1
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
2
|
Al-Dahimavi S, Safaralizadeh R, Khalaj-Kondori M. Evaluating the Serum Level of ACTH and Investigating the Expression of miR-26a, miR-34a, miR-155-5p, and miR-146a in the Peripheral Blood Cells of Multiple Sclerosis Patients. Biochem Genet 2024:10.1007/s10528-024-10909-z. [PMID: 39223335 DOI: 10.1007/s10528-024-10909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder affecting white and gray matter. This study aimed to investigate the association between clinical outcomes in MS patients and the levels of certain molecules in their serum, including ACTH, IL-17, and specific miRNAs: miR-26a, miR-34a, miR-155-5p, and miR-146a. Fifty healthy people and 75 blood samples from MS patients were selected. MS patients had higher expression levels of IL-17, miR-26a, miR-34a, and miR-146a compared to healthy individuals (p < 0.0001). There was no significant difference in miR-155-5p expression between the two groups (p = 0.203). MS patients also had higher serum levels of ACTH compared to the normal population (p < 0.0001). In MS patients, there was a negative correlation between IL-17 and miR-155-5p expression levels (p = 0.048, r = - 0.229). Similarly, a significant negative correlation was observed between ACTH and miR-155-5p in the control group (p = 0.044, r = - 0.286). The study's analysis revealed no significant difference in the expression of miR-155-5p between MS patients and normal individuals; the study's examination revealed that the expression level of IL-17, miR-26a, miR-34a, and miR-146a was higher in MS patients than in normal individuals.
Collapse
Affiliation(s)
- Sareh Al-Dahimavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Tang L, Zhou X, Guo A, Han L, Pan S. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 2024; 24:158-170. [PMID: 38310188 DOI: 10.1007/s12012-023-09822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.
Collapse
Affiliation(s)
- Ling Tang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiao Zhou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Silin Pan
- Heart Center, Qingdao Women and Children's Hospital, Shandong University, No.217 West Liaoyang Road, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Sun J, Zhang L, Cheng Q, Wu Y. Aberrant expression and regulatory role of histone deacetylase 9 in vascular endothelial cell injury in intracranial aneurysm. BIOMOLECULES & BIOMEDICINE 2024; 24:61-72. [PMID: 37573538 PMCID: PMC10787617 DOI: 10.17305/bb.2023.9364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Intracranial aneurysm (IA) is one of the most challenging cerebrovascular lesions for clinicians. The aim of this study was to investigate the abnormal expression and role of histone deacetylase 9 (HDAC9) in IA-associated injury of vascular endothelial cells (VECs). First, IA tissue and normal arterial tissue were collected and VECs were isolated from IA patients. The expression levels of HDAC9, microRNA (miR)-34a-5p, and vascular endothelial growth factor-A (VEGFA) were determined. Cell viability, proliferation, apoptosis, and migration were assessed by Cell Counting Kit-8 (CCK-8) assay, EdU staining, TUNEL staining, and transwell assay. The binding of miR-34a-5p to VEGFA was analyzed by the dual-luciferase assay, and the accumulation of HDAC9 and lysine histone acetylation at H3 (H3K9, H3K14, and H3K18) on the miR-34a-5p promoter was detected by the chromatin immunoprecipitation assay. The results showed that HDAC9 and VEGFA were increased and miR-34a-5p was decreased in IA tissues and cells. Silencing of HDAC9 inhibited apoptosis and increased viability, proliferation, and migration of VECs, whereas overexpression of HDAC9 exerted the opposite functions. HDAC9 accumulated at the miR-34a-5p promoter to decrease miR-34a-5p expression by reducing H3 locus-specific acetylation and further promoted VEGFA expression. Knockdown of miR-34a-5p or VEGFA overexpression reversed the protective role of HDAC9 silencing in VECs injury. In conclusion, our study suggests that HDAC9 may be a therapeutic target for IA.
Collapse
Affiliation(s)
- Jingwei Sun
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Langfeng Zhang
- Interventional Treatment Department, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Quanjiang Cheng
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yajun Wu
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
5
|
He YZG, Wang YX, Ma JS, Li RN, Wang J, Lian TY, Zhou YP, Yang HP, Sun K, Jing ZC. MicroRNAs and their regulators: Potential therapeutic targets in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107216. [PMID: 37699495 DOI: 10.1016/j.vph.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.
Collapse
Affiliation(s)
- Yang-Zhi-Ge He
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yi-Xuan Wang
- Laboratory Department of Qingzhou People's Hospital, Qingzhou 262500, Shandong, China
| | - Jing-Si Ma
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Ruo-Nan Li
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China
| | - Tian-Yu Lian
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao-Pu Yang
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Kai Sun
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
6
|
Wang D, Luo MY, Tian Y, Zhang J, Liang N, Li NP, Gong SX, Wang AP. Critical miRNAs in regulating pulmonary hypertension: A focus on Signaling pathways and therapeutic Targets. Anal Biochem 2023:115228. [PMID: 37393975 DOI: 10.1016/j.ab.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Pulmonary hypertension (PH) is complex disease as a result of obstructive pulmonary arterial remodeling, which in turn results in elevated pulmonary arterial pressure (PAP) and subsequent right ventricular heart failure, eventually leading to premature death. However, there is still a lack of a diagnostic blood-based biomarker and therapeutic target for PH. Because of the difficulty of diagnosis, new and more easily accessible prevention and treatment strategy are being explored. New target and diagnosis biomarkers should also allow for early diagnosis. In biology, miRNAs are short endogenous RNA molecules that are not coding. It is known that miRNAs can regulate gene expression and affect a variety of biological processes. Besides, miRNAs have been proven to be a crucial factor in PH pathogenesis. miRNAs have various effects on pulmonary vascular remodeling and are expressed differentially in various pulmonary vascular cells. Nowadays, it has been shown to be critical in the functions of different miRNAs in the pathogenesis of PH. Therefore, clarifying the mechanism of miRNAs regulating pulmonary vascular remodeling is of great importance to explore new therapeutic targets of PH and improve the survival qualify and time of patients. This review is focused on the role, mechanism, and potential therapeutic targets of miRNAs in PH and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
- Di Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Meng-Yi Luo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Nan-Ping Li
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China.
| |
Collapse
|
7
|
Yang HT, Wang G, Zhu PC, Xiao ZY. Silencing EIF3A ameliorates pulmonary arterial hypertension through HDAC1 and PTEN/PI3K/AKT pathway in vitro and in vivo. Exp Cell Res 2023; 426:113555. [PMID: 36921705 DOI: 10.1016/j.yexcr.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Pulmonary vascular remodeling caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the hallmark feature of pulmonary arterial hypertension (PAH). Eukaryotic initiation factor 3 subunit A (EIF3A) exhibited proliferative activity in multiple cell types. The present study investigated the role of EIF3A in the progression of PAH. A monocrotaline (MCT)-induced PAH rat model was constructed, and adeno-associated virus type 1 (AAV1) carrying EIF3A shRNA was intratracheally delivered to PAH rats to block EIF3A expression. PASMCs were isolated from rats and treated with PDGF-BB to simulate PASMC proliferation, and shRNA for EIF3 was conducted to investigate the mechanism behind the role of EIF3A in PASMC function in vitro. EIF3A expression was upregulated in pulmonary arteries, and EIF3A inhibition effectively improved pulmonary hypertension and right ventricular hypertrophy and suppressed MCT-induced vascular remodeling in vivo. In addition, we found that genetic knockdown of EIF3A reduced PDGF-triggered proliferation and arrested cell cycle, accompanied by downregulated proliferation-related protein expression in PASMCs. Mechanistically, the histone deacetylase 1 (HDAC1)-mediated PTEN/PI3K/AKT pathway was recognized as a primary mechanism in PAH progression. Silencing EIF3A decreased HDAC1 expression, and further inhibited the excessive proliferation of PASMCs by increasing the phosphatase and tension homolog (PTEN) expression and suppressing the AKT phosphorylation. Notably, HDAC1 expression reversed the effect of silencing EIF3A on PAH and PTEN/PI3K/AKT pathway. Collectively, silencing EIF3A improved PAH by decreasing PASMC proliferation through the HDAC1-mediated PTEN/PI3K/AKT pathway. These findings suggest that targeting EIF3A may represent a potential approach for the treatment of PAH.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Dalian Medical University, Dalian, Liaoning, China; Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guan Wang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng-Cheng Zhu
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhao-Yang Xiao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
8
|
Bontempi G, Terri M, Garbo S, Montaldo C, Mariotti D, Bordoni V, Valente S, Zwergel C, Mai A, Marchetti A, Domenici A, Menè P, Battistelli C, Tripodi M, Strippoli R. Restoration of WT1/miR-769-5p axis by HDAC1 inhibition promotes MMT reversal in mesenchymal-like mesothelial cells. Cell Death Dis 2022; 13:965. [PMID: 36396626 PMCID: PMC9672101 DOI: 10.1038/s41419-022-05398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Histone acetylation/deacetylation play an essential role in modifying chromatin structure and in regulating cell plasticity in eukaryotic cells. Therefore, histone deacetylase (HDAC) pharmacological inhibitors are promising tools in the therapy of fibrotic diseases and in cancer. Peritoneal fibrosis is a pathological process characterized by many cellular and molecular alterations, including the acquisition of invasive/pro-fibrotic abilities by mesothelial cells (MCs) through induction of mesothelial to mesenchymal transition (MMT). The aim of this study was to characterize the molecular mechanism of the antifibrotic role of HDAC1 inhibition. Specifically, treatment with MS-275, an HDAC1-3 inhibitor previously known to promote MMT reversal, induced the expression of several TGFBRI mRNA-targeting miRNAs. Among them, miR-769-5p ectopic expression was sufficient to promote MMT reversal and to limit MC migration and invasion, whereas miR-769-5p silencing further enhanced mesenchymal gene expression. These results were confirmed by HDAC1 genetic silencing. Interestingly, miR-769-5p silencing maintained mesenchymal features despite HDAC1 inhibition, thus indicating that it is necessary to drive MMT reversal induced by HDAC1 inhibition. Besides TGFBRI, miR-769-5p was demonstrated to target SMAD2/3 and PAI-1 expression directly. When analyzing molecular mechanisms underlying miR-769-5p expression, we found that the transcription factor Wilms' tumor 1 (WT1), a master gene controlling MC development, binds to the miR-769-5p promoter favoring its expression. Interestingly, both WT1 expression and binding to miR-769-5p promoter were increased by HDAC1 inhibition and attenuated by TGFβ1 treatment. Finally, we explored the significance of these observations in the cell-to-cell communication: we evaluated the ability of miR-769-5p to be loaded into extracellular vesicles (EVs) and to promote MMT reversal in recipient mesenchymal-like MCs. Treatment of fibrotic MCs with EVs isolated from miR-769-5p over-expressing MCs promoted the down-regulation of specific mesenchymal targets and the reacquisition of an epithelial-like morphology. In conclusion, we highlighted an HDAC1-WT1-miR-769-5p axis potentially relevant for therapies aimed at counteracting organ fibrosis.
Collapse
Affiliation(s)
- Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Claudia Montaldo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Davide Mariotti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Veronica Bordoni
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00189, Rome, Italy
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00189, Rome, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.
| |
Collapse
|
9
|
Monocrotaline-Induced Pulmonary Arterial Hypertension and Bosentan Treatment in Rats: Focus on Plasma and Erythrocyte Parameters. Pharmaceuticals (Basel) 2022; 15:ph15101227. [PMID: 36297339 PMCID: PMC9611329 DOI: 10.3390/ph15101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of our study was to contribute to the characterization of monocrotaline-induced pulmonary arterial hypertension (PAH) in a rat model, with emphasis on the renin-angiotensin-aldosterone system, parameters of oxidative stress, the activity of matrix metalloproteinases, and erythrocyte parameters. Moreover, we aimed to analyze the effects of bosentan. Experiments were performed on 12-week-old male Wistar rats randomly assigned to 3 groups: control, monocrotaline-treated (60 mg/kg), and monocrotaline combined with bosentan (300 mg/kg/day). Our study confirmed the well-known effects of monocrotaline administration on lungs and the right ventricle, as well as pulmonary arterial pressure. In addition, we observed activation of the alternative pathway of the renin-angiotensin system, namely an increase in angiotensin (Ang) 1-7 and Ang 1-5 together with an increase in Ang I, but without any change in Ang II level, and downregulation of aldosterone 4 weeks after monocrotaline administration. For the first time, modifications of erythrocyte Na,K-ATPase enzyme kinetics were demonstrated as well. Our observations do not support data obtained in PAH patients showing an increase in Ang II levels, increase in oxidative stress, and deterioration in RBC deformability. Although bosentan primarily targets the vascular smooth muscle, our study confirmed its antioxidant effect. The obtained data suggest that besides the known action of bosentan, it decreases heart rate and increases erythrocyte deformability, and hence could have a beneficial hemodynamic effect in the PAH condition.
Collapse
|
10
|
Zhou Y, Li H, Wang L. Mechanism of miR-34a in the metabolism of extracellular matrix in fibroblasts of stress urinary incontinence via Nampt-mediated autophagy. Cell Stress Chaperones 2022; 27:369-381. [PMID: 35666377 PMCID: PMC9346036 DOI: 10.1007/s12192-022-01278-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023] Open
Abstract
Stress urinary incontinence (SUI) is a troublesome hygienic problem that afflicts the female population and is associated with extracellular matrix (ECM). Herein, we investigated the effects of microRNA (miR)-34a on ECM metabolism in fibroblasts of SUI via mediating nicotinamide phosphoribosyl transferase (Nampt/NAmPRTase) and hope to find novel insights in the treatment of SUI. Firstly, the anterior vaginal wall tissues of SUI patients and the female vaginal wall fibroblasts (FVWFs) of non-SUI subjects were collected and identified. Then, FVWFs were treated with 10 ng/mL of interleukin 1 beta (IL-1β) to establish SUI cell models. Subsequently, miR-34a and Nampt expressions in both types of cells were detected via RT-qPCR. It was found that miR-34a was poorly expressed, while Nampt was highly expressed in SUI. Subsequently, IL-1β-treated FVWFs were transfected with miR-34a-mimic and pcDNA3.1-Nampt, respectively. Thereafter, RT-qPCR and Western blot detected that miR-34a overexpression increased COL1A, ACAN, and TIMP-1; decreased MMP-2 and MMP-9; and elevated LC3 II/I ratio, Beclin-1 expression, and the autophagosome number in IL-1β-treated FVWFs, while Nampt upregulation reversed the above outcomes. Then, dual-luciferase reporter gene assay detected that Nampt is a downstream target of miR-34a. Together, miR-34a overexpression promoted autophagy, inhibited ECM degradation in IL-1β-treated FVWFs, and ameliorated SUI via suppressing Nampt.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gynecology, Zhengzhou Central Hospital of Zhengzhou University, No. 195 Middle Tongbai Road, Zhengzhou, 450000, Henan Province, China
| | - Hongjuan Li
- Department of Gynecology, Zhengzhou Central Hospital of Zhengzhou University, No. 195 Middle Tongbai Road, Zhengzhou, 450000, Henan Province, China.
| | - Lu Wang
- Department of Gynecology, Zhengzhou Central Hospital of Zhengzhou University, No. 195 Middle Tongbai Road, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
11
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|