1
|
Das D, Xie L, Qiao D, Jia J, Hong J. Discovery of novel, orally bioavailable phenylacetamide derivatives as multikinase inhibitors and in vivo efficacy study in hepatocellular carcinoma animal models. Bioorg Med Chem Lett 2024; 113:129971. [PMID: 39306048 DOI: 10.1016/j.bmcl.2024.129971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Hepatocellular carcinoma (HCC) is considered as one of the leading causes of death in liver disease patients. Several signal transduction pathways are involved in HCC pathogenesis. Multikinase inhibitors (MKIs) show beneficial effects for HCC and the FDA approved a few MKIs including sorafenib, lenvatinib for HCC treatments. Here, a novel series of phenylacetamide derivatives were designed, synthesized and evaluated as multikinase inhibitors. Several compounds showed nanomolar IC50 values against FLT1, FLT3, FLT4, KDR, PDGFRα, PDGFRβ. The compounds were tested against human hepatocellular carcinoma (HCC), human colon adenocarcinoma and human gastric carcinoma cell lines. With favorable pharmacokinetics profiles, compound 12 and compound 14 were selected for in vivo efficacy studies in Hep3B mice models and demonstrated efficacious than sorafenib.
Collapse
Affiliation(s)
- Debasis Das
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China.
| | - Lingzhi Xie
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China
| | - Dandan Qiao
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China
| | - Jianhe Jia
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China
| | - Jian Hong
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Wang C, Liu S, Li C, Wang Z, Ming R, Huang L. Monitoring the Cascade of Monocyte-Derived Macrophages to Influenza Virus Infection in Human Alveolus Chips. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60045-60055. [PMID: 39450775 DOI: 10.1021/acsami.4c15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Respiratory viruses ravage the world and seriously threaten people's health. Despite intense research efforts, the immune mechanism underlying respiratory virus-induced acute lung injury (ALI) and pulmonary fibrosis (PF) has not been fully elucidated. Here, the cascade of monocyte-derived macrophages to influenza A virus infection is monitored on an optimized human alveolus chip to reveal the role of macrophages in the development of ALI and PF. We find that viral infection causes damage to the alveolar air-liquid barrier and the release of inflammatory cytokines, which induce the M0 macrophages to gather and polarize to the M1 phenotype at the damaged site through recruitment, adhesion, migration, and activation, leading to ALI. Afterward, M1 macrophages polarize into the M2 phenotype, and then transform into myofibroblasts, followed by enhanced secretion of various anti-inflammatory cytokines and profibrotic cytokines, to promote PF. Our study provides an insight into the pathogenesis of virus-induced ALI and PF, which will assist in the development of therapeutic strategies and drugs for treating influenza and other respiratory virus infections.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shujun Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhongjie Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ruiqi Ming
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, P. R. China
| |
Collapse
|
3
|
Bhattacharjee A, Bagchi A, Sarkar S, Bawali S, Bhattacharya A, Biswas A. Repurposing approved protein kinase inhibitors as potent anti-leishmanials targeting Leishmania MAP kinases. Life Sci 2024; 351:122844. [PMID: 38897344 DOI: 10.1016/j.lfs.2024.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
AIMS Leishmaniasis, caused by the protozoan parasite poses a significant health burden globally. With a very few specific drugs, increased drug resistance it is important to look for drug repurposing along with the identification of pre-clinical candidates against visceral leishmaniasis. This study aims to identify potential drug candidates against visceral leishmaniasis by targeting leishmanial MAP kinases and screening FDA approved protein kinase inhibitors. MATERIALS AND METHODS MAP kinases were identified from the Leishmania genome. 12 FDA approved protein kinase inhibitors were screened against Leishmania MAP kinases. Binding affinity, ADME and toxicity of identified drug candidates were profiled. The anti-proliferative effects and mechanism of action were assessed in Leishmania, including changes in cell morphology, flagellar length, cell cycle progression, reactive oxygen species (ROS) generation, and intra-macrophage parasitic burden. KEY FINDINGS 23 MAP kinases were identified from the Leishmania genome. Sorafenib and imatinib emerged as repurposable drug candidates and demonstrated excellent anti-proliferative effects in Leishmania. Treatment with these inhibitors resulted in significant changes in cell morphology, flagellar length, and cell cycle arrest. Furthermore, sorafenib and imatinib promoted ROS generation and reduced intra-macrophage parasitic burden, and elicited anti-leishmanial activity in in vivo experimental VL models. SIGNIFICANCE Collectively, these results imply involvement of MAP kinases in infectivity and survival of the parasite and can pave the avenue for repurposing sorafenib and imatinib as anti-leishmanial agents. These findings contribute to the exploration of new treatment options for visceral leishmaniasis, particularly in the context of emerging drug resistance.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741235, India
| | - Arka Bagchi
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741235, India
| | - Solanki Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741235, India
| | - Sriparna Bawali
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741235, India
| | - Arijit Bhattacharya
- AMR Research Laboratory, Department of Biological Sciences, Adamas University, Kolkata 700126, India.
| | - Arunima Biswas
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741235, India.
| |
Collapse
|
4
|
Dai Q, Wei X, Zhao J, Zhang D, Luo Y, Yang Y, Xiang Y, Liu X. Inhibition of FSP1: A new strategy for the treatment of tumors (Review). Oncol Rep 2024; 52:105. [PMID: 38940330 PMCID: PMC11228423 DOI: 10.3892/or.2024.8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.
Collapse
Affiliation(s)
- Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaoli Wei
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yidan Luo
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
- College of Physical Education, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
5
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang C, Li C, Zhang R, Huang L. Macrophage membrane-coated nanoparticles for the treatment of infectious diseases. Biomed Mater 2024; 19:042003. [PMID: 38740051 DOI: 10.1088/1748-605x/ad4aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Infectious diseases severely threaten human health, and traditional treatment techniques face multiple limitations. As an important component of immune cells, macrophages display unique biological properties, such as biocompatibility, immunocompatibility, targeting specificity, and immunoregulatory activity, and play a critical role in protecting the body against infections. The macrophage membrane-coated nanoparticles not only maintain the functions of the inner nanoparticles but also inherit the characteristics of macrophages, making them excellent tools for improving drug delivery and therapeutic implications in infectious diseases (IDs). In this review, we describe the characteristics and functions of macrophage membrane-coated nanoparticles and their advantages and challenges in ID therapy. We first summarize the pathological features of IDs, providing insight into how to fight them. Next, we focus on the classification, characteristics, and preparation of macrophage membrane-coated nanoparticles. Finally, we comprehensively describe the progress of macrophage membrane-coated nanoparticles in combating IDs, including drug delivery, inhibition and killing of pathogens, and immune modulation. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
7
|
Zhan W, Hu H, Hao B, Zhu H, Yan T, Zhang J, Wang S, Liu S, Zhang T. Development of machine learning-based malignant pericardial effusion-related model in breast cancer: Implications for clinical significance, tumor immune and drug-therapy. Heliyon 2024; 10:e27507. [PMID: 38463870 PMCID: PMC10923851 DOI: 10.1016/j.heliyon.2024.e27507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Background Malignant pericardial effusion (MPE) is a common complication of advanced breast cancer (BRCA) and plays an important role in BRCA. This study is aims to construct a prognostic model based on MPE-related genes for predicting the prognosis of breast cancer. Methods The BRCA samples are analyzed based on the expression of MPE-related genes by using an unsupervised cluster analysis method. This study processes the data by least absolute shrinkage and selection operator and multivariate Cox analysis, and uses machine learning algorithms to construct BRCA prognostic model and develop web tool. Results BRCA patients are classified into three clusters and a BRCA prognostic model is constructed containing 9 MPE-related genes. There are significant differences in signature pathways, immune infiltration, immunotherapy response and drug sensitivity testing between the high and low-risk groups. Of note, a web-based tool (http://wys.helyly.top/cox.html) is developed to predict overall survival as well as drug-therapy response of BRCA patients quickly and conveniently, which can provide a basis for clinicians to formulate individualized treatment plans. Conclusion The MPE-related prognostic model developed in this study can be used as an effective tool for predicting the prognosis of BRCA and provides new insights for the diagnosis and treatment of BRCA patients.
Collapse
Affiliation(s)
- Wendi Zhan
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hongxia Zhu
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingdi Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Saiyang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
8
|
Becht R, Kiełbowski K, Wasilewicz MP. New Opportunities in the Systemic Treatment of Hepatocellular Carcinoma-Today and Tomorrow. Int J Mol Sci 2024; 25:1456. [PMID: 38338736 PMCID: PMC10855889 DOI: 10.3390/ijms25031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Michał P. Wasilewicz
- Liver Unit, Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
9
|
Wang Y, Tamori Y. Polyploid Cancer Cell Models in Drosophila. Genes (Basel) 2024; 15:96. [PMID: 38254985 PMCID: PMC10815460 DOI: 10.3390/genes15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression.
Collapse
Affiliation(s)
| | - Yoichiro Tamori
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Caputo WL, de Souza MC, Basso CR, Pedrosa VDA, Seiva FRF. Comprehensive Profiling and Therapeutic Insights into Differentially Expressed Genes in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5653. [PMID: 38067357 PMCID: PMC10705715 DOI: 10.3390/cancers15235653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Drug repurposing is a strategy that complements the conventional approach of developing new drugs. Hepatocellular carcinoma (HCC) is a highly prevalent type of liver cancer, necessitating an in-depth understanding of the underlying molecular alterations for improved treatment. Methods: We searched for a vast array of microarray experiments in addition to RNA-seq data. Through rigorous filtering processes, we have identified highly representative differentially expressed genes (DEGs) between tumor and non-tumor liver tissues and identified a distinct class of possible new candidate drugs. Results: Functional enrichment analysis revealed distinct biological processes associated with metal ions, including zinc, cadmium, and copper, potentially implicating chronic metal ion exposure in tumorigenesis. Conversely, up-regulated genes are associated with mitotic events and kinase activities, aligning with the relevance of kinases in HCC. To unravel the regulatory networks governing these DEGs, we employed topological analysis methods, identifying 25 hub genes and their regulatory transcription factors. In the pursuit of potential therapeutic options, we explored drug repurposing strategies based on computational approaches, analyzing their potential to reverse the expression patterns of key genes, including AURKA, CCNB1, CDK1, RRM2, and TOP2A. Potential therapeutic chemicals are alvocidib, AT-7519, kenpaullone, PHA-793887, JNJ-7706621, danusertibe, doxorubicin and analogues, mitoxantrone, podofilox, teniposide, and amonafide. Conclusion: This multi-omic study offers a comprehensive view of DEGs in HCC, shedding light on potential therapeutic targets and drug repurposing opportunities.
Collapse
Affiliation(s)
- Wesley Ladeira Caputo
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
| | - Milena Cremer de Souza
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
| | - Caroline Rodrigues Basso
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| | - Valber de Albuquerque Pedrosa
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| | - Fábio Rodrigues Ferreira Seiva
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| |
Collapse
|
11
|
Shu G, Sun H, Zhang T, Zhu A, Lei X, Wang C, Song A, Deng X. Theaflavine inhibits hepatic stellate cell activation by modulating the PKA/LKB1/AMPK/GSK3β cascade and subsequently enhancing Nrf2 signaling. Eur J Pharmacol 2023; 956:175964. [PMID: 37549726 DOI: 10.1016/j.ejphar.2023.175964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Activation of hepatic stellate cells (HSCs) constitutes a crucial etiological factor leading to liver fibrosis. Theaflavine (TF) is a characteristic bioactive compound in fermented tea. Here, we found that TF attenuated the activation of LX-2 HSCs induced by transforming growth factor-β1 (TGF-β1). TF potentiated nuclear factor erythroid 2-related Factor 2 (Nrf2) signaling. Knockdown of Nrf2 abrogated TF-mediated resistance to TGF-β1. Liver kinase B1 (LKB1), AMP-activated kinase (AMPK), and glycogen synthase kinase-3β (GSK3β) are upstream regulators of Nrf2. TF modulated the LKB1/AMPK/GSK3β axis. Inhibition of AMPK or knockdown of LKB1 crippled TF-mediated potentiation of Nrf2. Protein kinase A (PKA) catalyzes LKB1 phosphorylation. In LX-2 cells, TF increased the LKB1/PKA interaction without affecting their contents. Inhibition of PKA abolished TF-mediated potentiation of LKB1/Nrf2 and abrogated the inhibitory effects of TF on their activation. TF also enhanced direct binding between purified catalytic subunit α of PKA (PKA-Cα) and LKB1 proteins in vitro. Molecular docking indicated that TF showed binding activity with both LKB1 and PKA-Cα proteins. In mouse primary HSCs, TF elevated LKB1/PKA-Cα binding, boosted LKB1 phosphorylation, potentiated Nrf2 and suppressed their spontaneous activation. PKA inhibition or LKB1 knockdown eliminated TF-mediated induction of Nrf2 and suppression of HSC activation. Furthermore, TF considerably alleviated CCl4-induced mouse liver fibrosis. In mouse livers, TF increased the LKB1/PKA-Cα interaction, upregulated LKB1 phosphorylation and modulated its downstream AMPK/GSK3β/Nrf2 cascade. Our findings collectively indicated that TF suppresses HSC activation. Mechanistically, TF elevated the LKB1/PKA interaction in HSCs, which increased LKB1 phosphorylation and subsequently modulated the downstream AMPK/GSK3β/Nrf2 axis.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anqi Zhu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Liu MR, Shi C, Song QY, Kang MJ, Jiang X, Liu H, Pei DS. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol Commun 2023; 7:e0246. [PMID: 37695069 PMCID: PMC10497252 DOI: 10.1097/hc9.0000000000000246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Ferroptosis is a unique form of regulated cell death that provided a new opportunity for cancer therapy. Ferroptosis suppressor protein 1 (FSP1) is a key regulator in the NAD(P)H/FSP1/CoQ10 antioxidant system, which sever as an oxide redox enzyme to scavenge harmful lipid hydroperoxides and escape from ferroptosis in cells. This study aimed to investigate the role of FSP1 on sorafenib-induced ferroptosis and disclosed the underlying mechanisms. METHODS Cell viability, malondialdehyde (MDA), glutathione (GSH), and lipid reactive oxygen species levels were assessed using indicated assay kits. The levels of FSP1 and glutathione peroxidase 4 (GPX4) in the patients with HCC were analyzed based on the database. Western blot and quantitative real-time PCR were performed to detect the protein and mRNA expression. Co-immunoprecipitation was applied to detect the interaction between proteins. Tumor xenograft experiments were used to evaluate whether overexpression of FSP1-inhibited sorafenib-induced ferroptosis in vivo. RESULTS We verified that sorafenib-induced ferroptosis in HCC. Furthermore, we found that sorafenib decreased the protein level of FSP1, and knockdown FSP1 rendered HCC cells susceptible to sorafenib-induced ferroptosis. Co-immunoprecipitation and ubiquitination assays showed that sorafenib accelerated the TRIM54-mediated FSP1 ubiquitination and degradation. Sorafenib-induced ferroptosis was abrogated by TRIM54 suppression. Mechanically, sorafenib-promoted TRIM54 ubiquitinated and degraded FSP1 by means of the ERK pathway. Moreover, FSP1 enhanced tumor development and decreased HCC cellular susceptibility to sorafenib in vivo. CONCLUSIONS Sorafenib facilitated the TRIM54-mediated FSP1 ubiquitination through the ERK pathway, thereby inducing ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Man-ru Liu
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- Department of Human Anatomy, Nanchang University Fuzhou Medical College, Fuzhou, China
| | - Ce Shi
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qiu-ya Song
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Meng-jie Kang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Ultrasound Medicine, Suqian First Hospital, Suqian, China
| | - Dong-sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, Hamblin MR, Aref AR. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci 2023; 80:104. [PMID: 36947256 PMCID: PMC11073124 DOI: 10.1007/s00018-023-04729-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Targeted therapy is a new cancer treatment approach, involving drugs that particularly target specific proteins in cancer cells, such as receptor tyrosine kinases (RTKs) which are involved in promoting growth and proliferation, Therefore inhibiting these proteins could impede cancer progression. An understanding of RTKs and the relevant signaling cascades, has enabled the development of many targeted drug therapies employing RTK inhibitors (RTKIs) some of which have entered clinical application. Here we discuss RTK structures, activation mechanisms and functions. Moreover, we cover the potential effects of combination drug therapy (including chemotherapy or immunotherapy agents with one RTKI or multiple RTKIs) especially for drug resistant cancers.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Elmira Fardi
- Medical Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Laboratory of Regenerative and Medical Innovation, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Palizdar
- Division of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Tehran East Branch, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|