting antivirals therapy. Mol Carcinog 2020; 59:1382-1391. [PMID: 33074585 DOI: 10.1002/mc.23263] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Emerging hepatocellular carcinoma (HCC) has been sequentially reported in chronic hepatitis C virus (HCV) treated with direct-acting antivirals (DAAs). Homeobox transcript antisense RNA (HOTAIR), an oncogene, has been reported to be associated with cancer. We investigated the predictive value of lnc-HOTAIR for HCC surveillance in chronic HCV patients following DAAs therapy. The expression levels of lnc-HOTAIR and ATG-7 genes were measured in 220 with chronic HCV, following a DAAs based therapy for 12 weeks, the patients were followed-up for attentive surveillance of HCC for 12 months after starting DAAs. In terms of lnc-HOTAIR, patients with HCC and high viral load had significantly higher median expression levels of HOTAIR of (68 vs. 24; p = .001) and (94 vs. 52; p = .001), respectively. Moreover, the median expression level of ATG-7 was higher in those who developed HCC (114 vs. 51; p = .001). The expression of lnc-HOTAIR and ATG-7 are significant predictors of the development of HCC in HCV-4 infected patients treated with DAAs, with a cut-off value of 37 and 86, respectively. The increased expression levels of lnc-HOTAIR more than 68 in HCC patients following DAAs were correlated with poorer disease outcomes compared to those with lower expression levels; however, ATG-7 expression levels more than 114 were correlated with worse overall survival but not the progression-free one. We suggest that high expression levels of lnc-HOTAIR could serve as a risk assessment biomarker for HCC before and during DAAs course therapy in Chronic HCV-4 patients, and should be rigorously taken into consideration before DAAs.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, and Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal Ali Elshimy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University and Galala University, Cairo, Egypt
| | - Safaa Shawky Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Hafez Shaaban
- Department of Anatomy & Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Hamed Bayoumi
- Department of Anatomy & Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Sherief Ghozy
- Department of Neurosurgery, Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Gaballah
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M Aboelhussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hoda H Abou Gabal
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Azzah M Bannunah
- Department of Basic Sciences, Common First-year Deanship, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Azza El-Sayed Mansy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
37
|
Yao W, Yan Q, Du X, Hou J. TNK2-AS1 upregulated by YY1 boosts the course of osteosarcoma through targeting miR-4319/WDR1. Cancer Sci 2020; 112:893-905. [PMID: 33164271 PMCID: PMC7893995 DOI: 10.1111/cas.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting research papers have suggested that long non-coding RNAs (lncRNAs) elicit important functions in the progression of osteosarcoma (OS). This study focused on the role of TNK2-AS1 in OS. TNK2-AS1 was powerfully expressed in OS tissues and cell lines. In addition, TNK2-AS1 downregulation inhibited proliferative, migratory, and invasive capacities while promoting apoptosis in OS cells. miR-4319 was removed by TNK2-AS1 and therefore TNK2-AS1 elevated WDR1 expression in OS cells. miR-4319 had an inhibitory influence on OS progression, while WDR1 was a contributor to OS progression. Rescue assays certified that TNK2-AS1 promoted malignant phenotypes in vitro and the growth in vivo of OS cells by upregulating WDR1. In depth, we found that YY1 accelerated the transcription of TNK2-AS1 in OS cells, and that its role in OS also depended on TNK2-AS1-regulated WDR1. In conclusion, TNK2-AS1 was positively modulated by YY1 and aggravated the development of OS by 'sponging' miR-4319 to elevate WDR1. The findings highlighted that TNK2-AS1 might be a promising target for the treatment of OS.
Collapse
Affiliation(s)
- Weitao Yao
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jingyu Hou
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
38
|
Chen C, Feng Y, Wang J, Liang Y, Zou W. Long non-coding RNA SNHG15 in various cancers: a meta and bioinformatic analysis. BMC Cancer 2020; 20:1156. [PMID: 33243205 PMCID: PMC7690101 DOI: 10.1186/s12885-020-07649-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background The snoRNA host gene SNHG15 produces a long non-coding RNA (lncRNA) with a short half-life and has been reported to be dysregulated in multiple cancers and has recently been found to be correlated with tumour progression. Therefore, this meta-analysis was performed to evaluate the generalised prognostic role of small nucleolar RNA host gene 15 (SNHG15) in malignancies, based on variable data from different studies. Methods Four public databases were used to identify eligible studies. The association between prognostic indicators and clinical features was extracted and pooled to estimate the hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs). Publication bias was measured using Begg’s test and Egger’s test, and the stability of pooled results were measured using sensitivity analysis. Additionally, an online database based on The Cancer Genome Atlas (TCGA) was screened to further validate our results. Ultimately, we predicted the molecular regulation of SNHG15 based on the public databases. Results In total, 11 studies including 1087 patients were ultimately enrolled in our meta-analysis. We found that SNHG15 overexpression was associated with worse overall survival (OS) and disease-free survival (DFS), and this was validated in the Gene Expression Profiling Interactive Analysis (GEPIA) cohort. Moreover, increased SNHG15 expression suggested advanced TNM stage and LNM, but was not associated with age, gender, or tumour size. No publication bias or instability of the results was observed. SNHG15 was significantly upregulated in seven cancers and elevated expression of SNHG15 indicated shorter OS and DFS in five malignancies based on the validation using the GEPIA cohort. Further functional prediction indicated that SNHG15 may participate in some cancer-related pathways. Conclusions Upregulation of lncRNA SNHG15 was notably associated with worse prognosis and clinical features, suggesting that SNHG15 might serve as a novel prognostic factor in various cancers.
Collapse
Affiliation(s)
- Caizhi Chen
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Ye Liang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
39
|
Li D, Yang C, Yin C, Zhao F, Chen Z, Tian Y, Dang K, Jiang S, Zhang W, Zhang G, Qian A. LncRNA, Important Player in Bone Development and Disease. Endocr Metab Immune Disord Drug Targets 2020; 20:50-66. [PMID: 31483238 DOI: 10.2174/1871530319666190904161707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone is an important tissue and its normal function requires tight coordination of transcriptional networks and signaling pathways, and many of these networks/ pathways are dysregulated in pathological conditions affecting cartilage and bones. Long non-coding RNA (lncRNA) refers to a class of RNAs with a length of more than 200 nucleotides, lack of protein-coding potential, and exhibiting a wide range of biological functions. Although studies on lcnRNAs are still in their infancy, they have emerged as critical players in bone biology and bone diseases. The functions and exact mechanism of bone-related lncRNAs have not been fully classified yet. OBJECTIVE The objective of this article is to summarize the current literature on lncRNAs on the basis of their role in bone biology and diseases, focusing on their emerging molecular mechanism, pathological implications and therapeutic potential. DISCUSSION A number of lncRNAs have been identified and shown to play important roles in multiple bone cells and bone disease. The function and mechanism of bone-related lncRNA remain to be elucidated. CONCLUSION At present, majority of knowledge is limited to cellular levels and less is known on how lncRNAs could potentially control the development and homeostasis of bone. In the present review, we highlight some lncRNAs in the field of bone biology and bone disease. We also delineate some lncRNAs that might have deep impacts on understanding bone diseases and providing new therapeutic strategies to treat these diseases.
Collapse
Affiliation(s)
- Dijie Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chong Yin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
40
|
Yao Q, Chen T. LINC01128 regulates the development of osteosarcoma by sponging miR-299-3p to mediate MMP2 expression and activating Wnt/β-catenin signalling pathway. J Cell Mol Med 2020; 24:14293-14305. [PMID: 33108067 PMCID: PMC7753992 DOI: 10.1111/jcmm.16046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. The important role of long non‐coding RNAs (lncRNAs) in the biological processes of OS has been demonstrated through several studies. In the current study, we evaluated the role of the lncRNA, LINC01128, in OS. We analysed the expression of LINC01128 in three OS gene expression omnibus (GEO) data sets GSE21257, GSE36001 and GSE42352. The expression of LINC01128 in OS tissues and matched non‐tumour tissues obtained from 50 OS patients was detected using qRT‐PCR. The association between LINC01128 expression and overall survival of OS patients was evaluated using the Kaplan‐Meier method. The effects of LINC01128 knockdown and overexpression were evaluated through in vitro and in vivo assays. The LINC01128/miR‐299‐3p/ MMP2 axis was verified using dual‐luciferase reporter assay and qRT‐PCR assays. GEO data sets analysis revealed that the expression of LINC01128 was increased in OS. Elevated LINC01128 expression was accompanied by shorter overall survival in OS patients. Functional studies revealed that LINC01128 knockdown reduced the proliferation, migration and invasion of OS cells both in vitro and in vivo. Mechanistically, LINC01128 sponged miR‐299‐3p to increase MMP2 expression. Rescue assays determined the role of the LINC01128/miR‐299‐3p/MMP2 axis in the proliferation, migration and invasion of OS cells. Additionally, the Wnt/β‐catenin signalling pathway was activated by LINC01128 and MMP2 in OS cell lines. In summary, this study demonstrates that LINC01128 facilitates OS by functioning as a sponge of miR‐299‐3p, thus promoting MMP2 expression and activating the Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Qiang Yao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Wen Y, Zhang X, Liu X, Huo Y, Gao Y, Yang Y. Suppression of lncRNA SNHG15 protects against cerebral ischemia-reperfusion injury by targeting miR-183-5p/FOXO1 axis. Am J Transl Res 2020; 12:6250-6263. [PMID: 33194027 PMCID: PMC7653613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a severe complication during the treatment of patients with stroke. It has been shown that the expression of SNHG15 was increased in patients with ischemic stroke (IS). However, the function and regulatory mechanism of SNHG15 in IS remains unclear. METHODS An oxygen glucose deprivation/reoxygenation (OGD/R) cell model was use to establish an in vitro model of I/R injury. RT-qPCR assay was used to detect the level of SNHG15 in OGD/R-treated SH-SY5Y cells. Meanwhile, middle cerebral artery occlusion (MCAO) was used to establish an in vivo model of cerebral I/R injury. RESULTS The expression of SNHG15 was upregulated in OGD/R-treated SH-SY5Y cells. Downregulation of SNHG15 during reperfusion reduced cell death in OGD/R-treated SH-SY5Y cells. In addition, SNHG15 knockdown suppressed OGD/R-induced apoptosis in SY-SY5Y cells by attenuating intracellular ROS generation and reducing mitochondrial membrane potential (MMP) lost. In addition, SNHG15 knockdown promoted cell cycle transition in SY-SY5Y cells after OGD/R insult accompany with PI3K/Akt signaling activation. Meanwhile, mechanism investigations suggested SNHG15 knockdown downregulated the expression of FOXO1 through acting as a competitive 'sponge' of miR-183-5p. Most importantly, knockdown of SNHG15 expression in vivo inhibited neuronal apoptosis and decreased infarct area in MCAO rats. CONCLUSION Thus, the present study indicated that SNHG15 knockdown protected against cerebral I/R injury via targeting miR-183-5p/FOXO1 axis, which may represent a potential therapeutic option for the treatment of cerebral IS.
Collapse
Affiliation(s)
- Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
| | - Yinghao Huo
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
| | - Yuxiao Gao
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of NeurologyShijiazhuang 050000, Hebei, P. R. China
- Hebei Key Laboratory of Vascular HomeostasisShijiazhuang 050000, Hebei, P. R. China
| |
Collapse
|
42
|
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020; 12:cancers12102926. [PMID: 33050642 PMCID: PMC7600306 DOI: 10.3390/cancers12102926] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemoresistance and metastasis are the main causes of treatment failure in cancers. Autophagy contribute to the survival and metastasis of cancer cells. Competing endogenous RNA (ceRNA), particularly long non-coding RNAs and circular RNA (circRNA), can bridge the interplay between autophagy and chemoresistance or metastasis in cancers via sponging miRNAs. This review aims to discuss on the function of ceRNA-mediated autophagy in the process of metastasis and chemoresistance in cancers. ceRNA network can sequester the targeted miRNA expression to indirectly upregulate the expression of autophagy-related genes, and thereof participate in autophagy-mediated chemoresistance and metastasis. Our clarification of the mechanism of autophagy regulation in metastasis and chemoresistance may greatly improve the efficacy of chemotherapy and survival in cancer patients. The combination of the tissue-specific miRNA delivery and selective autophagy inhibitors, such as hydroxychloroquine, is attractive to treat cancer patients in the future. Abstract Chemoresistance and metastasis are the main causes of treatment failure and unfavorable outcome in cancers. There is a pressing need to reveal their mechanisms and to discover novel therapy targets. Autophagy is composed of a cascade of steps controlled by different autophagy-related genes (ATGs). Accumulating evidence suggests that dysregulated autophagy contributes to chemoresistance and metastasis via competing endogenous RNA (ceRNA) networks including lncRNAs and circRNAs. ceRNAs sequester the targeted miRNA expression to indirectly upregulate ATGs expression, and thereof participate in autophagy-mediated chemoresistance and metastasis. Here, we attempt to summarize the roles of ceRNAs in cancer chemoresistance and metastasis through autophagy regulation.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China;
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China
- Correspondence: ; Tel.: +86-571-89991702
| |
Collapse
|
43
|
Dang S, Malik A, Chen J, Qu J, Yin K, Cui L, Gu M. LncRNA SNHG15 Contributes to Immuno-Escape of Gastric Cancer Through Targeting miR141/PD-L1. Onco Targets Ther 2020; 13:8547-8556. [PMID: 32943878 PMCID: PMC7468375 DOI: 10.2147/ott.s251625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/01/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) have been demonstrated to participate in many biological processes and severs as important regulators during the progression of gastric cancer. Methods Here, we introduced human lncRNA SNHG15 which was highly expressed in gastric cancer and cells. Interestingly, the expression of SNHG15 was correlated with programmed cell death ligand 1 (PD-L1), which promotes the resistance of gastric cancer cells to immune responses. Meanwhile, SNHG15 downregulation suppressed the expression of PD-L1 and resistance of immune responses. Results Further, our results suggested that SNHG15 acted as a competing endogenous RNA (CeRNA) to sponge miR-141, which was downregulated in gastric cancers and negatively correlated to PD-L1. Conclusion Our results suggested that SNHG15 improved the expression of PD-L1 by inhibiting miR-141, which in turn promoted the resistance of stomach cancer cells to the immune responses.
Collapse
Affiliation(s)
- Shengchun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China.,Department of General Surgery, Pucheng Hospital, Weinan, Shaanxi Province 715500, People's Republic of China
| | - Abdul Malik
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Jixiang Chen
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Jianguo Qu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Lei Cui
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Min Gu
- Department of Oncology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu 212001, People's Republic of China
| |
Collapse
|
44
|
Wu X, Li XF, Wu Q, Ma RQ, Qian J, Zhang R. LncRNA SNHG15 predicts poor prognosis in uveal melanoma and its potential pathways. Int J Ophthalmol 2020; 13:1195-1201. [PMID: 32821672 PMCID: PMC7387894 DOI: 10.18240/ijo.2020.08.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the role of long noncoding RNA (lncRNA) SNHG15 and its potential pathways in uveal melanoma (UM). METHODS The SNHG15 mRNA expression level and corresponding clinicopathological characteristics of 80 patients with UM were obtained from the Cancer Genome Atlas (TCGA) database and further analyzed. The SPSS 24.0 statistical software package was used for statistical analyses. To investigate the potential function of SNHG15 in UM, we conducted in-depth research on Gene Set Enrichment Analysis (GSEA). RESULTS The univariate analysis revealed that the age, tumor diameter, pathological type, extrascleral extension, cancer status, and high expression of SNHG15 were statistical risk factors for death from all causes. The multivariate analysis suggested that the mRNA expression level of SNHG15 was an independent risk factor for death from all causes, as was age and pathological type. Kaplan-Meier survival analysis confirmed that UM patients with high SNHG15 expression might have a poor prognosis. In addition, SNHG15 was significantly differentially expressed in the different groups of tumor pathologic stage, metastasis and living status. Besides, the logistic regression analysis indicated that high SNHG15 expression group in UM was significantly associated with cancer status, pathologic stage, metastasis, and living status. Moreover, the GSEA indicated the potential pathways regulated by SNHG15 in UM. CONCLUSION Our research suggests that SNHG15 may play a vital role as a potential marker in UM that predicts poor prognosis. Besides, GSEA indicates the underlying signaling pathways enriched differentially in SNHG15 high expression phenotype.
Collapse
Affiliation(s)
- Xue Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Xiao-Feng Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Qian Wu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rui-Qi Ma
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Jiang Qian
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
| | - Rui Zhang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China
| |
Collapse
|
45
|
Liu S, Meng X. LINC00662 Long Non-Coding RNA Knockdown Attenuates the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Regulating the microRNA-15a-5p/Notch2 Axis. Onco Targets Ther 2020; 13:7517-7530. [PMID: 32848412 PMCID: PMC7429411 DOI: 10.2147/ott.s256464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is a frequently occurring malignancy in children and adolescents. In this study, we aimed to investigate the effects of the long non-coding RNA (lncRNA) LINC00662 (LINC00662) in OS and the underlying molecular mechanism. Methods The expression of LINC00662, microRNA-15a-5p (miR-15a-5p), and Notch2 in OS was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, and invasion of OS cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assay. The interactions among LINC00662, miR-15a-5p, and Notch2 were determined by dual-luciferase reporter assays. A tumor xenograft model was established in mice for evaluating tumor growth in vivo. Results The expression of LINC00662 and Notch2 was found to be upregulated in OS, but the expression of miR-15a-5p was downregulated. The results demonstrated that LINC00662 knockdown attenuated the proliferation, migration, and invasion of OS cells and suppressed tumor growth in mice. The study further demonstrated that LINC00662 directly interacted with miR-15a-5p, and that Notch2 was a target of miR-15a-5p. The inhibition of miR-15a-5p or Notch2 overexpression markedly reversed the suppressive effect of sh-LINC00662 on the proliferation, migration, and invasion of OS cells. Conclusion The study demonstrated that LINC00662 could be a potential biomarker for OS therapy, and LINC00662 knockdown suppressed the proliferation, migration, and invasion of OS cells by regulating the miR-15a-5p/Notch2 axis.
Collapse
Affiliation(s)
- Shuheng Liu
- Department of Spine Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Xianghai Meng
- Trauma Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, People's Republic of China
| |
Collapse
|
46
|
Wang C, Tang D, Wang H, Hu G, Hu S, Li L, Min B, Wang Y. Circular RNA hsa_circ_0030018 acts as a sponge of miR-599 to aggravate esophageal carcinoma progression by regulating ENAH expression. J Cell Biochem 2020; 121:3730-3738. [PMID: 31736156 DOI: 10.1002/jcb.29507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Esophageal carcinoma (EC) bears one of the most rapid-growing incidences in cancers, which also has the highest mortality rate worldwide. Multiple studies have authenticated that circular RNAs (circRNAs) significantly work on the progression of cancers. circRNA hsa_circ_0030018 was also verified to exert functions on the development of glioma previously. Nevertheless, the biological function of hsa_circ_0030018 in EC has not been well elucidated yet. In the present study, the results displayed the expression of hsa_circ_0030018 was dramatically increased in EC cells. Inhibition of has_circ_0030018 suppressed cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in EC. Based on molecular mechanism assays, has_circ_0030018 served as a sponge of miR-599. Enabled homolog (ENAH), which exhibited high expression in EC cells, was confirmed to be a downstream target gene of miR-599. Additionally, has_circ_0030018 positively regulated ENAH expression while miR-599 negatively regulated ENAH expression. Finally, by employing rescue assays, ENAH deficiency partially counteracted the promoting function of miR-599 silence on cell proliferation, migration, and EMT process in EC cotransfected with sh- has_circ_0030018#1 cells. In conclusion, hsa_circ_0030018 acted as a sponge of miR-599 to aggravate EC progression by regulating ENAH expression. Therefore, hsa_circ_0030018 might serve as a promising biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Chengxiang Wang
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Derong Tang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hongying Wang
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Guodong Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Shuo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Lei Li
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Bo Min
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Yaqin Wang
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| |
Collapse
|
47
|
Chen H, Liu T, Ouyang H, Lin S, Zhong H, Zhang H, Yang Y. Upregulation of FTX Promotes Osteosarcoma Tumorigenesis by Increasing SOX4 Expression via miR-214-5p. Onco Targets Ther 2020; 13:7125-7136. [PMID: 32821116 PMCID: PMC7419629 DOI: 10.2147/ott.s238070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA-FTX has been the invasion of tumors. However, its function and mechanism in osteosarcoma have not been studied. METHODS qRT-PCR was measured the expression levels of FTX and miR-214-5p in osteosarcoma. The protein levels of SRY-related HMG box transcription factor 4 (SOX4) were detected by Western Blot. Cholecystokinin (CCK-8) assay, cell colony formation and Transwell assay, Annexin V-FITC/PI assay were analyzed the effects of FTX and miR-214-5p on cell proliferation, cell invasion and apoptosis. The relationship between FTX, miR-214-5p and SOX4 was analyzed by bioinformatics analysis and Luciferase. The tumor changes in mice were detected by vivo experiments in nude mice. RESULTS The expression levels of FTX were increased in osteosarcoma tissues and cell lines and negatively correlated with the expression levels of miR-214-5p. FTX could modulate the expression of miR-214-5p in osteosarcoma cell lines. sh-FTX inhibited the growth and metastasis of osteosarcoma. FTX could regulate the growth of osteosarcoma through miR-214-5p. The knockdown of miR-214-5p reversed the inhibitory effect of sh-FTX on osteosarcoma cell proliferation and growth in mice. Furthermore, FTX regulated the expression of SOX4 by acting as a sponge of miR-214-5p in osteosarcoma. CONCLUSION FTX could promote proliferation, invasion and inhibited apoptosis by regulating miR-214-5p/SOX4 axis in osteosarcoma, suggesting that FTX might be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Haicong Chen
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Tianfeng Liu
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Hanbin Ouyang
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Sien Lin
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Huan Zhong
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Hongwu Zhang
- Department of Anatomy, School of Basic Medicine Science, Southern Medical University, Guangzhou510515, Guangdong, People’s Republic of China
| | - Yang Yang
- Department of Anatomy, School of Basic Medicine Science, Southern Medical University, Guangzhou510515, Guangdong, People’s Republic of China
| |
Collapse
|
48
|
High Expression of the Long Noncoding RNA SNHG15 in Cancer Tissue Samples Predicts an Unfavorable Prognosis of Cancer Patients: A Meta-Analysis. JOURNAL OF ONCOLOGY 2020; 2020:3417036. [PMID: 32733556 PMCID: PMC7378602 DOI: 10.1155/2020/3417036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Background Although the prognostic value of lncRNA small nucleolar RNA host gene 15 (SNHG15) expression in cancers has been evaluated in many studies, the results remain controversial. This meta-analysis aimed to clarify the role of SNHG15 in the prognosis of different cancer patients. Materials and Methods Eligible studies were selected from PubMed, PMC, EMBASE, Web of Science, and Cochrane Library according to the inclusion and exclusion criteria (up to December 20, 2019). The primary outcome was overall survival (OS) and recurrence-free survival (RFS). The secondary outcome was other clinicopathological parameters (including advanced TNM stage, lymph node metastasis, distant metastases, and gender). The Cancer Genome Atlas (TCGA) dataset was used to verify the analysis results. Results Eleven eligible studies were eventually included, involving 9 different types of cancer and 1,079 patients. The high expression of SNHG15 was indicative of a significantly poor OS of cancer patients (HR = 1.96, 95% CI = 1.55–2.47, P < 0.00001). Subgroup analysis showed that the high expression of SNHG15 was associated with a significantly poor OS of patients with digestive cancer (HR = 1.91, 95% CI = 1.38–2.66, P=0.0001), but not lung cancer (HR = 1.83, 95% CI = 0.89–3.76, P=0.010). The RFS of patients with high expression of SNHG15 was shorter than that of patients with low expression of SNHG15 (HR = 2.03, 95% CI = 1.46–2.83, P < 0.00001). In addition, high SNHG15 expression level was significantly correlated with later TNM stage (OR = 3.05, 95% CI = 2.31–4.02, P < 0.00001), lymphatic metastasis (OR = 3.20, 95% CI = 2.30–4.45, P < 0.00001), and distant metastasis (OR = 5.05, 95% CI = 2.15–11.85, P=0.0002). The TCGA verification results were consistent with those observed in our meta-analysis. Conclusion High expression of the long noncoding RNA SNHG15 in cancer tissue samples predicts an unfavorable prognosis for cancer patients. LncRNA SNHG15 can be used as an adverse prognostic biomarker for cancer patients.
Collapse
|
49
|
LncRNA SNHG15 regulates EGFR-TKI acquired resistance in lung adenocarcinoma through sponging miR-451 to upregulate MDR-1. Cell Death Dis 2020; 11:525. [PMID: 32655137 PMCID: PMC7354989 DOI: 10.1038/s41419-020-2683-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main component of non-small-cell lung cancer (NSCLC) and causes a great health concern globally. The top priority of LUAD treatment is to deal with gefitinib resistance. Long non-coding RNAs are certified to modify gefitinib resistance in the course of tumor aggravation. The study focuses on addressing the function of small nucleolar RNA host gene 15 (SNHG15) on modifying gefitinib resistance in LUAD. Previously, NOTCH pathway is implicated in LUAD chemo-resistance. SNHG15 level was boosted following the depletion of NOTCH-1 in A549/GR and H1975/GR cells. Functional studies indicated that SNHG15 and multidrug resistance protein 1 (MDR-1) were overexpressed and possess tumor-promoting functions in gefitinib-resistant LUAD cells while miR-451 was downregulated and possess tumor-suppressive behaviors in gefitinib-resistant LUAD cells. Mechanically, the SNHG15 was cytoplasmically distributed in GR LUAD cells. In addition, SNHG15 released MDR-1 from the suppression of miR-451, leading to MDR-1 promotion. In addition, the elevation of SNHG15 could be attributed to ZEB1. Rescue assays highlighted that downstream molecules MDR-1 and miR-451 could reverse the effects of SNHG15 downregulation on gefitinib-resistant LUAD cells. SNHG15 could alter chemo-resistance of LUAD cells to Gefitinib via regulating miR-451/MDR-1, which could be inspiring findings for the advancement of chemo-therapies for LUAD.
Collapse
|
50
|
Yao X, Wu L, Gu Z, Li J. LINC01535 Promotes the Development of Osteosarcoma Through Modulating miR-214-3p/KCNC4 Axis. Cancer Manag Res 2020; 12:5575-5585. [PMID: 32753970 PMCID: PMC7354912 DOI: 10.2147/cmar.s232757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor in group of children and adolescents. Increasing studies showed that long non-coding RNAs (lncRNAs) exerted important functions in the development of tumors, including OS. LINC01535 is an lncRNA which has been studied in cervical cancer but not in OS. Aim of the Study This study was aimed to explore the biological function and mechanism of LINC01535 in OS. Methods LINC01535 expression was detected by qRT-PCR. Colony formation assay, EdU assay and CCK-8 assay were applied to check cell proliferation ability in OS. Flow cytometry analysis was conducted to measure cell apoptosis capacity. Wound healing assay and transwell assay were performed to assess cell migration and invasion. Luciferase reporter assay and RNA pull-down assay were carried out to verify the molecular mechanism. Results The high expression of LINC01535 was presented in OS tissues and cell lines compared with adjacent normal tissues and human osteoblasts. Moreover, OS patients with high LINC01535 expression exhibited poor prognosis. Loss-of-function assay revealed that silenced LINC01535 significantly attenuated cell proliferation, migration and invasion, and enhanced cell apoptosis in OS. Through mechanistic exploration, we found that LINC01535 interacted with miR-214-3p, and KCNC4 was validated to be a target gene of miR-214-3p. The levels of KCNC4 mRNA and protein were positively modulated by LINC01535 and reversely mediated by miR-214-3p. Based on rescue experiments, KCNC4 overexpression reserved the suppressive function of silenced LINC01535 on OS cell growth, migration and invasion. Conclusion LINC01535, miR-214-3p and KCNC4 constituted an effective axis that exerted a pregnant regulation in OS development, which is a quite meaningful discovery for exploring potential therapeutic methods for OS patients.
Collapse
Affiliation(s)
- Xiaoke Yao
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Lingna Wu
- Intensive Care Unit, Chengdu First People's Hospital, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zuchao Gu
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Jianhua Li
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|