1
|
Morris SB, Ocadiz-Ruiz R, Asai N, Malinczak CA, Rasky AJ, Lombardo GK, Velarde EM, Ptaschinski C, Zemans RL, Lukacs NW, Fonseca W. Long-term alterations in lung epithelial cells after EL-RSV infection exacerbate allergic responses through IL-1β-induced pathways. Mucosal Immunol 2024; 17:1072-1088. [PMID: 39069078 PMCID: PMC11610113 DOI: 10.1016/j.mucimm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of Bmp2 and Krt8 genes that are associated with AT2-AT1 trans-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including Il33. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of Il33 in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1β. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the Il33 gene were detected in AT2 cells harvested from EL-RSV and EL-IL1β groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1β pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.
Collapse
Affiliation(s)
- Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramon Ocadiz-Ruiz
- Department of Bioengineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace K Lombardo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Velarde
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L Zemans
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Aegerter H, Smole U, Heyndrickx I, Verstraete K, Savvides SN, Hammad H, Lambrecht BN. Charcot-Leyden crystals and other protein crystals driving type 2 immunity and allergy. Curr Opin Immunol 2021; 72:72-78. [PMID: 33873124 DOI: 10.1016/j.coi.2021.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Protein crystals derived from innate immune cells have been synonymous with a Type-2 immune response in both mouse and man for over 150 years. Eosinophilic Galectin-10 (Charcot-Leyden) crystals in humans, and Ym1/Ym2 crystals in mice are frequently found in the context of parasitic infections, but also in diseases such as asthma and chronic rhinosinusitis. Despite their notable presence, these crystals are often overlooked as trivial markers of Type-2 inflammation. Here, we discuss the source, context, and role of protein crystallization. We focus on similarities observed between Galectin-10 and Ym1/2 crystals in driving immune responses; the subsequent benefit to the host during worm infection, and conversely the detrimental exacerbation of inflammation and mucus production during asthma.
Collapse
Affiliation(s)
- Helena Aegerter
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ines Heyndrickx
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Wang S, Hu M, Qian Y, Jiang Z, Shen L, Fu L, Hu Y. CHI3L1 in the pathophysiology and diagnosis of liver diseases. Biomed Pharmacother 2020; 131:110680. [PMID: 32861071 DOI: 10.1016/j.biopha.2020.110680] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Chitinase 3-like protein 1(CHI3L1) participates in physiological and pathophysiological process, such as cell survival, cell proliferation, tissue remodeling, angiogenesis, etc. Some studies demonstrated that CHI3L1 is liver-enriched and has better application value in staging liver fibrosis than platelet ratio index(APRI) and fibrosis-4 index(FIB-4) and that CHI3L1 can be used in monitoring the prognosis of hepatocellular carcinoma (HCC). In this review, we summarized the pathophysiological role and the diagnostic value of CHI3L1 in liver fibrosis in different background and HCC.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Mengyuan Hu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Yunsong Qian
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Zhenluo Jiang
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Lili Shen
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Liyun Fu
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China; Ningbo Clinical Research Center for Digestive System Tumors (Grant No.2019A21003), Ningbo 315010, China.
| | - Yaoren Hu
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China; Ningbo Clinical Research Center for Digestive System Tumors (Grant No.2019A21003), Ningbo 315010, China.
| |
Collapse
|
5
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
6
|
Khadzhieva MB, Kuzovlev AN, Salnikova LE. Pneumonia: host susceptibility and shared genetics with pulmonary function and other traits. Clin Exp Immunol 2019; 198:367-380. [PMID: 31487037 DOI: 10.1111/cei.13367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Pneumonia is a common and severe infectious lung disease. Host genetics, together with underlying medical and lifestyle conditions, determine pneumonia susceptibility. We performed a secondary analysis of the results of two genome-wide studies for pneumonia in 23andMe participants (40 600 cases/90 039 controls) (Tian et al., 2017) and UK Biobank (BB) participants (12 614 cases/324 585 controls) (via the Global Biobank Engine) and used the GTEx database to correlate the results with expression quantitative trait loci (eQTLs) data in lung and whole blood. In the 23andMe pneumonia single nucleotide polymorphism (SNP) set, 177 genotyped SNPs in the human leukocyte antigen (HLA) region satisfied the genome-wide significance level, P ≤ 5·0E-08. Several target genes (e.g. C4A, VARS2, SFTA2, HLA-C, HLA-DQA2) were unidirectionally regulated by many HLA eSNPs associated with a higher risk of pneumonia. In lung, C4A transcript was up-regulated by 291 pneumonia risk alleles spanning the half the HLA region. Among SNPs correlated with the expression levels of SFTA2 and VARS2, approximately 75% overlapped: all risk alleles were associated with VARS2 up-regulation and SFTA2 down-regulation. To find shared gene loci between pneumonia and pulmonary function (PF), we used data from the Global Biobank Engine and literature on genome-wide association studies (GWAS) of PF in general populations. Numerous gene loci overlapped between pneumonia and PF: 28·8% in the BB data set and 49·2% in the 23andMe data set. Enrichment analysis within the database of Genotypes and Phenotypes (dbGaP) and National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Catalog of pneumonia and pneumonia/PF gene sets identified significant overlap between these gene sets and genes related to inflammatory, developmental, neuropsychiatric and cardiovascular and obesity-related traits.
Collapse
Affiliation(s)
- M B Khadzhieva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.,N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A N Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - L E Salnikova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.,N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
7
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|