1
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
2
|
Gupta A, Burgess JK, Slebos DJ, Pouwels SD. The development, validation, and in vivo testing of a high-precision bronchial epithelial lining fluid sampling device. Front Med (Lausanne) 2023; 10:1172622. [PMID: 37564050 PMCID: PMC10410264 DOI: 10.3389/fmed.2023.1172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Analysis of respiratory biomarkers or pharmaceutical drug concentrations in bronchial epithelial lining fluid (bELF) using a high-precision sampling method is crucial for effective clinical respiratory diagnostics and research. Here, we utilized a cellulose matrix as an absorptive probe for bELF sampling, subsequently testing the design of a device and sampling technique in vivo. Methods The absorptive matrix [Whatman® qualitative filter paper (Grade CF-12)] was first tested through tissue-contact experiments on porcine airway tissue. The absorption and elution capacity of the matrix, as well as the laboratory processing and analysis method, was validated with a range of Interleukin-8 (CXCL8) and C-Reactive protein (CRP) stock solutions. Subsequently, the device's design was optimized for universal in-house production and both, safe and efficient sampling. The airway sampling method was then tested in a group of 10 patients with Chronic Obstructive Pulmonary Disease (COPD). For each patient, a bELF sample was obtained using the newly developed bELF probe, as well as a reference 20 mL saline bronchial wash sample. Supernatants were assessed, using an immunoassay, for levels of the pro-inflammatory markers CXCL8, Myeloperoxidase (MPO), and CRP. The bELF samples were compared to bronchial wash. Results The Whatman® qualitative filter paper (Grade CF-12) bELF probes adhered to porcine airway tissue, softening slightly upon wetting. The material maintained architectural integrity following the removal of the probes, leaving no residual fibers on the porcine airway mucosa. The bELF probe design was optimized for bronchoscopic delivery and in-house production. On average, a fully saturated bELF probe carried 32 μL of protein-rich fluid. The mean return of CXCL8 and CRP from samples collected from a serial dilution series (1, 5, 10, 20 ng/mL) was 69% (range 48%-87%). The bELF probe detected, on average, 7 (MPO), 14 (CRP), and 59 (CXCL8) times higher equivalent inflammatory protein concentrations in the collected bELF probe samples compared to the bronchial wash. Conclusion The bELF probe is an effective absorptive technology for high-precision bELF sampling without dilution. With a simple in-house production procedure and bronchoscopic sampling technique, this method can be introduced in any bronchoscopic center for a consistent sampling of bELF.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Simon D. Pouwels
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
4
|
Sadiq MW, Holz O, Ellinghusen BD, Faulenbach C, Müller M, Badorrek P, Eriksson UG, Fridén M, Stomilovic S, Lundqvist AJ, Hohlfeld JM. Lung pharmacokinetics of inhaled and systemic drugs: A clinical evaluation. Br J Pharmacol 2021; 178:4440-4451. [PMID: 34250588 DOI: 10.1111/bph.15621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Human pharmacokinetic studies of lung-targeted drugs are typically limited to measurements of systemic plasma concentrations, which provide no direct information on lung target-site concentrations. We aimed to evaluate lung pharmacokinetics of commonly prescribed drugs by sampling different lung compartments after inhalation and oral administration. EXPERIMENTAL APPROACH Healthy volunteers received single, sequential doses of either inhaled salbutamol, salmeterol and fluticasone propionate (n = 12), or oral salbutamol and propranolol (n = 6). Each participant underwent bronchoscopies and gave breath samples for analysis of particles in exhaled air at two points after drug administration (1 and 6, 2 and 9, 3 and 12, or 4 and 18 h). Lung samples were taken via bronchosorption, bronchial brush, mucosal biopsy and bronchoalveolar lavage during each bronchoscopy. Blood samples were taken during the 24 h after administration. Pharmacokinetic profiles were generated by combining data from multiple individuals, covering all sample timings. KEY RESULTS Pharmacokinetic profiles were obtained for each drug in lung epithelial lining fluid, lung tissue and plasma. Inhalation of salbutamol resulted in approximately 100-fold higher concentrations in lung than in plasma. Salmeterol and fluticasone concentration ratios in lung versus plasma were higher still. Bronchosorption- and bronchoalveolar-lavage-generated profiles of inhaled drugs in epithelial lining fluid were comparable. For orally administered drugs, epithelial-lining-fluid concentrations were overestimated in bronchoalveolar-lavage-generated profiles. CONCLUSION AND IMPLICATIONS Combining pharmacokinetic data derived from several individuals and techniques sampling different lung compartments enabled generation of pharmacokinetic profiles for evaluation of lung targeting after inhaled and oral drug delivery.
Collapse
Affiliation(s)
- Muhammad Waqas Sadiq
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Olaf Holz
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Birthe D Ellinghusen
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Cornelia Faulenbach
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meike Müller
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Badorrek
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ulf G Eriksson
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Fridén
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders J Lundqvist
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jens M Hohlfeld
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Ewing P, Oag S, Lundqvist A, Stomilovic S, Stellert I, Antonsson M, Nunes SF, Andersson PU, Tehler U, Sjöberg C, Péterffy A, Gerde P. Airway Epithelial Lining Fluid and Plasma Pharmacokinetics of Inhaled Fluticasone Propionate and Salmeterol Xinafoate in Mechanically Ventilated Pigs. J Aerosol Med Pulm Drug Deliv 2020; 34:231-241. [PMID: 33216656 DOI: 10.1089/jamp.2020.1637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The lower respiratory tract of the landrace pig has close anatomical and physiological similarities with that of the human, and hence, for inhalation studies this species is well suited for biopharmaceutical research. Methods: The objective of this study was to evaluate pharmacokinetics in pigs following one dose of Diskus™ Seretide™ forte device, labeled 500/50 fluticasone propionate (FP) and salmeterol xinafoate (SX), respectively. The PreciseInhale™ (PI) instrument was used to actuate the inhaler for in vitro testing and aerosol dosing to pigs. In vitro, the aerosol was characterized with a cascade impactor with respect to mass median aerodynamic diameter, geometric standard deviation, and fine particle dose. In vivo, dry powder inhalation exposure was delivered as a short bolus dose, to anesthetized and mechanically ventilated landrace pigs. In addition to plasma PK, PK assessment of airway epithelial lining fluid (ELF) was used in this study. ELF of the depth of three to fourth airway generation of the right lung was accessed using standard bronchoscopy and a synthetic absorptive matrix. Results and Conclusions: Dry powder inhalation exposures with good consistency and well characterized aerosols to the pig lung were achieved by the use of the PreciseInhale™ instrument. Drug concentrations of ELF for both FP and SX were demonstrated to be four to five orders of magnitude higher than its corresponding systemic plasma drug concentrations. Clinical PK following inhalation of the same dose was used as benchmark, and the clinical study did demonstrate similar plasma PK profiles and drug exposures of both FP and SX as the current pig study. Two factors explain the close similarity of PK (1) similiar physiology between species and (2) the consistency of dosing to animals. To conclude, our study demonstrated the utility and translational potential of conducting PK studies in pigs in the development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Pär Ewing
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundqvist
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Stellert
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Antonsson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandro Filipe Nunes
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Sjöberg
- Flexura AB, Sweden.,Inhalation Sciences AB, Sweden
| | - AnnaMaria Péterffy
- Late-stage Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Gerde
- Inhalation Sciences AB, Sweden.,Environmental Medicine Karolinska Institutet, Sweden
| |
Collapse
|
6
|
Chu SG, Poli De Frias S, Raby BA, Rosas IO. An RNA-seq primer for pulmonologists. Eur Respir J 2020; 55:13993003.01625-2018. [PMID: 31601712 DOI: 10.1183/13993003.01625-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/16/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio Poli De Frias
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Atanasova KR, Reznikov LR. Strategies for measuring airway mucus and mucins. Respir Res 2019; 20:261. [PMID: 31752894 PMCID: PMC6873701 DOI: 10.1186/s12931-019-1239-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Mucus secretion and mucociliary transport are essential defense mechanisms of the airways. Deviations in mucus composition and secretion can impede mucociliary transport and elicit airway obstruction. As such, mucus abnormalities are hallmark features of many respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying mucus composition and its physical properties has therefore been of significant interest both clinically and scientifically. Yet, measuring mucus production, output, composition and transport presents several challenges. Here we summarize and discuss the advantages and limitations of several techniques from five broadly characterized strategies used to measure mucus secretion, composition and mucociliary transport, with an emphasis on the gel-forming mucins. Further, we summarize advances in the field, as well as suggest potential areas of improvement moving forward.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Farne H, Groves HT, Gill SK, Stokes I, McCulloch S, Karoly E, Trujillo-Torralbo MB, Johnston SL, Mallia P, Tregoning JS. Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Front Cell Infect Microbiol 2018; 8:432. [PMID: 30619778 PMCID: PMC6305596 DOI: 10.3389/fcimb.2018.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria need nutrients from the host environment to survive, yet we know little about which biochemicals are present in the airways (the metabolome), which of these biochemicals are essential for bacterial growth and how they change with airway disease. The aims of this pilot study were to develop and compare methodologies for sampling the upper and lower airway metabolomes and to identify biochemicals present in the airways that could potentially support bacterial growth. Eight healthy human volunteers were sampled by four methods: two standard approaches - nasal lavage and induced sputum, and two using a novel platform, synthetic adsorptive matrix (SAM) strips—nasosorption and bronchosorption. Collected samples were analyzed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Five hundred and eighty-one biochemicals were recovered from the airways belonging to a range of metabolomic super-pathways. We observed significant differences between the sampling approaches. Significantly more biochemicals were recovered when SAM strips were used, compared to standard sampling techniques. A range of biochemicals that could support bacterial growth were detected in the different samples. This work demonstrates for the first time that SAM strips are a highly effective method for sampling the airway metabolome. This work will assist further studies to understand how changes in the airway metabolome affect bacterial infection in patients with underlying airway disease.
Collapse
Affiliation(s)
- Hugo Farne
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Helen T Groves
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Simren K Gill
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Isobel Stokes
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | | - Sebastian L Johnston
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Mallia
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Jacobson GA, Raidal S, Robson K, Narkowicz CK, Nichols DS, Haydn Walters E. Bronchopulmonary pharmacokinetics of (R)-salbutamol and (S)-salbutamol enantiomers in pulmonary epithelial lining fluid and lung tissue of horses. Br J Clin Pharmacol 2017; 83:1436-1445. [PMID: 28061018 DOI: 10.1111/bcp.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Salbutamol is usually administered as a racemic mixture but little is known about the enantioselectivity of salbutamol pharmacokinetics in the lung. This study was designed to investigate enantiomer concentrations in lung tissue after inhaled dosing. METHODS Horses (n = 12) received racemic salbutamol 1000 μg via inhalation. Enantioselective ultra performance liquid chromatography-tandem mass spectrometry was used to determine salbutamol concentrations in pulmonary epithelial lining fluid (PELF) sampled 2, 5, 10 and 15 min after administration, in central lung (endoscopic bronchial biopsy) and peripheral lung (percutaneous pulmonary biopsy) tissues (at 20 and 25 min respectively), and in plasma samples. RESULTS Mean ± 95% confidence interval (CI) yield of PELF was 57 ± 10 mg. Initial mean ± 95%CI (R)- and (S)-salbutamol PELF concentrations were 389 ± 189 ng g-1 and 378 ± 177 ng g-1 respectively, and both reduced approximately 50% by 15 min. Mean ± 95%CI central lung levels of drug were higher than peripheral lung tissue for both (R)-salbutamol (875 ± 945 vs. 49.5 ± 12 ng g-1 ) and (S)-salbutamol (877 ± 955 vs. 50.9 ± 12 ng g-1 ) respectively. There was no evidence of enantioselectivity in PELF or central lung but minor (~2%) enantioselectivity was observed in the peripheral lung. Enantioselectivity was clearly evident in plasma with (S):(R) ratio of 1.25 and 1.14 for both area under the concentration-time curve (0-25 min) and Cmax respectively. CONCLUSIONS PELF sampling in horses offers sufficient yield allowing direct detection of drug and, combined with tissue sampling, is a valuable model to investigate bronchopulmonary pharmacokinetics. Salbutamol did not demonstrate enantioselectivity in PELF or central lung tissue uptake following acute dosing, however, enantioselective plasma concentrations were demonstrated, with minor enantioselectivity in the peripheral lung.
Collapse
Affiliation(s)
- Glenn A Jacobson
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Kate Robson
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|