1
|
Budroni S, Taccone M, Stella M, Aprea S, Schiavetti F, Bardelli M, Lambert C, Rondini S, Weynants V, Contorni M, Wilkinson TMA, Brazzoli M, Rossi Paccani S. Cytokine Biomarkers of Exacerbations in Sputum From Patients With Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study. J Infect Dis 2024; 230:e1112-e1120. [PMID: 38836471 PMCID: PMC11566228 DOI: 10.1093/infdis/jiae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND We determined the relationships between cytokine expression in sputum and clinical data to characterize and understand chronic obstructive pulmonary disease (COPD) exacerbations in people with COPD. METHODS We measured 30 cytokines in 936 sputum samples, collected at stable state and exacerbation visits from 99 participants in the Acute Exacerbation and Respiratory InfectionS in COPD (AERIS) study (ClinicalTrials.gov NCT01360398). We determined their longitudinal expression and examined differential expression based on disease status or exacerbation type. RESULTS Of the cytokines, 17 were suitable for analysis. As for disease states, in exacerbation sputum samples, interleukin (IL) 17A, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 were significantly increased compared to stable state sputum samples, but a logistic mixed model could not predict disease state. As for exacerbation types, bacteria-associated exacerbations showed higher expression of IL-17A, TNF-α, IL-1β, and IL-1α. IL-1α, IL-1β, and TNF-α were identified as suitable biomarkers for bacteria-associated exacerbation. Bacteria-associated exacerbations also formed a cluster separate from other exacerbation types in principal component analysis. CONCLUSIONS Measurement of cytokines in sputum from COPD patients could help identify bacteria-associated exacerbations based on increased concentrations of IL-1α, IL-1β, or TNF-α. This finding may provide a point-of-care assessment to distinguish a bacterial exacerbation of COPD from other exacerbation types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Simona Rondini
- GSK, Siena, Italy
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | | | | |
Collapse
|
2
|
Pang J, Shi Y, Peng D, Cui L, Xu Y, Wang W, Hu Y, Yang Y, Wang J, Qin X, Zhang Y, Meng H, Wang D, Bai G, Yuan H, Liu J, Lv Z, Li Y, Cui Y, Wang W, Huang K, Corrigan CJ, Wang W, Chen Y, Ying S. Bacterial antigens and asthma: a comparative study of common respiratory pathogenic bacteria. J Asthma 2024; 61:1089-1102. [PMID: 38478043 DOI: 10.1080/02770903.2024.2330063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.
Collapse
Affiliation(s)
- Jie Pang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yifan Shi
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dan Peng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Hao Meng
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Bai
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Cheng ZX, Zhang J. Exploring the Role of Gut-Lung Interactions in COPD Pathogenesis: A Comprehensive Review on Microbiota Characteristics and Inflammation Modulation. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:311-325. [PMID: 38563747 PMCID: PMC11216226 DOI: 10.15326/jcopdf.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a paramount contributor to global morbidity and mortality. Over the past decade, the concept of the "gut-lung axis" has emerged, offering a lens through which to examine the intricate interplay between the host, microbiome, and respiratory diseases, including COPD. An expanding body of evidence underscores that the composition of both the gastrointestinal and respiratory microbiome deviates in COPD patients compared to healthy individuals, leading to distinct host immune responses and clinical manifestations. The objective of this review is to provide a concise overview of the role both gut and respiratory microbiome play in the development of COPD. This was accomplished by compiling current literature on the microbiome profile in stable and exacerbated cases of COPD, as well as exploring the biological mechanisms through a discussion of relevant experiments conducted on murine models. Hallmark characteristics of the microbial profile in COPD encompass reduced Prevotella species in the respiratory microbiome, culminating in a loss of anti-inflammatory protection, and diminished Bacteroidetes in the gut microbiome, leading to a decrease in protective short-chain fatty acids. The proliferation of Proteobacteria, particularly the Haemophilus species, Moraxellaspecies, and Pseudomonas species contribute to COPD pathologies via recognition of proinflammatory lipopolysaccharide via Toll-like receptors. As a consequence, deteriorated pulmonary function, enhanced severity, increased onset of exacerbations, and elevated mortality were observed.
Collapse
Affiliation(s)
- Zi-Xuan Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
- *PhD candidate
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
| |
Collapse
|
4
|
Luo L, Tang J, Du X, Li N. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med 2024; 225:107586. [PMID: 38460708 DOI: 10.1016/j.rmed.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease characterized by progressive airflow limitation and chronic inflammation. The progressive development and long-term repeated acute exacerbation of COPD make many patients still unable to control the deterioration of the disease after active treatment, and even eventually lead to death. An increasing number of studies have shown that the occurrence and development of COPD are closely related to the composition and changes of airway microbiome. This article reviews the interaction between COPD and airway microbiome, the potential mechanisms of interaction, and the treatment methods related to microbiome. We elaborated the internal correlation between airway microbiome and different stages of COPD, inflammatory endotypes, glucocorticoid and antibiotic treatment, analyze the pathophysiological mechanisms such as the "vicious cycle" hypothesis, abnormal inflammation-immune response of the host and the "natural selection" of COPD to airway microbiome, introduce the treatment of COPD related to microbiome and emphasize the predictive value of airway microbiome for the progression, exacerbation and prognosis of COPD, as well as the guiding role for clinical management of patients, in order to provide a new perspective for exploring the pathogenesis of COPD, and also provide clues and guidance for finding new treatment targets.
Collapse
Affiliation(s)
- Lingxin Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junli Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Na Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
5
|
Brettoni C, Muzzi A, Rondini S, Weynants V, Rossi Paccani S. Ex-vivo RNA expression analysis of vaccine candidate genes in COPD sputum samples. Respir Res 2023; 24:243. [PMID: 37798723 PMCID: PMC10552247 DOI: 10.1186/s12931-023-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a lung disease characterised by airflow-limiting inflammation and mucus production. Acute exacerbations are a major cause of COPD-related morbidity and mortality and are mostly associated with bacterial or viral infections. A vaccine targeting non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat), the main bacteria associated with exacerbations, was tested in a Phase 2 trial. We assessed "ex-vivo" expression of vaccine candidate and housekeeping genes pd, pe, pilA, gapA, ompP6 of NTHi, and uspA2, parE, polA of Mcat in sputum samples of COPD patients and determined whether expression of the vaccine candidate genes pd, pe, pilA (NTHi) and uspA2 (Mcat) differed between stable and exacerbation samples. METHODS A single-centre, prospective, observational cohort study was conducted where 123 COPD patients were seen on enrolment, followed monthly for 2 years, and reviewed after onset of acute exacerbations. We selected 69 patients with sputum samples positive for NTHi or Mcat by PCR during at least one stable and one exacerbation visit. mRNA was isolated from the sputum, and expression of NTHi and Mcat genes was analysed with RT-PCR. Statistical analyses compared mRNA concentrations between stable and exacerbation samples and in relationship to COPD severity and exacerbation frequency. RESULTS The vaccine candidate genes were variably expressed in sputum samples, suggesting they are expressed in the lung. Absolute and relative expression of all NTHi vaccine candidate genes and Mcat uspA2 were similar between exacerbation and stable samples. Expression of pd and pilA was slightly associated with the number of exacerbations in the year before enrolment, and uspA2 with the disease severity status at enrolment. CONCLUSIONS The NTHi-Mcat vaccine candidate genes were expressed in sputum samples, and each gene had a specific level of expression. No statistically significant differences in gene expression were detectable between stable and exacerbation samples. However, the history of COPD exacerbations was slightly associated with the expression of pd, pilA and uspA2. Trial registration NCT01360398 ( https://www. CLINICALTRIALS gov ).
Collapse
|
6
|
Liang W, Yang Y, Gong S, Wei M, Ma Y, Feng R, Gao J, Liu X, Tu F, Ma W, Yi X, Liang Z, Wang F, Wang L, Chen D, Shu W, Miller BE, Tal-Singer R, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Brightling CE, Chen R, Zhong N, Wang Z. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe 2023; 31:1054-1070.e9. [PMID: 37207649 DOI: 10.1016/j.chom.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Progressive lung function decline is a hallmark of chronic obstructive pulmonary disease (COPD). Airway dysbiosis occurs in COPD, but whether it contributes to disease progression remains unknown. Here, we show, through a longitudinal analysis of two cohorts involving four UK centers, that baseline airway dysbiosis in COPD patients, characterized by the enrichment of opportunistic pathogenic taxa, associates with a rapid forced expiratory volume in 1 s (FEV1) decline over 2 years. Dysbiosis associates with exacerbation-related FEV1 fall and sudden FEV1 fall at stability, contributing to long-term FEV1 decline. A third cohort in China further validates the microbiota-FEV1-decline association. Human multi-omics and murine studies show that airway Staphylococcus aureus colonization promotes lung function decline through homocysteine, which elicits a neutrophil apoptosis-to-NETosis shift via the AKT1-S100A8/A9 axis. S. aureus depletion via bacteriophages restores lung function in emphysema mice, providing a fresh approach to slow COPD progression by targeting the airway microbiome.
Collapse
Affiliation(s)
- Weijie Liang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mingyuan Wei
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Ruipei Feng
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fuyi Tu
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Wei Ma
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dandan Chen
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | | | | | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tom M A Wilkinson
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Rongchang Chen
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China; Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Nanshan Zhong
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Keir HR, Chalmers JD. COUNTERPOINT: Is Chronic Bacterial Infection Clinically Relevant in COPD? No. Chest 2022; 162:972-976. [PMID: 36344128 DOI: 10.1016/j.chest.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland.
| |
Collapse
|
8
|
Baker JM, Baba-Dikwa A, Shah R, Lea S, Singh D. Gallium protoporphyrin as an antimicrobial for non-typeable Haemophilus influenzae in COPD patients. Life Sci 2022; 305:120794. [PMID: 35835251 DOI: 10.1016/j.lfs.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
AIMS Colonisation with non-typeable Haemophilus influenzae (NTHi) is common in COPD. Iron is required by bacteria for nutrition. Gallium is imported into bacteria using iron import proteins. Gallium cannot fulfill key metabolic functions, causing bactericidal effects. We tested the efficacy of gallium compounds as antimicrobials against NTHi in hemin rich conditions, and their ability to reduce NTHi induced pro-inflammatory responses in macrophages. MAIN METHODS NTHi was cultured with the free iron analogue gallium nitrate (GaN) and heme iron analogue gallium protoporphyrin (GaPP) (0.5-4 μM; 24 h). Growth of NTHi reference strain (NCTC 12699) and 6 clinical isolates from COPD patients (including antibiotic resistant isolates) was assessed by optical density, and viability by Miles Misra. Monocyte derived macrophages (MDMs) were treated with GaPP before/after NTHi exposure. Viable intracellular NTHi was assessed by gentamicin protection assay. GaN or GaPP was added to NTHi cultures prior to culture with MDMs. Cytokine gene expression (qPCR) and protein secretion (ELISA) were measured. KEY FINDINGS NTHi growth and viability were reduced by GaPP but not GaN. GaPP inhibited growth of COPD isolates (4 μM: 87 % reduction). GaPP reduced intracellular viability of NTHi in macrophage infection models. MDM cytokine gene expression and protein secretion (TNF-α, IL-6 and CXCL8) in response to NTHi was reduced (82, 66 and 86 % for gene expression) when cultured with GaPP 4 μM. SIGNIFICANCE GaPP is an effective antimicrobial for NTHi while GaN showed no effect on growth or viability. Culture of NTHi with GaPP also reduced the pro-inflammatory cytokine response in MDMs.
Collapse
Affiliation(s)
- James M Baker
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Aisha Baba-Dikwa
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rajesh Shah
- Department of Thoracic Surgery, Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Simon Lea
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Galgani I, Annaratone M, Casula D, Di Maro G, Janssens M, Tasciotti A, Schwarz T, Ferguson M, Arora AK. Safety and immunogenicity of three doses of non-typeable Haemophilus influenzae-Moraxella catarrhalis (NTHi-Mcat) vaccine when administered according to two different schedules: a phase 2, randomised, observer-blind study. Respir Res 2022; 23:114. [PMID: 35509077 PMCID: PMC9069748 DOI: 10.1186/s12931-022-02019-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) infections are frequently associated with exacerbations of chronic obstructive pulmonary disease (COPD). Results were reported with a two-dose (0–2 months) schedule of an investigational AS01E-adjuvanted NTHi-Mcat vaccine containing three surface proteins from NTHi and one from Mcat. We evaluated the safety and immunogenicity of three NTHi-Mcat vaccine doses administered in two different schedules to adults with a smoking history (≥ 10 pack-years), immunologically representing the COPD population. Methods In this 18-month, randomised (1:1), observer-blind study with 6-month open follow-up, 200 healthy adults aged 40–80 years received NTHi-Mcat vaccine at 0–2–6 months and placebo at 12 months (0–2–6 group), or vaccine at 0–2–12 months and placebo at 6 months (0–2–12 group). Solicited and unsolicited adverse events (AEs) were recorded for 7 and 30 days, respectively, post-vaccination, and potential immune-mediated diseases (pIMDs) and serious AEs (SAEs) throughout the study. Immune responses were assessed. Results No safety concerns were identified with the third vaccine dose or overall. Most solicited AEs were mild/moderate. Unsolicited AEs were reported in 16%, 16.1% and 14.4% of participants in the 0–2–6 group post-dose 1, 2 and 3, respectively, and 20%, 20.4% and 9.7%, respectively, in the 0–2–12 group. In 24 months, SAEs were reported in 12 participants in the 0–2–6 group and 9 in the 0–2–12 group (18 events in each group). There were three deaths (unknown cause, 0–2–6 group; myocardial infarction, lung cancer in 0–2–12 group). pIMDs were reported in three participants in the 0–2–6 group (non-serious inflammatory bowel disease, gout, psoriasis) and three in the 0–2–12 group (serious ulcerative colitis, two with non-serious gout). The SAEs, deaths and pIMDs were considered not causally related to vaccination. Antigen-specific antibody concentrations were higher at 12 months post-dose 1 with the 0–2–6 schedule than with the 0–2–12 schedule and at 12 months post-dose 3 were similar between schedules, remaining higher than baseline. Conclusions No safety concerns were identified when the investigational NTHi-Mcat vaccine was administered via a 0–2–6 months or 0–2–12 months schedule to older adults with a smoking history. Persistent immune responses were observed after the third vaccine dose. Trial registrationhttps://clinicaltrials.gov/; NCT03443427, registered February 23, 2018. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02019-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tino Schwarz
- Institute of Laboratory Medicine and Vaccination Centre, Klinikum Würzburg Mitte, Campus Juliusspital, Würzburg, Germany
| | | | | |
Collapse
|
10
|
Schoonbroodt S, Ichanté JL, Boffé S, Devos N, Devaster JM, Taddei L, Rondini S, Arora AK, Pascal T, Malvaux L. Real-time PCR has advantages over culture-based methods in identifying major airway bacterial pathogens in chronic obstructive pulmonary disease: Results from three clinical studies in Europe and North America. Front Microbiol 2022; 13:1098133. [PMID: 36909845 PMCID: PMC10000296 DOI: 10.3389/fmicb.2022.1098133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 03/14/2023] Open
Abstract
Introduction We compared the performance of real-time PCR with culture-based methods for identifying bacteria in sputum samples from patients with chronic obstructive pulmonary disease (COPD) in three studies. Methods This was an exploratory analysis of sputum samples collected during an observational study of 127 patients (AERIS; NCT01360398), phase 2 study of 145 patients (NTHI-004; NCT02075541), and phase 2b study of 606 patients (NTHI-MCAT-002; NCT03281876). Bacteria were identified by culture-based microbiological methods in local laboratories using fresh samples or by real-time PCR in a central laboratory using frozen samples. Haemophilus influenzae positivity with culture was differentiated from H. haemolyticus positivity by microarray analysis or PCR. The feasibility of bacterial detection by culture-based methods on previously frozen samples was also examined in the NTHI-004 study. Results Bacterial detection results from both culture-based and PCR assays were available from 2,293 samples from AERIS, 974 from the NTHI-004 study, and 1736 from the NTHI-MCAT-002 study. Quantitative real-time PCR (qPCR) showed higher positivity rates than culture for H. influenzae (percentages for each study: 43.4% versus 26.2%, 47.1% versus 23.6%, 32.7% versus 10.4%) and Moraxella catarrhalis (12.9% versus 6.3%, 19.0% versus 6.0%, 15.5% versus 4.1%). In the NTHI-004 and NTHI-MCAT-002 studies, positivity rates were higher with qPCR for Streptococcus pneumoniae (15.6% versus 6.1%, 15.5% versus 3.8%); in AERIS, a lower rate with qPCR than with culture (11.0% versus 17.4%) was explained by misidentification of S. pseudopneumoniae/mitis isolates via conventional microbiological methods. Concordance analysis showed lowest overall agreement for H. influenzae (82.0%, 75.6%, 77.6%), due mainly to culture-negative/qPCR-positive samples, indicating lower sensitivity of the culture-based methods. The lowest positive agreement (culture-positive/qPCR-positive samples) was observed for S. pneumoniae (35.1%, 71.2%, 71.2%). Bacterial load values for each species showed a proportion of culture-negative samples with a load detected by qPCR; for some samples, the loads were in line with those observed in culture-positive samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. Discussion Real-time PCR on frozen sputum samples has enhanced sensitivity and specificity over culture-based methods, supporting its use for the identification of common respiratory bacterial species in patients with COPD.
Collapse
|