1
|
Serum TARC Levels in Patients with Systemic Sclerosis: Clinical Association with Interstitial Lung Disease. J Clin Med 2021; 10:jcm10040660. [PMID: 33572144 PMCID: PMC7915627 DOI: 10.3390/jcm10040660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystem fibrotic disorder with autoimmune background. Accumulating evidence has highlighted the importance of T helper (Th) 2 cells in the pathogenesis of SSc and its complications. Because thymus and activation-regulated chemokine (TARC) is a potent chemoattractant for Th2 cells, we measured serum TARC levels in SSc patients and analyzed their correlation with interstitial lung disease (ILD), a major complication of SSc. Serum TARC levels were significantly elevated in patients with SSc, especially in those with the diffuse subtype, compared with healthy controls. In particular, dcSSc patients with SSc-associated ILD (SSc-ILD) showed higher TARC levels than those without SSc-ILD. However, there was no significant correlation between serum TARC levels and pulmonary function in SSc patients. Serum TARC levels did not correlate with serum levels of interleukin-13, an important Th2 cytokine, either. Furthermore, in the longitudinal study, serum TARC levels did not predict the onset or progression of SSc-ILD in patients with SSc. These results were in contrast with those of KL-6 and surfactant protein D, which correlated well with the onset, severity, and progression of SSc-ILD. Overall, these results suggest that serum TARC levels are not suitable for monitoring the disease activity of SSc-ILD.
Collapse
|
2
|
Khedoe P, Marges E, Hiemstra P, Ninaber M, Geelhoed M. Interstitial Lung Disease in Patients With Systemic Sclerosis: Toward Personalized-Medicine-Based Prediction and Drug Screening Models of Systemic Sclerosis-Related Interstitial Lung Disease (SSc-ILD). Front Immunol 2020; 11:1990. [PMID: 33013852 PMCID: PMC7500178 DOI: 10.3389/fimmu.2020.01990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease, characterized by immune dysregulation and progressive fibrosis. Interstitial lung disease (ILD) is the most common cause of death among SSc patients and there are currently very limited approved disease-modifying treatment options for systemic sclerosis-related interstitial lung disease (SSc-ILD). The mechanisms underlying pulmonary fibrosis in SSc-ILD are not completely unraveled, and knowledge on fibrotic processes has been acquired mostly from studies in idiopathic pulmonary fibrosis (IPF). The incomplete knowledge of SSc-ILD pathogenesis partly explains the limited options for disease-modifying therapy for SSc-ILD. Fibrosis in IPF appears to be related to aberrant repair following injury, but whether this also holds for SSc-ILD is less evident. Furthermore, immune dysregulation appears to contribute to pro-fibrotic responses in SSc-ILD, perhaps more than in IPF. In addition, SSc-ILD patient heterogeneity complicates the understanding of the underlying mechanisms of disease development, and more importantly, limits correct clinical diagnosis and treatment effectivity. Therefore, there is an unmet need for patient-relevant (in vitro) models to examine patient-specific disease pathogenesis, predict disease progression, screen appropriate treatment regimens and identify new targets for treatment. Technological advances in in vitro patient-relevant disease modeling, including (human induced pluripotent stem cell (hiPSC)-derived) lung epithelial cells, organoids and organ-on-chip technology offer a platform that has the potential to contribute to unravel the underlying mechanisms of SSc-ILD development. Combining these models with state-of-the-art analysis platforms, including (single cell) RNA sequencing and (imaging) mass cytometry, may help to delineate pathogenic mechanisms and define new treatment targets of SSc-ILD.
Collapse
Affiliation(s)
- Padmini Khedoe
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Emiel Marges
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Pieter Hiemstra
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maarten Ninaber
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Miranda Geelhoed
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
3
|
Jagadale V. A Case Report and Literature Review to Aid in the Management of Trunnion Failure in Hip Arthroplasty Patients: Can Trunnionosis and Prosthetic Joint Infection Co-Exist? Cureus 2019; 11:e5544. [PMID: 31687316 PMCID: PMC6819065 DOI: 10.7759/cureus.5544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trunnionosis is a type of corrosion and wear at the head-neck taper junction of the femoral implant, and it can be a slow and silent catastrophe. Simultaneous prosthetic joint infection (PJI) is occasionally possible based on the fulfillment of a few of the minor criteria from the Musculoskeletal Infection Society (MSIS), but the existing literature lacks adequate evidence to support that the infection actually exists. We are presenting a case of an 82-year-old man with right total hip arthroplasty performed over a decade prior to presenting to the emergency room with a sudden-onset pop followed by groin pain and difficulty in walking. Radiographs showed a dissociated femoral implant at the level of trunnion with malalignment and heterotopic ossification. Metal Artifact Reduction Sequence MRI of the right hip showed mixed type-two and type-three pseudotumors, and atrophy of surrounding abductor muscles. The erythrocyte sedimentation rate was within normal limits, C-reactive protein was borderline raised, and serum cobalt-chromium levels were elevated without any signs of systemic metal toxicity. Hip joint aspirate revealed blood-stained fluid flooded with red blood cells, leukocytes and neutrophils, and a positive alpha-defensin assay. These findings were interpreted as positive for prosthetic joint infection. Intraoperatively, there was severe wear of the inferomedial aspect of the femoral head-neck junction and extensive metallosis throughout the right hip. Tissue and fluid specimens were sent for cultures, sensitivities, and histopathology for pseudotumor and infection evaluation. An articulating antibiotic spacer was then placed with the intent to perform a staged reconstruction of the femur and right acetabulum. Final synovial, bone, and soft tissue cultures, as well as histopathological photomicrograph of the tissue slides, were negative for infection. This case demonstrates the striking features of metallosis associated with trunnion failure of a metal-on-polyethylene total hip joint prosthesis that was simultaneously showing signs of prosthetic infection by satisfying the minor criteria according to the latest guidelines by the MSIS with a strikingly high cell count of red blood cells in the synovial fluid exam, indicating inflamed hyper-vascular pseudotumors vs. hemarthrosis vs. bloody tap. Diagnostic dilemma led by positive synovial fluid alpha defensin, high synovial neutrophil and white cell count results with negative final cultures or infection on histological slides raises concern that infection was not present and two-stage revision arthroplasty with six weeks of antibiotics was not necessary along with increased risk of morbidity, mortality as well as cost of care.
Collapse
Affiliation(s)
- Vivek Jagadale
- Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
4
|
Antibody Treatment against Angiopoietin-Like 4 Reduces Pulmonary Edema and Injury in Secondary Pneumococcal Pneumonia. mBio 2019; 10:mBio.02469-18. [PMID: 31164474 PMCID: PMC6550533 DOI: 10.1128/mbio.02469-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial lung infection by Streptococcus pneumoniae (S. pneumoniae) poses a serious health concern, especially in developing countries. We posit that the emergence of multiantibiotic-resistant strains will jeopardize current treatments in these regions. Deaths arising from secondary infections are more often associated with acute lung injury, a common consequence of hypercytokinemia, than with the infection per se Given that secondary bacterial pneumonia often has a poor prognosis, newer approaches to improve treatment outcomes are urgently needed to reduce the high levels of morbidity and mortality. Using a sequential dual-infection mouse model of secondary bacterial lung infection, we show that host-directed therapy via immunoneutralization of the angiopoietin-like 4 c-isoform (cANGPTL4) reduced pulmonary edema and damage in infected mice. RNA sequencing analysis revealed that anti-cANGPTL4 treatment improved immune and coagulation functions and reduced internal bleeding and edema. Importantly, anti-cANGPTL4 antibody, when used concurrently with either conventional antibiotics or antipneumolysin antibody, prolonged the median survival of mice compared to monotherapy. Anti-cANGPTL4 treatment enhanced immune cell phagocytosis of bacteria while restricting excessive inflammation. This modification of immune responses improved the disease outcomes of secondary pneumococcal pneumonia. Taken together, our study emphasizes that host-directed therapeutic strategies are viable adjuncts to standard antimicrobial treatments.IMPORTANCE Despite extensive global efforts, secondary bacterial pneumonia still represents a major cause of death in developing countries and is an important cause of long-term functional disability arising from lung tissue damage. Newer approaches to improving treatment outcomes are needed to reduce the significant morbidity and mortality caused by infectious diseases. Our study, using an experimental mouse model of secondary S. pneumoniae infection, shows that a multimodal treatment that concurrently targets host and pathogen factors improved lung tissue integrity and extended the median survival time of infected mice. The immunoneutralization of host protein cANGPTL4 reduced the severity of pulmonary edema and damage. We show that host-directed therapeutic strategies as well as neutralizing antibodies against pathogen virulence factors are viable adjuncts to standard antimicrobial treatments such as antibiotics. In view of their different modes of action compared to antibiotics, concurrent immunotherapies using antibodies are potentially efficacious against secondary pneumococcal pneumonia caused by antibiotic-resistant pathogens.
Collapse
|
5
|
Integration of Genome-Wide DNA Methylation and Transcription Uncovered Aberrant Methylation-Regulated Genes and Pathways in the Peripheral Blood Mononuclear Cells of Systemic Sclerosis. Int J Rheumatol 2018; 2018:7342472. [PMID: 30245726 PMCID: PMC6139224 DOI: 10.1155/2018/7342472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective. Systemic sclerosis (SSc) is a systemic connective tissue disease of unknown etiology. Aberrant gene expression and epigenetic modifications in circulating immune cells have been implicated in the pathogenesis of SSc. This study is to delineate the interaction network between gene transcription and DNA methylation in PBMC of SSc patients and to identify methylation-regulated genes which are involved in the pathogenesis of SSc. Methods. Genome-wide mRNA transcription and global DNA methylation analysis were performed on PBMC from 18 SSc patients and 19 matched normal controls (NC) using Illumina BeadChips. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were integrative analyzed to identify methylation-regulated genes and associated molecular pathways. Results. Transcriptome analysis distinguished 453 DEGs (269 up- and 184 downregulated) in SSc from NC. Global DNA methylation analysis identified 925 DMPs located on 618 genes. Integration of the two lists revealed only 20 DEGs which harbor inversely correlated DMPs, including 12 upregulated (ELANE, CTSG, LTBR, C3AR1, CSTA, SPI1, ODF3B, SAMD4A, PLAUR, NFE2, ZYX, and CTSZ) and eight downregulated genes (RUNX3, PRF1, PRKCH, PAG1, RASSF5, FYN, CXCR6, and F2R). These potential methylation-regulated DEGs (MeDEGs) are enriched in the pathways related to immune cell migration, proliferation, activation, and inflammation activities. Using a machine learning algorism, we identified six out of the 20 MeDEGs, including F2R, CXCR6, FYN, LTBR, CTSG, and ELANE, which distinguished SSc from NC with 100% accuracy. Four genes (F2R, FYN, PAG1, and PRKCH) differentially expressed in SSc with interstitial lung disease (ILD) compared to SSc without ILD. Conclusion. The identified MeDEGs may represent novel candidate factors which lead to the abnormal activation of immune regulatory pathways in the pathogenesis of SSc. They may also be used as diagnostic biomarkers for SSc and clinical complications.
Collapse
|
6
|
Caron M, Hoa S, Hudson M, Schwartzman K, Steele R. Pulmonary function tests as outcomes for systemic sclerosis interstitial lung disease. Eur Respir Rev 2018; 27:170102. [PMID: 29769294 PMCID: PMC9488607 DOI: 10.1183/16000617.0102-2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/24/2018] [Indexed: 01/17/2023] Open
Abstract
Interstitial lung disease (ILD) is the leading cause of morbidity and mortality in systemic sclerosis (SSc). We performed a systematic review to characterise the use and validation of pulmonary function tests (PFTs) as surrogate markers for systemic sclerosis-associated interstitial lung disease (SSc-ILD) progression.Five electronic databases were searched to identify all relevant studies. Included studies either used at least one PFT measure as a longitudinal outcome for SSc-ILD progression (i.e. outcome studies) and/or reported at least one classical measure of validity for the PFTs in SSc-ILD (i.e. validation studies).This systematic review included 169 outcome studies and 50 validation studies. Diffusing capacity of the lung for carbon monoxide (DLCO) was cumulatively the most commonly used outcome until 2010 when it was surpassed by forced vital capacity (FVC). FVC (% predicted) was the primary endpoint in 70.4% of studies, compared to 11.3% for % predicted DLCO Only five studies specifically aimed to validate the PFTs: two concluded that DLCO was the best measure of SSc-ILD extent, while the others did not favour any PFT. These studies also showed respectable validity measures for total lung capacity (TLC).Despite the current preference for FVC, available evidence suggests that DLCO and TLC should not yet be discounted as potential surrogate markers for SSc-ILD progression.
Collapse
Affiliation(s)
- Melissa Caron
- Dept of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Respiratory Epidemiology and Clinical Research Unit (RECRU), Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Sabrina Hoa
- Dept of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Division of Rheumatology, Jewish General Hospital, Montreal, QC, Canada
| | - Marie Hudson
- Division of Rheumatology, Jewish General Hospital, Montreal, QC, Canada
| | - Kevin Schwartzman
- Dept of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Respiratory Epidemiology and Clinical Research Unit (RECRU), Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Russell Steele
- Dept of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Sakamoto N, Ishimoto H, Kakugawa T, Satoh M, Hasegawa T, Tanaka S, Hara A, Nakashima S, Yura H, Miyamura T, Koyama H, Morita T, Nakamichi S, Obase Y, Ishimatsu Y, Mukae H. Elevated α-defensin levels in plasma and bronchoalveolar lavage fluid from patients with myositis-associated interstitial lung disease. BMC Pulm Med 2018. [PMID: 29530007 PMCID: PMC5848598 DOI: 10.1186/s12890-018-0609-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is a prognostic indicator of poor outcome in myositis. Although the pathogenesis of myositis-associated ILD is not well understood, neutrophils are thought to play a pivotal role. Neutrophils store azurophil granules that contain defensins, which are antimicrobial peptides that regulate the inflammatory response. Here, we evaluated levels of the human neutrophil peptides (HNPs) α-defensin 1 through 3 in patients with myositis-associated ILD to determine whether HNPs represent disease markers and play a role in the pathogenesis of myositis-associated ILD. METHODS HNP levels were measured in the plasma and bronchoalveolar lavage fluid (BALF) of 56 patients with myositis-associated ILD and 24 healthy controls by enzyme-linked immunosorbent assay. RESULTS Analysis revealed significantly higher HNP levels in plasma and BALF samples from patients with myositis-associated ILD as compared to those of healthy controls; however, plasma HNPs were significantly correlated with total cell counts in BALF. Additionally, BALF HNP levels were positively correlated with serum surfactant protein-A and the percentage of neutrophils in BALF, and BALF HNP levels correlated with the percentage of reticular opacities in high-resolution computed tomography results for patients with anti-aminoacyl-tRNA synthetase (ARS) antibody positive myositis-associated ILD. Survival did not differ between patients with higher and lower levels of plasma and BALF HNPs. CONCLUSIONS Plasma and BALF HNPs might reflect the disease activities of myositis-associated ILD, especially in patients with anti-ARS antibody positive myositis-associated ILD. However further studies are necessary to clarify whether HNPs represent disease markers and play roles in disease pathogenesis.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomoyuki Kakugawa
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-0804, Japan
| | - Tomoko Hasegawa
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-0804, Japan
| | - Shin Tanaka
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-0804, Japan
| | - Atsuko Hara
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shota Nakashima
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takuto Miyamura
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hanako Koyama
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Towako Morita
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Seiko Nakamichi
- Department of General Medicine, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuji Ishimatsu
- Department of Cardiopulmonary Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
8
|
Sigal GB, Segal MR, Mathew A, Jarlsberg L, Wang M, Barbero S, Small N, Haynesworth K, Davis JL, Weiner M, Whitworth WC, Jacobs J, Schorey J, Lewinsohn DM, Nahid P. Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial. EBioMedicine 2017; 25:112-121. [PMID: 29100778 PMCID: PMC5704068 DOI: 10.1016/j.ebiom.2017.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023] Open
Abstract
More efficacious treatment regimens are needed for tuberculosis, however, drug development is impeded by a lack of reliable biomarkers of disease severity and of treatment effect. We conducted a directed screen of host biomarkers in participants enrolled in a tuberculosis clinical trial to address this need. Serum samples from 319 protocol-correct, culture-confirmed pulmonary tuberculosis patients treated under direct observation as part of an international, phase 2 trial were screened for 70 markers of infection, inflammation, and metabolism. Biomarker assays were specifically developed for this study and quantified using a novel, multiplexed electrochemiluminescence assay. We evaluated the association of biomarkers with baseline characteristics, as well as with detailed microbiologic data, using Bonferroni-adjusted, linear regression models. Across numerous analyses, seven proteins, SAA1, PCT, IL-1β, IL-6, CRP, PTX-3 and MMP-8, showed recurring strong associations with markers of baseline disease severity, smear grade and cavitation; were strongly modulated by tuberculosis treatment; and had responses that were greater for patients who culture-converted at 8weeks. With treatment, all proteins decreased, except for osteocalcin, MCP-1 and MCP-4, which significantly increased. Several previously reported putative tuberculosis-associated biomarkers (HOMX1, neopterin, and cathelicidin) were not significantly associated with treatment response. In conclusion, across a geographically diverse and large population of tuberculosis patients enrolled in a clinical trial, several previously reported putative biomarkers were not significantly associated with treatment response, however, seven proteins had recurring strong associations with baseline radiographic and microbiologic measures of disease severity, as well as with early treatment response, deserving additional study.
Collapse
Affiliation(s)
- G B Sigal
- Meso Scale Diagnostics, LLC, Rockville, MD, USA.
| | - M R Segal
- University of California, San Francisco, CA, USA
| | - A Mathew
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | - L Jarlsberg
- University of California, San Francisco, CA, USA
| | - M Wang
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | - S Barbero
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | - N Small
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | | | - J L Davis
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - M Weiner
- San Antonio VA Medical Center, San Antonio, TX, USA
| | - W C Whitworth
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - J Schorey
- University of Notre Dame, Notre Dame, IN, USA
| | - D M Lewinsohn
- Oregon Health and Science University, Portland, OR, USA
| | - P Nahid
- University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Horimasu Y, Ishikawa N, Taniwaki M, Yamaguchi K, Hamai K, Iwamoto H, Ohshimo S, Hamada H, Hattori N, Okada M, Arihiro K, Ohtsuki Y, Kohno N. Gene expression profiling of idiopathic interstitial pneumonias (IIPs): identification of potential diagnostic markers and therapeutic targets. BMC MEDICAL GENETICS 2017; 18:88. [PMID: 28821283 PMCID: PMC5562997 DOI: 10.1186/s12881-017-0449-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic fibrosing idiopathic interstitial pneumonia (IIP) is characterized by alveolar epithelial damage, activation of fibroblast proliferation, and loss of normal pulmonary architecture and function. This study aims to investigate the genetic backgrounds of IIP through gene expression profiling and pathway analysis, and to identify potential biomarkers that can aid in diagnosis and serve as novel therapeutic targets. METHODS RNA extracted from lung specimens of 12 patients with chronic fibrosing IIP was profiled using Illumina Human WG-6 v3 BeadChips, and Ingenuity Pathway Analysis was performed to identify altered functional and canonical signaling pathways. For validating the results from gene expression analysis, immunohistochemical staining of 10 patients with chronic fibrosing IIP was performed. RESULTS Ninety-eight genes were upregulated in IIP patients relative to control subjects. Some of the upregulated genes, namely desmoglein 3 (DSG3), protocadherin gamma-A9 (PCDHGA9) and discoidin domain-containing receptor 1 (DDR1) are implicated in cell-cell interaction and/or adhesion; some, namely collagen type VII, alpha 1 (COL7A1), contactin-associated protein-like 3B (CNTNAP3B) and mucin-1 (MUC1) are encoding the extracellular matrix molecule or the molecules involved in cell-matrix interactions; and the others, namely CDC25C and growth factor independent protein 1B (GFI1B) are known to affect cell proliferation by affecting the progression of cell cycle or regulating transcription. According to pathway analysis, alternated pathways in IIP were related to cell death and survival and cellular growth and proliferation, which are more similar to cancer than to inflammatory response and immunological diseases. Using immunohistochemistry, we further validate that DSG3, the most highly upregulated gene, shows higher expression in chronic fibrosing IIP lung as compared to control lung. CONCLUSION We identified several genes upregulated in chronic fibrosing IIP patients as compared to control, and found genes and pathways implicated in cancer, rather than in inflammatory or immunological disease to play important roles in the pathogenesis of IIPs. Moreover, DSG3 is a novel potential biomarker for chronic fibrosing IIP with its significantly high expression in IIP lung.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530 Japan
| | - Masaya Taniwaki
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kosuke Hamai
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Morihito Okada
- Department of Surgical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, 2-6-5 Ohtemachi, Matsuyama, 790-0067 Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
10
|
Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, Vandecasteele E, De Keyser F, Distler O, Gutermuth J, Smith V. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 2017; 16:774-786. [PMID: 28572048 DOI: 10.1016/j.autrev.2017.05.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by fibroproliferative vasculopathy, immunological abnormalities and progressive fibrosis of multiple organs including the skin. In this study, all English speaking articles concerning the role of endothelial cells (ECs) in SSc vasculopathy and representing biomarkers are systematically reviewed and categorized according to endothelial cell (EC) (dys)function in SSc. METHODS A sensitive search on behalf of the EULAR study group on microcirculation in Rheumatic Diseases was developed in Pubmed, The Cochrane Library and Web of Science to identify articles on SSc vasculopathy and the role of ECs using the following Mesh terms: (systemic sclerosis OR scleroderma) AND pathogenesis AND (endothelial cells OR marker). All selected papers were read and discussed by two independent reviewers. The selection process was based on title, abstract and full text level. Additionally, both reviewers further searched the reference lists of the articles selected for reading on full text level for supplementary papers. These additional articles went through the same selection process. RESULTS In total 193 resulting articles were selected and the identified biomarkers were categorized according to description of EC (dys)function in SSc. The most representing and reliable biomarkers described by the selected articles were adhesion molecules for EC activation, anti-endothelial cell antibodies for EC apoptosis, vascular endothelial growth factor (VEGF), its receptor VEGFR-2 and endostatin for disturbed angiogenesis, endothelial progenitors cells for defective vasculogenesis, endothelin-1 for disturbed vascular tone control, Von Willebrand factor for coagulopathy and interleukin (IL)-33 for EC-immune system communication. Emerging, relatively new discovered biomarkers described in the selected articles, are VEGF165b, IL-17A and the adipocytokines. Finally, myofibroblasts involved in tissue fibrosis in SSc can derive from ECs or epithelial cells through a process known as endothelial-to-mesenchymal transition. CONCLUSION This systematic review emphasizes the growing evidence that SSc is primarily a vascular disease where EC dysfunction is present and prominent in different aspects of cell survival (activation and apoptosis), angiogenesis and vasculogenesis and where disturbed interactions between ECs and various other cells contribute to SSc vasculopathy.
Collapse
Affiliation(s)
- Y Mostmans
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Immunology and Allergology (CIA) Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles (ULB), Van Gehuchtenplein 4, 1020 Brussels, Belgium.
| | - M Cutolo
- Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - C Giddelo
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - S Decuman
- Ghent University, Department of Internal Medicine, Ghent, Belgium
| | - K Melsens
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - H Declercq
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, Ghent, Belgium
| | - E Vandecasteele
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - F De Keyser
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - O Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - J Gutermuth
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - V Smith
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| |
Collapse
|
11
|
Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 2017; 26:989-998. [PMID: 28191680 DOI: 10.1111/exd.13314] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
Host defense peptides/proteins (HDPs), also known as antimicrobial peptides/proteins (AMPs), are key molecules in the cutaneous innate immune system. AMPs/HDPs historically exhibit broad-spectrum killing activity against bacteria, enveloped viruses, fungi and several parasites. Recently, AMPs/HDPs were shown to have important biological functions, including inducing cell proliferation, migration and differentiation; regulating inflammatory responses; controlling the production of various cytokines/chemokines; promoting wound healing; and improving skin barrier function. Despite the fact that AMPs/HDPs protect our body, several studies have hypothesized that these molecules actively contribute to the pathogenesis of various skin diseases. For example, AMPs/HDPs play crucial roles in the pathological processes of psoriasis, atopic dermatitis, rosacea, acne vulgaris, systemic lupus erythematosus and systemic sclerosis. Thus, AMPs/HDPs may be a double-edged sword, promoting cutaneous immunity while simultaneously initiating the pathogenesis of some skin disorders. This review will describe the most common skin-derived AMPs/HDPs (defensins, cathelicidins, S100 proteins, ribonucleases and dermcidin) and discuss the biology and both the positive and negative aspects of these AMPs/HDPs in skin inflammatory/infectious diseases. Understanding the regulation, functions and mechanisms of AMPs/HDPs may offer new therapeutic opportunities in the treatment of various skin disorders.
Collapse
Affiliation(s)
- François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Chanisa Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Medical Services, Institute of Dermatology, Ministry of Public Health, Bangkok, Thailand
| | - Panjit Chieosilapatham
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|