1
|
Zhang Y, Ge F, Luo Y, Ji X, Liu Z, Qiu Y, Hou J, Zhou R, Zhao C, Xu Q, Zhang S, Yu X, Wang C, Ge D, Meng F, Tao X. Paeonol and glycyrrhizic acid in combination ameliorate the recurrent nitroglycerin-induced migraine-like phenotype in rats by regulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118464. [PMID: 38908492 DOI: 10.1016/j.jep.2024.118464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1β and TNF-α. CONCLUSIONS Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.
Collapse
Affiliation(s)
- Yao Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yamin Luo
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuenian Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zijian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuehua Qiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianchen Hou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ranran Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Caihong Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qianwei Xu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, 100089, China
| | - Shujing Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunguo Wang
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongyu Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fengxian Meng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaohua Tao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Research Institute of Chinese Medicine Literature, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Yan J, Zhang Z, Ge Y, Chen J, Gao Y, Zhang B. Exploring the Blood Biomarkers and Potential Therapeutic Agents for Human Acute Mountain Sickness Based on Transcriptomic Analysis, Inflammatory Infiltrates and Molecular Docking. Int J Mol Sci 2024; 25:11311. [PMID: 39457093 PMCID: PMC11508554 DOI: 10.3390/ijms252011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
A high-altitude, low-pressure hypoxic environment has severe effects on the health and work efficiency of its residents, and inadequate preventive measures and adaptive training may lead to the occurrence of AMS. Acute exposure to hypoxia conditions can have a less-favorable physiological effect on the human immune system. However, the regulation of the immune system in high-altitude environments is extremely complex and remains elusive. This study integrated system bioinformatics methods to screen for changes in immune cell subtypes and their associated targets. It also sought potential therapeutically effective natural compound candidates. The present study observed that monocytes, M1 macrophages and NK cells play a crucial role in the inflammatory response in AMS. IL15RA, CD5, TNFSF13B, IL21R, JAK2 and CXCR3 were identified as hub genes, and JAK2 was positively correlated with monocytes; TNFSF13B was positively correlated with NK cells. The natural compound monomers of jasminoidin and isoliquiritigenin exhibited good binding affinity with JAK2, while dicumarol and artemotil exhibited good binding affinity with TNFSF13B, and all are expected to become a potential therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Zhuo Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Yunxuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Junru Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Boli Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| |
Collapse
|
3
|
Xie Y, Li Z, Liang Y, Zhou T, Yuan X, Su X, Zhang Z, Zhang J, Wan Y, Su L, Lu T, Zhao X, Fu Y. Revealing the Mechanisms of Qilongtian Capsules in the Treatment of Chronic Obstructive Pulmonary Disease Based on Integrated Network Pharmacology, Molecular Docking, and In Vivo Experiments. ACS OMEGA 2024; 9:32455-32468. [PMID: 39100362 PMCID: PMC11292813 DOI: 10.1021/acsomega.3c10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The Qilongtian capsule (QLT) is a Chinese patent medicine that has been approved for the treatment of chronic obstructive pulmonary disease (COPD). However, the precise pharmacodynamic material basis and molecular mechanism have not been well illustrated. In this study, we identified the effect of QLT on COPD through a cigarette smoke extract (CSE)/lipopolysaccharide (LPS) induced COPD mice model. The absorption of blood components in QLT were identified using ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to predict the potential targets and therapeutic mechanisms of QLT, which were further validated using in vivo experiments and molecular docking. Pharmacodynamic studies revealed that QLT could ameliorate pulmonary function and pulmonary pathology, reduce collagen fiber accumulation, and attenuate inflammatory responses in mice with CSE/LPS induced COPD. A total of 21 components of QLT absorbed in the blood were detected. Network pharmacology analysis indicated that TNF, IL-6, EGFR, and AKT1 may be the core targets, mainly involving the MAPK signaling pathway. Besides, Sachaloside II, Ginsenoside Rh1, Ginsenoside F1, Rosiridin, and Ginsenoside Rf were the key compounds. Molecular docking results showed that the key components could spontaneously bind to EGFR and MAPK to form a relatively stable conformation. In vivo experiments revealed that QLT could suppress the activation of the EGFR/MAPK signaling pathway, thereby improving lung injury in mice with COPD. Overall, these findings provide evidence for the treatment of COPD with QLT.
Collapse
Affiliation(s)
- Ying Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhengyan Li
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| | - Yiyao Liang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tong Zhou
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaolin Yuan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xuerong Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhitong Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Jiuba Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Wan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Lianlin Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tulin Lu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaoli Zhao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Fu
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| |
Collapse
|
4
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
5
|
Liu B, Yuan M, Yang M, Zhu H, Zhang W. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions. High Alt Med Biol 2024; 25:26-41. [PMID: 37815821 DOI: 10.1089/ham.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Liu, Bo, Minlan Yuan, Mei Yang, Hongru Zhu, and Wei Zhang. The effect of high-altitude hypoxia on neuropsychiatric functions. High Alt Med Biol. 25:26-41, 2024. Background: In recent years, there has been a growing popularity in engaging in activities at high altitudes, such as hiking and work. However, these high-altitude environments pose risks of hypoxia, which can lead to various acute or chronic cerebral diseases. These conditions include common neurological diseases such as acute mountain sickness (AMS), high-altitude cerebral edema, and altitude-related cerebrovascular diseases, as well as psychiatric disorders such as anxiety, depression, and psychosis. However, reviews of altitude-related neuropsychiatric conditions and their potential mechanisms are rare. Methods: We conducted searches on PubMed and Google Scholar, exploring existing literature encompassing preclinical and clinical studies. Our aim was to summarize the prevalent neuropsychiatric diseases induced by altitude hypoxia, the potential pathophysiological mechanisms, as well as the available pharmacological and nonpharmacological strategies for prevention and intervention. Results: The development of altitude-related cerebral diseases may arise from various pathogenic processes, including neurovascular alterations associated with hypoxia, cytotoxic responses, activation of reactive oxygen species, and dysregulation of the expression of hypoxia inducible factor-1 and nuclear factor erythroid 2-related factor 2. Furthermore, the interplay between hypoxia-induced neurological and psychiatric changes is believed to play a role in the progression of brain damage. Conclusions: While there is some evidence pointing to pathophysiological changes in hypoxia-induced brain damage, the precise mechanisms responsible for neuropsychiatric alterations remain elusive. Currently, the range of prevention and intervention strategies available is primarily focused on addressing AMS, with a preference for prevention rather than treatment.
Collapse
Affiliation(s)
- Bo Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- Zigong Mental Health Center, Zigong, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhou Y, Huang Y, Yang C, Zang X, Deng H, Liu J, Zhao E, Tian T, Pan L, Xue X. The pathways and the mechanisms by which Cryptococcus enters the brain. Mycology 2024; 15:345-359. [PMID: 39247889 PMCID: PMC11376299 DOI: 10.1080/21501203.2023.2295409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024] Open
Abstract
Generally, Cryptococcus initially infects the respiratory tract, but can spread, eventually crossing the blood-brain barrier (BBB) and causing meningitis or meningoencephalitis. Specifically, Cryptococcus invades the vascular endothelial cells of the BBB, from which it enters the brain. The main mechanisms through which Cryptococcus crosses the BBB are transcellular traversal, the paracellular pathway, and via Trojan horse. In this paper, the mechanisms by which Cryptococcus crosses the BBB were explained in detail. In addition to pathways of entry to the brain, this paper presents a discussion on some rare cryptococcal infections and provides some insights for future research directions.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hengyu Deng
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Jing Liu
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Enqi Zhao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tingyue Tian
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| |
Collapse
|
7
|
Zhao S, Jia N, Shen Z, Pei C, Huang D, Liu J, Wang Y, Shi S, Wang X, Wang M, He Y, Wang Z. Pretreatment with Notoginsenoside R1 attenuates high-altitude hypoxia-induced cardiac injury via activation of the ERK1/2-P90RSK-Bad signaling pathway in rats. Phytother Res 2023; 37:4522-4539. [PMID: 37313866 DOI: 10.1002/ptr.7923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
High-altitude cardiac injury (HACI) is one of the common tissue injuries caused by high-altitude hypoxia that may be life threatening. Notoginsenoside R1 (NG-R1), a major saponin of Panax notoginseng, exerts anti-oxidative, anti-inflammatory, and anti-apoptosis effects, protecting the myocardium from hypoxic injury. This study aimed to investigate the protective effect and molecular mechanism of NG-R1 against HACI. We simulated a 6000 m environment for 48 h in a hypobaric chamber to create a HACI rat model. Rats were pretreated with NG-R1 (50, 100 mg/kg) or dexamethasone (4 mg/kg) for 3 days and then placed in the chamber for 48 h. The effect of NG-R1 was evaluated by changes in Electrocardiogram parameters, histopathology, cardiac biomarkers, oxidative stress and inflammatory indicators, key protein expression, and immunofluorescence. U0126 was used to verify whether the anti-apoptotic effect of NG-R1 was related to the activation of ERK pathway. Pretreatment with NG-R1 can improve abnormal cardiac electrical conduction and alleviate high-altitude-induced tachycardia. Similar to dexamethasone, NG-R1 can improve pathological damage, reduce the levels of cardiac injury biomarkers, oxidative stress, and inflammatory indicators, and down-regulate the expression of hypoxia-related proteins HIF-1α and VEGF. In addition, NG-R1 reduced cardiomyocyte apoptosis by down-regulating the expression of apoptotic proteins Bax, cleaved caspase 3, cleaved caspase 9, and cleaved PARP1 and up-regulating the expression of anti-apoptotic protein Bcl-2 through activating the ERK1/2-P90RSK-Bad pathway. In conclusion, NG-R1 prevented HACI and suppressed apoptosis via activation of the ERK1/2-P90RSK-Bad pathway, indicating that NG-R1 has therapeutic potential to treat HACI.
Collapse
Affiliation(s)
- Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang Q, Luo T, Yuan D, Liu J, Fu Y, Yuan J. Qilongtian ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibiting IL-17 signal pathway. Sci Rep 2023; 13:6002. [PMID: 37045911 PMCID: PMC10092933 DOI: 10.1038/s41598-023-31439-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis (PF) is a special type of pulmonary parenchymal disease, with chronic, progressive, fibrosis, and high mortality. There is a lack of safe, effective, and affordable treatment methods. Qilongtian (QLT) is a traditional Chinese prescription that is composed of Panax notoginseng, Earthworm, and Rhodiola, and shows the remarkable clinical curative effect of PF. However, the mechanism of QLT remains to be clarified. Therefore, we studied the effectivity of QLT in treating Bleomycin (BLM) induced PF mice. 36 C57BL/6 J mice were randomized into the control group, the model group, the low-, medium- and high-dose QLT group, and Pirfenidone group. After establishing a model of pulmonary fibrosis in mice, the control and model groups were infused with a normal saline solution, and the delivery group was infused with QLT. Pulmonary function in the mice from each group was detected. Pulmonary tissue morphologies and collagen deposition were stained by HE and Masson. The content of hydroxyproline (HYP) was detected by alkaline hydrolysis and the mRNA and protein expression of related genes in pulmonary tissues were detected by using q-PCR, ELISA, and Western blot. Our studies have shown that QLT significantly reduced the inflammatory injury, hydroxy-proline content, and collagen deposition of pulmonary tissue in BLM-induced PF mice and down-regulated the cytokine related to inflammation and fibrosis and PF expression on the mRNA and protein level in PF mice. To identify the mechanism of QLT, the Transcriptome was measured and the IL-17 signal pathway was screened out for further research. Further studies indicated that QLT reduced the mRNAs and protein levels of interleukin 17 (IL-17), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 5 (CXCL5), fos-like antigen 1 (FOSL1), matrix metalloproteinase-9 (MMP9), and amphiregulin (AREG), which are inflammation and fibrosis-related genes in the IL-17 signal pathway. The results indicated that the potential mechanism for QLT in the prevention of PF progression was by inhibiting inflammation resulting in the IL-17 signal pathway. Our study provides the novel scientific basis of QLT and represents new therapeutics for PF in clinical.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Ting Luo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dezheng Yuan
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jing Liu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Fu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jiali Yuan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
9
|
Qi-Long-Tian capsule alleviates pulmonary fibrosis development by modulating inflammatory response and gut microbiota. Funct Integr Genomics 2023; 23:64. [PMID: 36810971 DOI: 10.1007/s10142-023-00988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, and fibrotic interstitial lung disease with a high mortality rate. Qi-Long-Tian (QLT) capsule is an herbal formula with great potential for antifibrotic effects, consisting of San Qi (Notoginseng Radix et Rhizoma), Di Long [Pheretima aspergillum (E. Perrier)], and Hong Jingtian (Rhodiolae Crenulatae Radix et Rhizoma), and has been used in clinical practice for many years. To explore the relationship between the effects of Qi-Long-Tian capsule and gut microbiota of PF mice, pulmonary fibrosis model were established by tracheal drip injection of bleomycin. Thirty-six mice were randomly divided into 6 groups: control group (control), model group (model), QLT capsule low dose group (QL), QLT capsule medium dose group (QM), QLT capsule high dose group (QH), and pirfenidone group (PFD). After 21 days of treatment, after pulmonary function tests, the lung tissues, serums, and enterobacterial samples were collected for further analysis. HE staining and Masson's staining were used to detect changes as the main indicators of PF in each group, and the expression of hydroxyproline (HYP) related to collagen metabolism was detected by and alkaline hydrolysis method. qRT-PCR and ELISA were used to detect the mRNA and protein expressions of pro-inflammatory factors include interleukin 1β (IL-1β), interleukin 6 (IL-6), transforming growth factor β1 (TGF-β1), tumor necrosis factor α (TNF-α) in lung tissues and serums, and the inflammation-mediating factors include tight junction protein (ZO-1, Claudin, Occludin). ELISA was used to detect the protein expressions of secretory immunoglobulin A (sIgA), short-chain fatty acids (SCFAs), and lipopolysaccharide (LPS) in colonic tissues. 16sRNA gene sequencing was used to detect changes in the abundance and diversity of intestinal flora in the control, model, and QM groups, to search for differential genera, and analyze the correlation with inflammatory factors. QLT capsule effectively improved the status of pulmonary fibrosis and reduced HYP. In addition, QLT capsule significantly reduced the abnormal levels of pro-inflammatory factors, including IL-1β, IL-6, TNF-α, and TGF-β in lung tissue and serum, while improving the levels of pro-inflammatory related factors ZO-1, Claudin, Occludin, sIgA, SCFAs, and reducing LPS in the colon. The comparison between the alpha diversity and beta diversity in enterobacteria suggested that the composition of the gut flora in the control, model, and QLT capsule groups were different. QLT capsule significantly increased the relative abundance of Bacteroidia (which might limit the onset of inflammation) and decreased the relative abundance of Clostridia (which might promote inflammation). In addition, these two enterobacteria were closely associated with pro-inflammatory-related indicators and pro-inflammatory factors in PF. All these results suggest that QLT capsule intervenes in pulmonary fibrosis by regulating the differential genera of intestinal flora, increasing immunoglobulin secretion, repairing the intestinal mucosal barrier, reducing LPS entry into the blood, and decreasing inflammatory factor secretion in the serum, which in turn alleviates pulmonary inflammation. This study clarifies the therapeutic mechanism of QLT capsule in PF and provides a theoretical basis for it. It provides a theoretical basis for its further clinical application.
Collapse
|
10
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
11
|
Cordycepin ameliorates acute hypobaric hypoxia induced blood-brain barrier disruption, and cognitive impairment partly by suppressing the TLR4/NF-κB/MMP-9 pathway in the adult rats. Eur J Pharmacol 2022; 924:174952. [DOI: 10.1016/j.ejphar.2022.174952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
|