1
|
Weigert A, Herhaus L. Immune modulation through secretory autophagy. J Cell Biochem 2024; 125:e30427. [PMID: 37260061 DOI: 10.1002/jcb.30427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Autophagy is a central mechanism of cellular homeostasis through the degradation of a wide range of cellular constituents. However, recent evidence suggests that autophagy actively provides information to neighboring cells via a process called secretory autophagy. Secretory autophagy couples the autophagy machinery to the secretion of cellular content via extracellular vesicles (EVs). EVs carry a variety of cargo, that reflect the pathophysiological state of the originating cells and have the potential to change the functional profile of recipient cells, to modulate cell biology. The immune system has evolved to maintain local and systemic homeostasis. It is able to sense a wide array of molecules signaling disturbed homeostasis, including EVs and their content. In this review, we explore the emerging concept of secretory autophagy as a means to communicate cellular, and in total tissue pathophysiological states to the immune system to initiate the restoration of tissue homeostasis. Understanding how autophagy mediates the secretion of immunogenic factors may hold great potential for therapeutic intervention.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Lina Herhaus
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Lin PW, Chu ML, Liu YW, Chen YC, Shih YH, Lan SH, Wu SY, Kuo IY, Chang HY, Liu HS, Lee YR. Revealing potential Rab proteins participate in regulation of secretory autophagy machinery. Kaohsiung J Med Sci 2024; 40:642-649. [PMID: 38804615 DOI: 10.1002/kjm2.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1β, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic β-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cing Chen
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Yi Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Ying-Ray Lee
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Lei T, Lin Y, Lai X, Zhang Y, Ma Y, Wang X, Liu W, Tang Q, Yang T, Feng W, Song W. ITGB5 facilitates gastric cancer metastasis by promoting TGFBR2 endosomal recycling. Cancer Lett 2024; 592:216953. [PMID: 38729557 DOI: 10.1016/j.canlet.2024.216953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
TGFBR2, a key regulator of the TGFβ signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin β5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFβ signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFβ signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuanchen Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qiao Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Bioclinicum, Solna, 17177, Sweden
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Arora A, Patiyal S, Sharma N, Devi NL, Kaur D, Raghava GPS. A random forest model for predicting exosomal proteins using evolutionary information and motifs. Proteomics 2024; 24:e2300231. [PMID: 37525341 DOI: 10.1002/pmic.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Non-invasive diagnostics and therapies are crucial to prevent patients from undergoing painful procedures. Exosomal proteins can serve as important biomarkers for such advancements. In this study, we attempted to build a model to predict exosomal proteins. All models are trained, tested, and evaluated on a non-redundant dataset comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins have more than 40% similarity. Initially, the standard similarity-based method Basic Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which failed due to low-level similarity in the dataset. To overcome this challenge, machine learning (ML) based models were developed using compositional and evolutionary features of proteins achieving an area under the receiver operating characteristics (AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety of sequence-based motifs which can be used to predict exosomal proteins. Hence, we developed a hybrid method combining motif-based and ML-based approaches for predicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on an independent dataset. This hybrid model performs better than presently available methods when assessed on an independent dataset. A web server and a standalone software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been created to help scientists predict and discover exosomal proteins and find functional motifs present in them.
Collapse
Affiliation(s)
- Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dashleen Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
5
|
Kuo WT, Kuo IY, Hsieh HC, Wu ST, Su WC, Wang YC. Rab37 mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion in lung cancer. J Biomed Sci 2024; 31:20. [PMID: 38321486 PMCID: PMC10848371 DOI: 10.1186/s12929-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear. METHODS Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept. RESULTS Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37+/PD-1+/TIM3+/CD8+ tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1+ and TIM3+ in CD8+ T cells exhibiting reduced tumoricidal activity. CONCLUSIONS Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37high/PD-1high/TIM3high in tumor-infiltrating CD8+ T cells is a biomarker for poor prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Biotechnology, College of Biomedical Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Chia Hsieh
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ssu-Ting Wu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Arya SB, Collie SP, Parent CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol 2024; 34:90-108. [PMID: 37507251 PMCID: PMC10811273 DOI: 10.1016/j.tcb.2023.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Exosomes are specialized cargo delivery vesicles secreted from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane (PM). While the function of exosomes during physiological and pathological events has been extensively reported, there remains a lack of understanding of the mechanisms that regulate exosome biogenesis, secretion, and internalization. Recent technological and methodological advances now provide details about MVB/exosome structure as well as the pathways of exosome biogenesis, secretion, and uptake. In this review, we outline our current understanding of these processes and highlight outstanding questions following on recent discoveries in the field.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Han Y, Zheng J, Ge L. Activated STING1 rides the Rafeesome. Autophagy 2023; 19:3230-3233. [PMID: 37543953 PMCID: PMC10621249 DOI: 10.1080/15548627.2023.2240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Over the past decade, accumulated studies have reported the presence of non-canonical macroautophagy/autophagy characterized by the shared usage of the autophagy machinery and distinct components that function in multiple scenarios but do not involve lysosomal degradation. One type of non-canonical autophagy is secretory autophagy, which facilitates the secretion of various cargoes. In a recent work from Gao et al. the ER-membrane protein STING1 has been identified as a novel substrate of secretory autophagy. The secretion of activated STING1 is mediated by its packing into the rafeesome, a newly identified organelle formed upon the fusion of RAB22A-mediated non-canonical autophagosome with an early endosome. Moreover, extracellular vesicles containing activated STING1 induce antitumor immunity in recipient cells, a process potentially promoted by RAB22A.
Collapse
Affiliation(s)
- Yaping Han
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianfei Zheng
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liang Ge
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Ye L, Li Y, Zhang S, Wang J, Lei B. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine Growth Factor Rev 2023; 73:27-39. [PMID: 37291031 DOI: 10.1016/j.cytogfr.2023.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Increasing evidence highlights the role of lipid metabolism in tumorigenesis and tumor progression. Targeting the processes of lipid metabolism, including lipogenesis, lipid uptake, fatty acid oxidation, and lipolysis, is an optimal strategy for anti-cancer therapy. Beyond cell-cell membrane surface interaction, exosomes are pivotal factors that transduce intercellular signals in the tumor microenvironment (TME). Most research focuses on the role of lipid metabolism in regulating exosome biogenesis and extracellular matrix (ECM) remodeling. The mechanisms of exosome and ECM-mediated reprogramming of lipid metabolism are currently unclear. We summarize several mechanisms associated with the regulation of lipid metabolism in cancer, including transport of exosomal carriers and membrane receptors, activation of the PI3K pathway, ECM ligand-receptor interactions, and mechanical stimulation. This review aims to highlight the significance of these intercellular factors in TME and to deepen the understanding of the functions of exosomes and ECM in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Jinsong Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
9
|
Zhou Z, Zhang D, Wang Y, Liu C, Wang L, Yuan Y, Xu X, Jiang Y. Urinary exosomes: a promising biomarker of drug-induced nephrotoxicity. Front Med (Lausanne) 2023; 10:1251839. [PMID: 37809338 PMCID: PMC10556478 DOI: 10.3389/fmed.2023.1251839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Drug-induced nephrotoxicity (DIN) is a big concern for clinical medication, but the clinical use of certain nephrotoxic drugs is still inevitable. Current testing methods make it hard to detect early renal injury accurately. In addition to understanding the pathogenesis and risk factors of drug-induced nephrotoxicity, it is crucial to identify specific renal injury biomarkers for early detection of DIN. Urine is an ideal sample source for biomarkers related to kidney disease, and urinary exosomes have great potential as biomarkers for predicting DIN, which has attracted the attention of many scholars. In the present paper, we will first introduce the mechanism of DIN and the biogenesis of urinary exosomes. Finally, we will discuss the changes in urinary exosomes in DIN and compare them with other predictive indicators to enrich and boost the development of biomarkers of DIN.
Collapse
Affiliation(s)
- Zunzhen Zhou
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dailiang Zhang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yongjing Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yi Yuan
- Orthopedic Department, Dazhou Integrated TCM and Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Xiaodan Xu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuan Jiang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Kjølle S, Finne K, Birkeland E, Ardawatia V, Winge I, Aziz S, Knutsvik G, Wik E, Paulo JA, Vethe H, Kleftogiannis D, Akslen LA. Hypoxia induced responses are reflected in the stromal proteome of breast cancer. Nat Commun 2023; 14:3724. [PMID: 37349288 PMCID: PMC10287711 DOI: 10.1038/s41467-023-39287-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Cancers are often associated with hypoxia and metabolic reprogramming, resulting in enhanced tumor progression. Here, we aim to study breast cancer hypoxia responses, focusing on secreted proteins from low-grade (luminal-like) and high-grade (basal-like) cell lines before and after hypoxia. We examine the overlap between proteomics data from secretome analysis and laser microdissected human breast cancer stroma, and we identify a 33-protein stromal-based hypoxia profile (33P) capturing differences between luminal-like and basal-like tumors. The 33P signature is associated with metabolic differences and other adaptations following hypoxia. We observe that mRNA values for 33P predict patient survival independently of molecular subtypes and basic prognostic factors, also among low-grade luminal-like tumors. We find a significant prognostic interaction between 33P and radiation therapy.
Collapse
Affiliation(s)
- Silje Kjølle
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Even Birkeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Vandana Ardawatia
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Sura Aziz
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Heidrun Vethe
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Dimitrios Kleftogiannis
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway.
| |
Collapse
|
11
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
12
|
Chen J, Zhou Y, Wu M, Yuan Y, Wu W. m6A Modification Mediates Exosomal LINC00657 to Trigger Breast Cancer Progression Via Inducing Macrophage M2 Polarization. Clin Breast Cancer 2023:S1526-8209(23)00092-7. [PMID: 37198028 DOI: 10.1016/j.clbc.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exosome-mediated transfer of long noncoding RNAs (lncRNAs) is critical for the cell-cell crosstalk in the tumor microenvironment. Nevertheless, the role of breast cancer (BC) cell-derived exosomal lncRNA in macrophage polarization during the development of BC remains unclear. METHODS The key lncRNAs carried by BC cell-derived exosomes were identified by RNA-seq. CCK-8, flow cytometry, and transwell assay were conducted to analyze the role of LINC00657 in BC cells. In addition, immunofluorescence, qRT-PCR, western blot, and MeRIP-PCR were used to evaluate the function and underlying mechanism of exosomal LINC00657 in macrophage polarization. RESULTS LINC00657 was distinctly upregulated in BC-derived exosomes and it was associated with increased m6A methylation modification levels. In addition, the depletion of LINC00657 significantly diminished the proliferative activity, migration and invasion potential of BC cells, and it also accelerated cell apoptosis. Exosomal LINC00657 from MDA-MB-231 cells could facilitate macrophage M2 activation, thus stimulating BC development in turn. Furthermore, LINC00657 activated the TGF-β signaling pathway by sequestering miR-92b-3p in macrophages. CONCLUSION Exosomal LINC00657 secreted by BC cells could induce macrophage M2 activation, and these macrophages preferentially contributed to the malignant phenotype of BC cells. These results improve our understanding of BC and suggest a new therapeutic strategy for patients with BC.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yuxin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Minhua Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yijie Yuan
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Weizhu Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
14
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
15
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
16
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|