1
|
Abe Y, Sato Y, Tanaka M, Ochiai D. Development of a new treatment for preterm birth complications using amniotic fluid stem cell therapy. Histol Histopathol 2023; 38:965-974. [PMID: 36971371 DOI: 10.14670/hh-18-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
This paper describes the current status of studies and clinical trials on the use of mesenchymal stem cells (MSCs) and amniotic fluid stem cells (AFSCs) for complications of preterm birth (PTB), an urgent issue in the perinatal field. PTB is a serious challenge in clinical medicine that is increasing globally, and effective control of its complications is necessary for newborns' subsequent long life. Classical treatments are inadequate, and many patients have PTB complications. A growing body of evidence provided by translational medicine and others indicates that MSCs, and among them, the readily available AFSCs, may be useful in treating PTB complications. AFSCs are the only MSCs available prenatally and are known to be highly anti-inflammatory and tissue-protective and do not form tumors when transplanted. Furthermore, because they are derived from the amniotic fluid, a medical waste product, no ethical issues are involved. AFSCs are an ideal cell resource for MSC therapy in neonates. This paper targets the brain, lungs, and intestines, which are the vital organs most likely to be damaged by PTB complications. The evidence to date and future prospects with MSCs and AFSCs for these organs are described.
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
2
|
Zhang W, Wang Y, Du Y, Li Z, Mu Y, Sun J, Liu Z, Guo Y, Shao H, Guan Y, Cui G, Du Z. Efficacy of Alveolar Type II Epithelial Cell Transplantation for Pulmonary Fibrosis: A Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1-9. [PMID: 36824257 PMCID: PMC9941447 DOI: 10.18502/ijph.v52i1.11660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/14/2022] [Indexed: 01/18/2023]
Abstract
Background Cell transplantation is a promising therapeutic strategy for pulmonary fibrosis. In order to clarify the alveolar type II epithelial cell potential utility in the treatment of lung disease, we conducted a meta-analysis, to evaluate alveolar type II epithelial cells in animal models of lung injury and pulmonary fibrosis. Methods This review followed the recommendations from the PRISMA statements, Comprehensive retrieval method was used to search Embase, PubMed, Cochrane, Chinese Knowledge Infrastructure, VIP and Wanfang databases. A total of 7 studies and 286 model rats were included. Two researchers independently screened the identified studies, based on inclusion and exclusion criteria. All analyses were conducted using Review Manager V.5.3 software. The combined standard mean difference (SMD) and 95% confidence interval (CI) of data from the included studies were calculated using fixed or random-effects models. Results The analysis of three outcome indexes showed that the heterogeneity of the oxygen saturation group was high (I2=85%), the lung weight group (I2=64%) was close to moderate heterogeneity, and the lung hydroxyproline content group (I2=0) was not heterogeneous. Conclusion Meta-analysis showed that transplantation of alveolar type II epithelial cells has beneficial effects, and no obvious adverse reactions. Alveolar type II epithelial cell transplantation can significantly reduce the intervention group and lung hydroxyproline content weight, improve the blood oxygen saturation, lung histo-pathology showed significant improvement in pulmonary fibrosis.
Collapse
Affiliation(s)
- Wanxin Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Yihua Wang
- Chemical Institute of Chemical Industry, Xinjiang University of Science and Technology, 841000, Korla, Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Yilun Du
- Affiliated Hospital of Qinghai University, Xi’ning 810000, Qinghai, China
| | - Ziyuan Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Yingwen Mu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Jiayin Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Zuodong Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Yutong Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China,Navel Medical University, Shanghai 200433, Shanghai, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Yingjun Guan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China,Corresponding Author: ;
| | - Guanqun Cui
- Department of Respiratory Medicine, Children’s Hospital Affiliated to Shandong Uneiversity, 250022, Ji’nan, Shandong Province, China,Corresponding Author: ;
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| |
Collapse
|
3
|
Calzetta L, Aiello M, Frizzelli A, Camardelli F, Cazzola M, Rogliani P, Chetta A. Stem Cell-Based Regenerative Therapy and Derived Products in COPD: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11111797. [PMID: 35681492 PMCID: PMC9180461 DOI: 10.3390/cells11111797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
COPD is an incurable disorder, characterized by a progressive alveolar tissue destruction and defective mechanisms of repair and defense leading to emphysema. Currently, treatment for COPD is exclusively symptomatic; therefore, stem cell-based therapies represent a promising therapeutic approach to regenerate damaged structures of the respiratory system and restore lung function. The aim of this study was to provide a quantitative synthesis of the efficacy profile of stem cell-based regenerative therapies and derived products in COPD patients. A systematic review and meta-analysis was performed according to PRISMA-P. Data from 371 COPD patients were extracted from 11 studies. Active treatments elicited a strong tendency towards significance in FEV1 improvement (+71 mL 95% CI -2−145; p = 0.056) and significantly increased 6MWT (52 m 95% CI 18−87; p < 0.05) vs. baseline or control. Active treatments did not reduce the risk of hospitalization due to acute exacerbations (RR 0.77 95% CI 0.40−1.49; p > 0.05). This study suggests that stem cell-based regenerative therapies and derived products may be effective to treat COPD patients, but the current evidence comes from small clinical trials. Large and well-designed randomized controlled trials are needed to really quantify the beneficial impact of stem cell-based regenerative therapy and derived products in COPD.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
- Correspondence:
| | - Marina Aiello
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| | - Annalisa Frizzelli
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| | - Francesca Camardelli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Alfredo Chetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| |
Collapse
|
4
|
Zhang X, Shi Q, Xiong L, Shi S, Li Y, Wang Y, Zhang M. Clinical relevance of miR-423-5p levels in chronic obstructive pulmonary disease patients. Clinics (Sao Paulo) 2022; 77:100102. [PMID: 36162367 PMCID: PMC9513109 DOI: 10.1016/j.clinsp.2022.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/21/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE This study aimed to examine changes in miRNAs expression profile of COPD patients. METHODS Thirty-six COPD patients as well as thirty-three healthy volunteers were recruited. Total RNAs were collected from the plasma of each participant. The differentially expressed miRNAs in COPD were screened from the GEO database. RT-qPCR was carried out to detect miRNA expression. RESULTS In total, 9 out of 55 miRNAs were expressed differentially in COPD patients. Confirmed by RT-qPCR validation, 6 miRNAs increased while 3 miRNAs decreased. Further analysis of miR-423-5p, which has not been reported in COPD, showed that AUC for the diagnosis of COPD was 0.9651, and miR-423-5p levels was inversely correlated with the duration of smoking. CONCLUSION The present study demonstrates that miR-423-5p is a potential marker for identifying COPD patients.
Collapse
Affiliation(s)
- Xin Zhang
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Qing Shi
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Lu Xiong
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Shiye Shi
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Yong Li
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Yanhuan Wang
- Emergency Department, ChongQing TongLiang People's Hospital, ChongQing, China
| | - Mingchuan Zhang
- Respiratory Department, ChongQing TongLiang People's Hospital, ChongQing, China.
| |
Collapse
|
5
|
Weiss DJ, Segal K, Casaburi R, Hayes J, Tashkin D. Effect of mesenchymal stromal cell infusions on lung function in COPD patients with high CRP levels. Respir Res 2021; 22:142. [PMID: 33964910 PMCID: PMC8106850 DOI: 10.1186/s12931-021-01734-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background We previously reported a Phase 1/2 randomized placebo-controlled trial of systemic administration of bone marrow-derived allogeneic MSCs (remestemcel-L) in COPD. While safety profile was good, no functional efficacy was observed. However, in view of growing recognition of effects of inflammatory environments on MSC actions we conducted a post-hoc analysis with stratification by baseline levels of a circulating inflammatory marker, C-reactive protein (CRP) to determine the effects of MSC administration in COPD patients with varying circulating CRP levels. Methods Time course of lung function, exercise performance, patient reported responses, and exacerbation frequency following four monthly infusions of remestemcel-L vs. placebo were re-assessed in subgroups based on baseline circulating CRP levels. Results In COPD patients with baseline CRP ≥ 4 mg/L, compared to COPD patients receiving placebo (N = 17), those treated with remestemcel-L (N = 12), demonstrated significant improvements from baseline in forced expiratory volume in one second, forced vital capacity, and six minute walk distance at 120 days with treatment differences evident as early as 10 days after the first infusion. Significant although smaller benefits were also detected in those with CRP levels ≥ 2 or ≥ 3 mg/L. These improvements persisted variably over the 2-year observational period. No significant benefits were observed in patient reported responses or number of COPD exacerbations between treatment groups. Conclusion In an inflammatory environment, defined by elevated circulating CRP, remestemcel-L administration yielded at least transient meaningful pulmonary and functional improvements. These findings warrant further investigation of potential MSC-based therapies in COPD and other inflammatory pulmonary diseases. Trial registration: Clinicaltrials.gov NCT00683722.
Collapse
Affiliation(s)
- Daniel J Weiss
- University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT, 05405, USA.
| | | | - Richard Casaburi
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Donald Tashkin
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
6
|
Glassberg MK, Csete I, Simonet E, Elliot SJ. Stem Cell Therapy for COPD: Hope and Exploitation. Chest 2021; 160:1271-1281. [PMID: 33894254 DOI: 10.1016/j.chest.2021.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
COPD is a chronic inflammatory and destructive disease characterized by progressive decline in lung function that can accelerate with aging. Preclinical studies suggest that mesenchymal stem cells (MSCs) may provide a therapeutic option for this incurable disease because of their antiinflammatory, reparative, and immunomodulatory properties. To date, clinical trials using MSCs demonstrate safety in patients with COPD. However, because of the notable absence of large, multicenter randomized trials, no efficacy or evidence exists to support the possibility that MSCs can restore lung function in patients with COPD. Unfortunately, the investigational status of cell-based interventions for lung diseases has not hindered the propagation of commercial businesses, exploitation of the public, and explosion of medical tourism to promote unproven and potentially harmful cell-based interventions for COPD in the United States and worldwide. Patients with COPD constitute the largest group of patients with lung disease flocking to these unregulated clinics. This review highlights the numerous questions and concerns that remain before the establishment of cell-based interventions as safe and efficacious treatments for patients with COPD.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ.
| | | | | | - Sharon J Elliot
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ; University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
7
|
Amniotic fluid mesenchymal stromal cells from early stages of embryonic development have higher self-renewal potential. In Vitro Cell Dev Biol Anim 2020; 56:701-714. [PMID: 33029689 DOI: 10.1007/s11626-020-00511-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Amniotic fluid (AF) is a rich source of mesenchymal stromal cells (MSCs) that have the ability to differentiate into multiple lineages rendering them a promising and powerful tool for regenerative medicine. However, information regarding the differences among AFMSCs derived from different gestational stages is limited. In the present study, AFMSCs derived from 125 pregnant rats at four embryonic day (E) stages (E12, E15, E18, and E21) were isolated and cultured. The primary E15 cells were the smallest in size and the easiest to culture and usually grew in a spherical shape that resembled the growth morphology of embryonic stem cells (ESCs). Once adhered, the E12 and E15 AFMSCs grew faster and could be passaged more than 60 times while still maintaining a continuous proliferative state; however, AFMSCs derived from E18 and E21 could normally be maintained for only 10 passages. To identify the possible reasons for this difference, RT-qPCR was used to examine several genes associated with self-renewal ability and cell origin. The Sox2 expression levels indicated that AFMSCs from E12 and E15 possessed stronger self-renewal capability. The K19, Col2A1, FGF5, AFP, and SPC expression levels indicated there were mixed-population cells co-existing in the AFMSC culture. In conclusion, E15 cells were easier to culture than E12 cells, could be passaged more often, and had a higher Sox2 expression than E18 or E21 cells. The E15-derived AFMSCs had higher viability and proliferative capacity than cells from the later stages. Therefore, AF cells from the early stages could be a good choice for exploring potential treatments involving AFMSCs.
Collapse
|
8
|
Uniyal S, Tyagi AK, Muyal JP. All Trans Retinoic Acid (ATRA) progresses alveolar epithelium regeneration by involving diverse signalling pathways in emphysematous rat. Biomed Pharmacother 2020; 131:110725. [PMID: 32927254 DOI: 10.1016/j.biopha.2020.110725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema is characterized by destruction of alveoli leading to inadequate oxygenation, disability and frequently death. This destruction was understood so far as irreversible. Published data has shown that ATRA (All Trans Retinoic Acid) reverses elastase-induced emphysema in rats. However, the molecular mechanisms governing regeneration process are so far unknown. OBJECTIVE To examine the therapeutic potential of ATRA on various molecular pathways and their coordination towards governance of alveolar epithelial regeneration in emphysematous rats. METHODS Emphysema was induced by elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg/kg b.w.) versus olive-oil. Lungs were removed at day 38 for histopathology and investigation of relative mRNA and protein expressions. RESULTS Histopathological analysis has shown that losses of alveoli were recovered in therapy (EA) group. Moreover, expressions of markers genes for alveolar cell proliferation, differentiation and EMT events at mRNA and protein levels were significantly increased in EA group than emphysema group (ES). Upon validation at genomics level, expressions of components of Notch, Hedgehog, Wnt, BMP and TGFβ pathways were significantly attenuated in EA group when compared with ES and were well comparable with the healthy group. CONCLUSION Therapeutic supplementation of ATRA rectifies the deregulated Notch, Hedgehog, Wnt, BMP and TGFβ pathways in emphysema condition, resulting in alveolar epithelium regeneration. Hence, ATRA may prove to be a potential drug in the treatment of emphysema. Nevertheless, elaborated studies are to be conducted.
Collapse
Affiliation(s)
- Swati Uniyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| | - Amit Kumar Tyagi
- Division of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India.
| | - Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| |
Collapse
|
9
|
Zhou H, Liu Y, Wang Z, Yang Y, Li M, Yuan D, Zhang X, Li Y. CD147 Promoted Epithelial Mesenchymal Transition in Airway Epithelial Cells Induced by Cigarette Smoke via Oxidative Stress Signaling Pathway. COPD 2020; 17:269-279. [PMID: 32366134 DOI: 10.1080/15412555.2020.1758051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common airway disease, and epithelial mesenchymal transition (EMT) is participated in the pathogenesis of COPD. However, the role of CD147 in COPD remains largely unknown. In order to clarify the role of CD147 in EMT induced by cigarette smoke, we established animal and cell model of EMT by mean of cigarette smoke exposure and detected the expressions of CD147 and EMT markers via PCR, WB and IF. RNA inference was applied to study the role of CD147 in CSE induced EMT in vitro. NAC and H2O2 were used to study oxidative stress signaling pathway in this model. As a result, cigarette smoke exposure upregulated the expressions of CD147, α-SMA, and Vimentin and downregulated the expression of Ecadherin and ZO1 both in vivo and in vitro, which was accompanied by augmented level of oxidative stress. CD147 knockdown would partly inhibit CSE induced EMT, while preincubation of H2O2 could inverse this effect. In conclusion, CD147 promoted EMT in mice and HBE cells induced by cigarette smoke via oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Zhehua Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yang Yang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Mengyu Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Dong Yuan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
10
|
The miR-532-3p/Chrdl1 axis regulates the proliferation and migration of amniotic fluid-derived mesenchymal stromal cells. Biochem Biophys Res Commun 2020; 527:187-193. [PMID: 32446365 DOI: 10.1016/j.bbrc.2020.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Amniotic fluid-derived mesenchymal stromal cells (AFMSCs) are promising stem cells for regeneration medicine. However, AFMSCs isolated at different stages of pregnancy have different biological characteristics, and the therapeutic effects can differ in vivo and in vitro. The mechanisms underlying these differences have not been defined. METHODS Bioinformatics analysis of the AFMSC transcriptome identified Chrdl1 as one of the differentially expressed genes. We evaluated the effects of Chrdl1 overexpression or knockdown on the proliferation and migration of AFMSCs. Target prediction was performed using miRanda software to identify the upstream microRNA of Chrdl1. The interaction between Chrdl1 mRNA and its upstream microRNA was evaluated using a dual-luciferase reporter gene assay. RESULTS Chrdl1 was expressed at lower levels in AFMSCs derived from the early stages of pregnancy. It could suppress AFMSC proliferation and migration. miR-532-3p promoted AFMSC proliferation and migration by targeting the 3' UTR of Chrdl1 and downregulating its expression.
Collapse
|
11
|
Takayama S, Sakai K, Fumino S, Furukawa T, Kishida T, Mazda O, Tajiri T. An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model. Pediatr Surg Int 2019; 35:1353-1361. [PMID: 31559457 DOI: 10.1007/s00383-019-04561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to evaluate the effect of human mesenchymal stem cells (hMSCs) on congenital diaphragmatic hernia (CDH) by intra-amniotic injection in a rat CDH model. METHODS Nitrofen (100 mg) was administered to pregnant rats at E9.5. hMSCs (1.0 × 106) or PBS was injected into each amniotic cavity at E18, and fetuses were harvested at E21. The fetal lungs were classified into normal, CDH, and CDH-hMSCs groups. To determine the lung maturity, we assessed the alveolar histological structure by H&E and Weigert staining and the alveolar arteries by Elastica Van Gieson (EVG) staining. TTF-1, a marker of type II alveolar epithelial cells, was also evaluated by immunohistochemical staining and real-time reverse transcription polymerase chain reaction. RESULTS The survival rate after intra-amniotic injection was 72.1%. The CDH-hMSCs group had significantly more alveoli and secondary septa than the CDH group (p < 0.05). The CDH-hMSCs group had larger air spaces and thinner alveolar walls than the CDH group (p < 0.05). The medial and adventitial thickness of the pulmonary artery in the CDH-hMSCs group were significantly better (p < 0.001), and there were significantly fewer TTF-1-positive cells than in the CDH group (p < 0.001). CONCLUSION These results suggest that intra-amniotic injection of hMSCs has therapeutic potential for CDH.
Collapse
Affiliation(s)
- Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan. .,Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kohei Sakai
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
Harrell CR, Gazdic M, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Therapeutic Potential of Amniotic Fluid Derived Mesenchymal Stem Cells Based on their Differentiation Capacity and Immunomodulatory Properties. Curr Stem Cell Res Ther 2019; 14:327-336. [PMID: 30806325 DOI: 10.2174/1574888x14666190222201749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. OBJECTIVE In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. METHODS An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: "amniotic fluid derived mesenchymal stem cells", "cell-therapy", "degenerative diseases", "inflammatory diseases", "regeneration", "immunosuppression". Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. RESULTS AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. CONCLUSION Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Carl R Harrell
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Marina Gazdic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Crissy Fellabaum
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Nemanja Jovicic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Abstract
As the prevalence and impact of lung diseases continue to increase worldwide, new therapeutic strategies are desperately needed. Advances in lung-regenerative medicine, a broad field encompassing stem cells, cell-based therapies, and a range of bioengineering approaches, offer new insights into and new techniques for studying lung physiology and pathophysiology. This provides a platform for the development of novel therapeutic approaches. Applicability to chronic obstructive pulmonary disease of recent advances and applications in cell-based therapies, predominantly those with mesenchymal stromal cell-based approaches, and bioengineering approaches for lung diseases are reviewed.
Collapse
|
14
|
Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, Chong KY, Chen CM. Predifferentiated amniotic fluid mesenchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase-induced pulmonary emphysema. Stem Cell Res Ther 2019; 10:163. [PMID: 31196196 PMCID: PMC6567664 DOI: 10.1186/s13287-019-1282-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs). METHODS Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration. RESULTS An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups. CONCLUSION Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Jing-Chan Yang
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, 404 Taiwan
- College of Health Care, China Medical University, Taichung, 404 Taiwan
| | - Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Ying-Cheng Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresource, Da-Yeh University, Changhwa, 515 Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333 Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor Malaysia
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402 Taiwan
| |
Collapse
|
15
|
Clinical Application of Stem/Stromal Cells in COPD. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121219 DOI: 10.1007/978-3-030-29403-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive life-threatening disease that is significantly increasing in prevalence and is predicted to become the third leading cause of death worldwide by 2030. At present, there are no true curative treatments that can stop the progression of the disease, and new therapeutic strategies are desperately needed. Advances in cell-based therapies provide a platform for the development of new therapeutic approaches in severe lung diseases such as COPD. At present, a lot of focus is on mesenchymal stem (stromal) cell (MSC)-based therapies, mainly due to their immunomodulatory properties. Despite increasing number of preclinical studies demonstrating that systemic MSC administration can prevent or treat experimental COPD and emphysema, clinical studies have not been able to reproduce the preclinical results and to date no efficacy or significantly improved lung function or quality of life has been observed in COPD patients. Importantly, the completed appropriately conducted clinical trials uniformly demonstrate that MSC treatment in COPD patients is well tolerated and no toxicities have been observed. All clinical trials performed so far, have been phase I/II studies, underpowered for the detection of potential efficacy. There are several challenges ahead for this field such as standardized isolation and culture procedures to obtain a cell product with high quality and reproducibility, administration strategies, improvement of methods to measure outcomes, and development of potency assays. Moreover, COPD is a complex pathology with a diverse spectrum of clinical phenotypes, and therefore it is essential to develop methods to select the subpopulation of patients that is most likely to potentially respond to MSC administration. In this chapter, we will discuss the current state of the art of MSC-based cell therapy for COPD and the hurdles that need to be overcome.
Collapse
|
16
|
Ma C, Guo Y, Wen H, Zheng Y, Tan L, Li X, Wang C, Guan W, Liu C. Identification and Multilineage Potential Research of a Novel Type of Adipose-Derived Mesenchymal Stem Cells from Goose Inguinal Groove. DNA Cell Biol 2018; 37:731-741. [PMID: 30102556 DOI: 10.1089/dna.2017.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) play a crucial role in the field of regenerative medicine and tissue repair for its own unique features. However, up to date, the isolation and characterizations of multidifferentiation potentials of goose ADSCs are still uncertain. In this study, we successfully isolated ADSCs from goose inguinal groove in vitro for the first time and also attempted to unravel its fundamental differentiation potentials and genetic characteristics. The results showed that isolated ADSCs exhibited a typical fibroblast-like morphology and high proliferative potential, could be passaged for at least 40 passages and maintained high hereditary stability with more than 92.2% of cells were diploid (2n = 78) by G-banding analysis. Moreover, the ADSCs could express pluripotent marker gene (OCT4) and mesenchymal stem cells-related surface antigens, which are similar to previously reported human ADSCs. Additionally, the goose ADSCs could be induced to transdifferentiate into cells of three layers in vitro, such as osteoblasts, chondrocytes, and adipocytes derived from mesoderm, neurocytes from ectoderm, and hepatocytes of the endoderm. Most of all, we confirmed that the induced β-like cells and hepatocytes had metabolic functions similar to normal cells in vivo. Taken together, these results demonstrated the multidifferentiation potentials of ADSCs in vitro, which conferred an appealing candidate for cell regenerative therapy.
Collapse
Affiliation(s)
- Caiyun Ma
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Guo
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Hebao Wen
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Zheng
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiqi Tan
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Xiangchen Li
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjing Wang
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Weijun Guan
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Liu
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,4 Department of Neuroscience, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
17
|
Broekman W, Khedoe PPSJ, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 2018; 73:565-574. [PMID: 29653970 PMCID: PMC5969341 DOI: 10.1136/thoraxjnl-2017-210672] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
COPD is characterised by tissue destruction and inflammation. Given the lack of curative treatments and the progressive nature of the disease, new treatments for COPD are highly relevant. In vitro cell culture and animal studies have demonstrated that mesenchymal stromal cells (MSCs) have the capacity to modify immune responses and to enhance tissue repair. These properties of MSCs provided a rationale to investigate their potential for treatment of a variety of diseases, including COPD. Preclinical models support the hypothesis that MSCs may have clinical efficacy in COPD. However, although clinical trials have demonstrated the safety of MSC treatment, thus far they have not provided evidence for MSC efficacy in the treatment of COPD. In this review, we discuss the rationale for MSC-based cell therapy in COPD, the main findings from in vitro and in vivo preclinical COPD model studies, clinical trials in patients with COPD and directions for further research.
Collapse
Affiliation(s)
- Winifred Broekman
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Padmini P S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Janczewski AM, Wojtkiewicz J, Malinowska E, Doboszyńska A. Can Youthful Mesenchymal Stem Cells from Wharton's Jelly Bring a Breath of Fresh Air for COPD? Int J Mol Sci 2017; 18:ijms18112449. [PMID: 29156550 PMCID: PMC5713416 DOI: 10.3390/ijms18112449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global cause of morbidity and mortality, projected to become the 3rd cause of disease mortality worldwide by 2020. COPD is characterized by persistent and not fully reversible airflow limitation that is usually progressive and is associated with an abnormal chronic inflammatory response of the lung to noxious agents including cigarette smoke. Currently available therapeutic strategies aim to ease COPD symptoms but cannot prevent its progress or regenerate physiological lung structure or function. The urgently needed new approaches for the treatment of COPD include stem cell therapies among which transplantation of mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) emerges as a promising therapeutic strategy because of the unique properties of these cells. The present review discusses the main biological properties of WJ-MSCs pertinent to their potential application for the treatment of COPD in the context of COPD pathomechanisms with emphasis on chronic immune inflammatory processes that play key roles in the development and progression of COPD.
Collapse
Affiliation(s)
- Andrzej M Janczewski
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Foundation for the Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Ewa Malinowska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Anna Doboszyńska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| |
Collapse
|
19
|
Antunes MA, Lapa E Silva JR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench to bedside. Int J Chron Obstruct Pulmon Dis 2017; 12:3017-3027. [PMID: 29081655 PMCID: PMC5652911 DOI: 10.2147/copd.s146671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COPD is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality. The major risk factor for COPD development is cigarette smoke, and the most efficient treatment for COPD is smoking cessation. However, even after smoking cessation, inflammation, apoptosis, and oxidative stress may persist and continue contributing to disease progression. Although current therapies for COPD (primarily based on anti-inflammatory agents) contribute to the reduction of airway obstruction and minimize COPD exacerbations, none can avoid disease progression or reduce mortality. Within this context, recent advances in mesenchymal stromal cell (MSC) therapy have made this approach a strong candidate for clinical use in the treatment of several pulmonary diseases. MSCs can be readily harvested from diverse tissues and expanded with high efficiency, and have strong immunosuppressive properties. Preclinical studies have demonstrated encouraging outcomes of MSCs therapy for lung disorders, including emphysema. These findings instigated research groups to assess the impact of MSCs in human COPD/emphysema, but clinical results have fallen short of expectations. However, MSCs have demonstrated a good adjuvant role in the clinical scenario. Trials that used MSCs combined with another, primary treatment (eg, endobronchial valves) found that patients derived greater benefit in pulmonary function tests and/or quality of life reports, as well as reductions in systemic markers of inflammation. The present review summarizes and describes the more recent preclinical studies that have been published about MSC therapy for COPD/emphysema and discusses what has already been applied about MSCs treatment in COPD patients in the clinical setting.
Collapse
Affiliation(s)
- Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - José Roberto Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Sudheer Shenoy P, Bose B. Identification, isolation, quantification and systems approach towards CD34, a biomarker present in the progenitor/stem cells from diverse lineages. Methods 2017; 131:147-156. [PMID: 28684339 DOI: 10.1016/j.ymeth.2017.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) constitute the diverse progenitor populations in almost every tissue and are of immense importance in the field of regenerative medicine. CD34 is a cell surface glycoprotein identified first as a marker for the MSCs of hematopoietic origin. CD34 is now known to be expressed in cells of diverse lineages (tissues of non-hematopoietic origin) such as ectoderm, mesoderm and endoderm and is considered as a general marker for progenitor cells. Here, we present detailed protocols to obtain pure populations of MSCs from three diverse lineages such as skeletal muscle, skin, and liver from mouse tissues. We also present here the protocol for systems biology approach (proteomic analysis) of these purified cells. This proteomic approach can elucidate key signalling pathways and proteins utilized by these CD34 positive cells in undifferentiated and differentiated conditions. Furthermore in-depth proteomic analysis can also identify the altered proteome which is responsible for their function during non-clinical and clinical conditions.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Department of Stem Cell and Regenerative Medicine, Yenepoya Research Center, Yenepoya University, University Road, Mangalore 575018, Karnataka, India.
| | - Bipasha Bose
- Department of Stem Cell and Regenerative Medicine, Yenepoya Research Center, Yenepoya University, University Road, Mangalore 575018, Karnataka, India.
| |
Collapse
|
21
|
Effects of Tocilizumab on Experimental Severe Acute Pancreatitis and Associated Acute Lung Injury. Crit Care Med 2017; 44:e664-77. [PMID: 26963319 DOI: 10.1097/ccm.0000000000001639] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To examine the therapeutic effects of tocilizumab, an antibody against interleukin-6 receptor, on experimental severe acute pancreatitis and associated acute lung injury. The optimal dose of tocilizumab and the activation of interleukin-6 inflammatory signaling were also investigated. DESIGN Randomized experiment. SETTING Research laboratory at a university hospital. SUBJECT Experimental severe acute pancreatitis in rats. INTERVENTIONS Severe acute pancreatitis was induced by retrograde injection of sodium taurocholate (50 mg/kg) into the biliopancreatic duct. In dose-study, rats were administered with different doses of tocilizumab (1, 2, 4, 8, and 16 mg/kg) through the tail vein after severe acute pancreatitis induction. In safety-study, rats without severe acute pancreatitis induction were treated with high doses of tocilizumab (8, 16, 32, and 64 mg/kg). Serum and tissue samples of rats in time-study were collected for biomolecular and histologic evaluations at different time points (2, 6, 12, 18, and 24 hr). MEASUREMENTS AND MAIN RESULTS 1) Under the administration of tocilizumab, histopathological scores of pancreas and lung were decreased, and severity parameters related to severe acute pancreatitis and associated lung injury, including serum amylase, C-reactive protein, lung surfactant protein level, and myeloperoxidase activity, were all significant alleviated in rat models. 2) Dose-study demonstrated that 2 mg/kg tocilizumab was the optimal treatment dose. 3) Basing on multi-organ pathologic evaluation, physiological and biochemical data, no adverse effect and toxicity of tocilizumab were observed in safety-study. 4) Pancreatic nuclear factor-κB and signal transducer and activator of transcription 3 were deactivated, and the serum chemokine (C-X-C motif) ligand 1 was down-regulated after tocilizumab administration. CONCLUSIONS Our study demonstrated tocilizumab, as a marketed drug commonly used for immune-mediated diseases, was safe and effective for the treatment of experimental severe acute pancreatitis and associated acute lung injury. Our findings provide experimental evidences for potential clinical application of tocilizumab in severe acute pancreatitis and associated complications.
Collapse
|
22
|
Selim AO, Gouda ZA, Selim SA. An experimental study of a rat model of emphysema induced by cigarette smoke exposure and the effect of Survanta therapy. Ann Anat 2017; 211:69-77. [DOI: 10.1016/j.aanat.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
23
|
Gu C, Li Y, Liu J, Ying X, Liu Y, Yan J, Chen C, Zhou H, Cao L, Ma Y. LncRNA‑mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease. Mol Med Rep 2017; 15:3129-3134. [PMID: 28339038 DOI: 10.3892/mmr.2017.6367] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The loss of alveolar structure and airspace enlargement are major pathological changes in chronic obstructive pulmonary disease (COPD). Type II alveolar epithelial cells (AECII) are involved in maintaining lung tissue repair and alveolar homeostasis. Long non‑coding RNAs (lncRNAs) are involved in multi‑regulating gene transcription, affecting processes including embryonic development, cell differentiation and cellular senescence. The primary aim of the present study was to explore the mechanisms of AECII senescence regulated by lncRNA‑mediated sirtuin 1 (SIRT1) and forkhead box O 3a (FoxO3a) signaling pathways in patients with COPD. Lung tissues from patients with COPD exhibited pathological characteristics and significantly increased senescence‑associated β‑galactosidase activity. Furthermore, the expression levels of senescence‑associated lncRNA1 (SAL‑RNA1), SIRT1 and FoxO3a were reduced, but SAL‑RNA2, SAL‑RNA3, p53 and p21 were upregulated in the lung tissues of patients with COPD compared with control. The results of the present study indicated that lncRNA‑mediated SIRT1/p53 and FoxO3a signaling pathways may regulate AECII senescence in the pathogenesis of COPD, which may provide a novel experimental basis for the treatment of COPD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jialiang Liu
- Department of Respiratory Medicine, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiwang Ying
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jianping Yan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Chun Chen
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Liming Cao
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
24
|
Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep 2016; 6:38207. [PMID: 27922052 PMCID: PMC5138599 DOI: 10.1038/srep38207] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow derived mesenchymal stromal cells (MSCs) have potent immunomodulatory and tissue reparative properties, which may be beneficial in the treatment of inflammatory diseases such as COPD. This study examined the mechanisms by which human MSCs protect against elastase induced emphysema. Using a novel human relevant pre-clinical model of emphysema the efficacy of human MSC therapy and optimal cell dose were investigated. Protective effects were examined in the lung through histological examination. Further in vivo experiments examined the reparative abilities of MSCs after tissue damage was established and the role played by soluble factors secreted by MSCs. The mechanism of MSC action was determined in using shRNA gene knockdown. Human MSC therapy and MSC conditioned media exerted significant cytoprotective effects when administered early at the onset of the disease. These protective effects were due to significant anti-inflammatory, anti-fibrotic and anti-apoptotic mechanisms, mediated in part through MSC production of hepatocyte growth factor (HGF). When MSC administration was delayed, significant protection of the lung architecture was observed but this was less extensive. MSC cell therapy was more effective than MSC conditioned medium in this emphysema model.
Collapse
|
25
|
Li X, Zhang Y, Liang Y, Cui Y, Yeung SC, Ip MSM, Tse HF, Lian Q, Mak JCW. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J Cell Mol Med 2016; 21:265-277. [PMID: 27641240 PMCID: PMC5264148 DOI: 10.1111/jcmm.12962] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yuelin Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Ophthalmology, The University of Hong Kong, Hong Kong
| | - Yingmin Liang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yuting Cui
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sze C Yeung
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Mary S M Ip
- Department of Medicine, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Ophthalmology, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong.,Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Liu X, Fang Q, Kim H. Preclinical Studies of Mesenchymal Stem Cell (MSC) Administration in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0157099. [PMID: 27280283 PMCID: PMC4900582 DOI: 10.1371/journal.pone.0157099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last two decades, mesenchymal stem cells (MSCs) have been pre-clinically utilized in the treatment of a variety of kinds of diseases including chronic obstructive pulmonary disease (COPD). The aim of the current study was to systematically review and conduct a meta-analysis on the published pre-clinical studies of MSC administration in the treatment of COPD in animal models. METHODS AND RESULTS A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges's g with 95% confidence intervals (95% CIs) was adopted to assess the effect size. Random effect model was used due to the heterogeneity between the studies. A total of 20 eligible studies were included in the current systematic review. The overall meta-analysis showed that MSC administration was significantly in favor of attenuating acute lung injury (Hedges's g = -2.325 ± 0.145 with 95% CI: -2.609 ~ -2.040, P < 0.001 for mean linear intercept, MLI; Hedges's g = -3.488 ± 0.504 with 95% CI: -4.476 ~ -2.501, P < 0.001 for TUNEL staining), stimulating lung tissue repair (Hedges's g = 3.249 ± 0.586 with 95% CI: 2.103~ 4.394, P < 0.001) and improving lung function (Hedges's g = 2.053 ± 0.408 with 95% CI: 1.253 ~ 2.854, P< 0.001). The mechanism of MSC therapy in COPD is through ameliorating airway inflammation (Hedges's g = -2.956 ± 0.371 with 95% CI: -3.683 ~ -2.229, P< 0.001) and stimulating cytokine synthesis that involves lung tissue repair (Hedges's g = 3.103 ± 0.734 with 95% CI: 1.664 ~ 4.541, P< 0.001). CONCLUSION This systematic review and meta-analysis suggest a promising role for MSCs in COPD treatment. Although the COPD models may not truly mimic COPD patients, these pre-clinical studies demonstrate that MSC hold promise in the treatment of chronic lung diseases including COPD. The mechanisms of MSCs role in preclinical COPD treatment may be associated with attenuating airway inflammation as well as stimulating lung tissue repair.
Collapse
Affiliation(s)
- Xiangde Liu
- Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Qiuhong Fang
- Department of Pulmonary and Critical Care, Beijing Chaoyang Hospital, The Capital Medical University, Beijing, China
| | - Huijung Kim
- Pulmonary and Critical Care Division, WonKwang University, Sanbon Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
27
|
Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid. Best Pract Res Clin Obstet Gynaecol 2015; 31:30-44. [PMID: 26482184 DOI: 10.1016/j.bpobgyn.2015.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Collapse
Affiliation(s)
- Marianne S Joerger-Messerli
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Caterina Marx
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Byron Oppliger
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| | - Daniel V Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:995-1013. [PMID: 26082624 PMCID: PMC4459624 DOI: 10.2147/copd.s82518] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of death and morbidity worldwide, is characterized by expiratory airflow limitation that is not fully reversible, deregulated chronic inflammation, and emphysematous destruction of the lungs. Despite the fact that COPD is a steadily growing global healthcare problem, the conventional therapies remain palliative, and regenerative approaches for disease management are not available yet. We aim to provide an overview of key reviews, experimental, and clinical studies addressing lung emphysema development and repair mechanisms published in the past decade. Novel aspects discussed herein include integral revision of the literature focused on lung microflora changes in COPD, autoimmune component of the disease, and environmental risk factors other than cigarette smoke. The time span of studies on COPD, including emphysema, chronic bronchitis, and asthmatic bronchitis, covers almost 200 years, and several crucial mechanisms of COPD pathogenesis are described and studied. However, we still lack the holistic understanding of COPD development and the exact picture of the time-course and interplay of the events during stable, exacerbated, corticosteroid-treated COPD states, and transitions in-between. Several generally recognized mechanisms will be discussed shortly herein, ie, unregulated inflammation, proteolysis/antiproteolysis imbalance, and destroyed repair mechanisms, while novel topics such as deviated microbiota, air pollutants-related damage, and autoimmune process within the lung tissue will be discussed more extensively. Considerable influx of new data from the clinic, in vivo and in vitro studies stimulate to search for novel concise explanation and holistic understanding of COPD nowadays.
Collapse
Affiliation(s)
- Edvardas Bagdonas
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ieva Bruzauskaite
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|