1
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Tang J, Dong W, Wang D, Deng Q, Guo H, Xiao G. Upregulation of PGC-1α expression by pioglitazone mediates prevention of sepsis-induced acute lung injury. Braz J Med Biol Res 2024; 57:e13235. [PMID: 38511769 PMCID: PMC10946242 DOI: 10.1590/1414-431x2024e13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1β, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.
Collapse
Affiliation(s)
- Jing Tang
- Department of Infectious Diseases, Ziyang First People's Hospital, Ziyang, China
| | - Wenzhu Dong
- Department of Infectious Diseases, Ziyang First People's Hospital, Ziyang, China
| | - Dan Wang
- Department of Infectious Diseases, Ziyang First People's Hospital, Ziyang, China
| | - Qin Deng
- Department of Infectious Diseases, Ziyang First People's Hospital, Ziyang, China
| | - Honggang Guo
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Guibao Xiao
- Department of Infectious Diseases, Ziyang First People's Hospital, Ziyang, China
| |
Collapse
|
3
|
Bai Q, Liu R, Quan C, Han X, Wang D, Wang C, Wang Z, Li L, Li L, Piao H, Song Y, Yan G. DEK deficiency suppresses mitophagy to protect against house dust mite-induced asthma. Front Immunol 2024; 14:1289774. [PMID: 38274803 PMCID: PMC10808738 DOI: 10.3389/fimmu.2023.1289774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Changlin Quan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Xue Han
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Dandan Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
4
|
Ito T, Ichikawa T, Yamada M, Hashimoto Y, Fujino N, Numakura T, Sasaki Y, Suzuki A, Takita K, Sano H, Kyogoku Y, Saito T, Koarai A, Tamada T, Sugiura H. CYP27A1-27-hydroxycholesterol axis in the respiratory system contributes to house dust mite-induced allergic airway inflammation. Allergol Int 2024; 73:151-163. [PMID: 37607853 DOI: 10.1016/j.alit.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND 27-Hydroxycholesterol (27-HC) derived from sterol 27-hydroxylase (CYP27A1) has pro-inflammatory biological activity and is associated with oxidative stress and chronic inflammation in COPD. However, the role of regulation of CYP27A1- 27-HC axis in asthma is unclear. This study aimed to elucidate the contribution of the axis to the pathophysiology of asthma. METHODS House dust mite (HDM) extract was intranasally administered to C57BL/6 mice and the expression of CYP27A1 in the airways was analyzed by immunostaining. The effect of pre-treatment with PBS or CYP27A1 inhibitors on the cell fraction in the bronchoalveolar lavage fluid (BALF) was analyzed in the murine model. In vitro, BEAS-2B cells were treated with HDM and the levels of CYP27A1 expression were examined. Furthermore, the effect of 27-HC on the expressions of E-cadherin and ZO-1 in the cells was analyzed. The amounts of RANTES and eotaxin from the 27-HC-treated cells were analyzed by ELISA. RESULTS The administration of HDM increased the expression of CYP27A1 in the airways of mice as well as the number of eosinophils in the BALF. CYP27A1 inhibitors ameliorated the HDM-induced increase in the number of eosinophils in the BALF. Treatment with HDM increased the expression of CYP27A1 in BEAS-2B cells. The administration of 27-HC to BEAS-2B cells suppressed the expression of E-cadherin and ZO-1, and augmented the production of RANTES and eotaxin. CONCLUSIONS The results of this study suggest that aeroallergen could enhance the induction of CYP27A1, leading to allergic airway inflammation and disruption of the airway epithelial tight junction through 27-HC production.
Collapse
Affiliation(s)
- Tatsunori Ito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Song MA, Kim JY, Gorr MW, Miller RA, Karpurapu M, Nguyen J, Patel D, Archer KJ, Pabla N, Shields PG, Wold LE, Christman JW, Chung S. Sex-specific lung inflammation and mitochondrial damage in a model of electronic cigarette exposure in asthma. Am J Physiol Lung Cell Mol Physiol 2023; 325:L568-L579. [PMID: 37697923 PMCID: PMC11068405 DOI: 10.1152/ajplung.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Matthew W Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Roy A Miller
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jackie Nguyen
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, Ohio, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - John W Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
6
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
7
|
Ragweed Major Allergen Amb a 11 Recombinant Production and Clinical Implications. Biomolecules 2023; 13:biom13010182. [PMID: 36671567 PMCID: PMC9855870 DOI: 10.3390/biom13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Ragweed pollen is highly allergenic and elicits type I hypersensitivity reactions in the exposed populations. Amb a 11 is a recently discovered component of this pollen, and its biological role in allergy is still being researched. In our study, ragweed allergy patients were recruited prospectively over a three-year period; a comprehensive questionnaire was administered, and sera were collected and stored. The production of recombinant Amb a 11 was achieved in parallel with patients' recruitment. The gene coding for mature protein was inserted in E. coli and in Sf9 Spodoptera frugiperda cells. The recombinant allergens (designated eAmb a 11 and iAmb a 11) were tested for His-tag presence in Western blot. IgE reactivity was evaluated in 150 patients' sera for both recombinant allergen forms in ELISA, with 5 positive sera being tested further by hRBL (humanized rat basophilic leukemia) hexosaminidase release assay. Both allergen forms were proven to be IgE-reactive His-tagged proteins, with an extensive overlap of positive sera (92 toward the former recombinant allergen, 100 toward the latter) and an overall Amb a 11 sensitization prevalence estimated at 68.67%. The hRBL mediator release assay revealed a significant, slightly weaker effect of recombinant allergens when compared with nAmb a 1. Sensitization to this major allergen appears to be associated with more severe asthma symptoms (OR = 4.71, 95% CI = 1.81-12.21). In conclusion, recombinant Amb a 11 is a bona fide allergen, which is IgE-reactive and an inducer of hRBL degranulation. It is an important IgE-reactive component from ragweed pollen, with high IgE sensitization prevalence in the sample population and allergenicity of the recombinant allergen comparable to Amb a 1.
Collapse
|
8
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|
9
|
Decreased expression of airway epithelial Axl is associated with eosinophilic inflammation in severe asthma. Allergol Int 2022; 71:383-394. [PMID: 35459569 DOI: 10.1016/j.alit.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Airway epithelium-derived cytokines are critical to provoke and perpetuate type 2 inflammation in asthma. Yet it is poorly understood how this epithelial cell-driven inflammatory response is negatively regulated. We previously reported that Axl receptor tyrosine kinase was expressed by basal cells in the airway epithelium and had a role in defining their stem cell identity. However, whether and how Axl regulates airway type 2 inflammation remains unknown. METHODS We performed immunofluorescence staining to compare Axl expression in airway epithelium between non-asthmatic subjects, mild-moderate asthma and severe asthma. We confirmed this result by interrogating public databases of global gene expression in endobronchial biopsies. We then quantified eosinophil numbers infiltrating into the trachea of wild-type or Axl-knockout mice that were intranasally treated with house dust mite extracts (HDM). Cell-based assays using siRNA targeting Axl were further performed to identify molecules involved in Axl-mediated regulation of inflammation. RESULTS Histological assessments and transcriptome analyses revealed decreases in protein and mRNA of Axl in airway basal cells of severe asthmatics. This reduction of Axl expression was correlated with infiltration of eosinophils and mast cells in severe asthmatics. Eosinophil infiltration was more evident in the trachea of Axl-knockout mice in response to repetitive HDM administration. siRNA-mediated knockdown of Axl increased mRNA and protein expression of granulocyte macrophage-colony stimulating factor (GM-CSF) in human bronchial epithelial cells. CONCLUSIONS Axl kinase expressed by basal cells may suppress excessive eosinophilic inflammation via inhibition of GM-CSF in the airway. Axl reduction has clinical implications for the pathogenesis of severe asthma.
Collapse
|
10
|
Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma. Chin Med J (Engl) 2022; 135:519-531. [PMID: 35170505 PMCID: PMC8920422 DOI: 10.1097/cm9.0000000000001983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma, the structure and molecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the airway epithelial barrier are reviewed.
Collapse
|
11
|
Lee PH, Park S, Lee YG, Choi SM, An MH, Jang AS. The Impact of Environmental Pollutants on Barrier Dysfunction in Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:850-862. [PMID: 34734504 PMCID: PMC8569032 DOI: 10.4168/aair.2021.13.6.850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Respiratory epithelial cells form a selective barrier between the outside environment and underlying tissues. Epithelial cells are polarized and form specialized cell-cell junctions, known as the apical junctional complex (AJC). Assembly and disassembly of the AJC regulates epithelial morphogenesis and remodeling processes. The AJC consists of tight and adherens junctions, functions as a barrier and boundary, and plays a role in signal transduction. Endothelial junction proteins play important roles in tissue integrity and vascular permeability, leukocyte extravasation, and angiogenesis. Air pollutants such as particulate matter, ozone, and biologic contaminants penetrate deep into the airways, reaching the bronchioles and alveoli before entering the bloodstream to trigger airway inflammation. Pollutants accumulating in the lungs exacerbate the symptoms of respiratory diseases, including asthma and chronic obstructive lung disease. Biological contaminants include bacteria, viruses, animal dander and cat saliva, house dust mites, cockroaches, and pollen. Allergic inflammation develops in tissues such as the lung and skin with large epithelial surface areas exposed to the environment. Barrier dysfunction in the lung allows allergens and environmental pollutants to activate the epithelium and produce cytokines that promote the induction and development of immune responses. In this article, we review the impact of environmental pollutants on the cell barrier in respiratory diseases.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Shinhee Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yun-Gi Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seon-Muk Choi
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min-Hyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
12
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
13
|
Correction to: PGC-1α regulates airway epithelial barrier dysfunction induced by house dust mite. Respir Res 2021; 22:78. [PMID: 33685440 PMCID: PMC7941742 DOI: 10.1186/s12931-021-01672-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|