1
|
Lee RJ, Adappa ND, Palmer JN. Akt activator SC79 stimulates antibacterial nitric oxide generation in human nasal epithelial cells in vitro. Int Forum Allergy Rhinol 2024; 14:1147-1162. [PMID: 38197521 PMCID: PMC11219270 DOI: 10.1002/alr.23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND The role of Akt in nasal immunity is unstudied. Akt phosphorylates and activates endothelial nitric oxide synthase (eNOS) expressed in epithelial ciliated cells. Nitric oxide (NO) production by ciliated cells can have antibacterial and antiviral effects. Increasing nasal NO may be a useful antipathogen strategy in chronic rhinosinusitis (CRS). We previously showed that small-molecule Akt activator SC79 induces nasal cell NO production and suppresses IL-8 via the transcription factor Nrf-2. We hypothesized that SC79 NO production may additionally have antibacterial effects. METHODS NO production was measured using fluorescent dye DAF-FM. We tested effects of SC79 during co-culture of Pseudomonas aeruginosa with primary nasal epithelial cells, using CFU counting and live-dead staining to quantify bacterial killing. Pharmacology determined the mechanism of SC79-induced NO production and tested dependence on Akt. RESULTS SC79 induced dose-dependent, Akt-dependent NO production in nasal epithelial cells. The NO production required eNOS and Akt. The NO released into the airway surface liquid killed P. aeruginosa. No toxicity (LDH release) or inflammatory effects (IL8 transcription) were observed over 24 h. CONCLUSIONS Together, these data suggest multiple immune pathways are stimulated by SC79, with antipathogen effects. This in vitro pilot study suggests that a small-molecule Akt activator may have clinical utility in CRS or respiratory other infection settings, warranting future in vivo studies.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
- Department of Physiology, University of Pennsylvania Perelman School of Medicine
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
2
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
3
|
Lee RJ, Adappa ND, Palmer JN. Effects of Akt Activator SC79 on Human M0 Macrophage Phagocytosis and Cytokine Production. Cells 2024; 13:902. [PMID: 38891035 PMCID: PMC11171788 DOI: 10.3390/cells13110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Akt is an important kinase in metabolism. Akt also phosphorylates and activates endothelial and neuronal nitric oxide (NO) synthases (eNOS and nNOS, respectively) expressed in M0 (unpolarized) macrophages. We showed that e/nNOS NO production downstream of bitter taste receptors enhances macrophage phagocytosis. In airway epithelial cells, we also showed that the activation of Akt by a small molecule (SC79) enhances NO production and increases levels of nuclear Nrf2, which reduces IL-8 transcription during concomitant stimulation with Toll-like receptor (TLR) 5 agonist flagellin. We hypothesized that SC79's production of NO in macrophages might likewise enhance phagocytosis and reduce the transcription of some pro-inflammatory cytokines. Using live cell imaging of fluorescent biosensors and indicator dyes, we found that SC79 induces Akt activation, NO production, and downstream cGMP production in primary human M0 macrophages. This was accompanied by a reduction in IL-6, IL-8, and IL-12 production during concomitant stimulation with bacterial lipopolysaccharide, an agonist of pattern recognition receptors including TLR4. Pharmacological inhibitors suggested that this effect was dependent on Akt and Nrf2. Together, these data suggest that several macrophage immune pathways are regulated by SC79 via Akt. A small-molecule Akt activator may be useful in some infection settings, warranting future in vivo studies.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| |
Collapse
|
4
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Feng Y, Lu H, Hu J, Zheng B, Zhang Y. R-phycocyanin from porphyra haitanensis influences drosophila melanogaster lifespan in a sex-specific manner. Int J Biol Macromol 2023; 248:125914. [PMID: 37481178 DOI: 10.1016/j.ijbiomac.2023.125914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Aging has become a major global public health challenge. Our previous research showed that R-phycocyanin (R-PC) possessed anti-aging activity. Notably, studies already revealed that gender may affect the responses to the anti-aging drug. Therefore, it is worth investigating whether the anti-aging effects and their underlying molecular mechanisms of R-PC differ between genders. Firstly, R-PC was isolated from porphyra haitanensis and its anti-aging mechanisms were explored using the nature aging male and female drosophila melanogaster as model. Next, the regulation pathway of longevity was analyzed by KEGG pathway analysis. The longevity pathways-associated molecules were also examined to explore anti-aging mechanisms of R-PC. The results showed that R-PC increased AMPK activity, thus enhanced the key regulatory factors of autophagy (Atg1, Atg8, Atg5), and consequently induced autophagy. Hence, the longevity activity of R-PC life was related with AMPK/mTOR/S6K autophagic signaling pathways in aging female drosophila melanogaster. Meanwhile, R-PC significantly down-regulated TNF-α, MMP3, IL-1β, IL-6, IL-8 expression levels, and the anti-inflammatory and longevity was associated with R-PC-induced regulation of pI3k/AKT/FOXO3 signaling pathway in aging male drosophila melanogaster. These finding showed that R-PC from porphyra haitanensis might exert the anti-aging actions via different mechanisms in male and female drosophila melanogaste.
Collapse
Affiliation(s)
- Yanyu Feng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
| | - Hanjin Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
6
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
McCord JM, Gao B, Hybertson BM. The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants (Basel) 2023; 12:antiox12020366. [PMID: 36829925 PMCID: PMC9952775 DOI: 10.3390/antiox12020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nrf2 is a major transcription factor that significantly regulates-directly or indirectly-more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of "one-drug, one-target".
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Nrf2 regulates the expression of NOX1 in TNF-α-induced A549 cells. Allergol Immunopathol (Madr) 2023; 51:54-62. [PMID: 36617822 DOI: 10.15586/aei.v51i1.732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023]
Abstract
Acute lung injury causes severe inflammation and oxidative stress in lung tissues. In this study, we analyzed the potential regulatory role of nuclear factor erythroid-2-related factor 2 (Nrf2) on NADPH oxidase 1 (NOX1) in tumor necrosis factor-α (TNF-α)-induced inflammation and oxidative stress in human type II alveolar epithelial cells. In this study, A549 cells were transfected with Nrf2 siRNA and overexpression vectors for 6 h before being induced by TNF-α for 24 h. TNF-α upregulated the expression of NOX1 and Nrf2 in A549 cells. Furthermore, overexpression of Nrf2 could reduce TNF-α-induced NF-κB mRNA and protein expression after transfection with the Nrf2 siRNA vector, and the levels of IL-6, IL-8, ROS, and malondialdehyde (MDA) in TNF-α-induced A549 cells increased, while the level of total antioxidation capability (T-AOC) decreased. On the other hand, the overexpression of Nrf2 decreased the levels of IL-6, IL-8, ROS, and MDA, while increasing T-AOC. The mRNA and protein levels of NOX1 were dramatically increased by TNF-α, while those changes were notably suppressed by Nrf2 overexpression. Further studies demonstrated that Nrf2 suppressed NOX1 transcription by binding to the -1199 to -1189 bp (ATTACACAGCA) region of the NOX1 promoter in TNF-α-stimulated A549 cells. Our study suggests that Nrf2 may bind to and regulate NOX1 expression to antagonize TNF-α-induced inflammatory reaction and oxidative stress in A549 cells.
Collapse
|
9
|
Carey RM, Palmer JN, Adappa ND, Lee RJ. Loss of CFTR function is associated with reduced bitter taste receptor-stimulated nitric oxide innate immune responses in nasal epithelial cells and macrophages. Front Immunol 2023; 14:1096242. [PMID: 36742335 PMCID: PMC9890060 DOI: 10.3389/fimmu.2023.1096242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction Bitter taste receptors (T2Rs) are G protein-coupled receptors identified on the tongue but expressed all over the body, including in airway cilia and macrophages, where T2Rs serve an immune role. T2R isoforms detect bitter metabolites (quinolones and acyl-homoserine lactones) secreted by gram negative bacteria, including Pseudomonas aeruginosa, a major pathogen in cystic fibrosis (CF). T2R activation by bitter bacterial products triggers calcium-dependent nitric oxide (NO) production. In airway cells, the NO increases mucociliary clearance and has direct antibacterial properties. In macrophages, the same pathway enhances phagocytosis. Because prior studies linked CF with reduced NO, we hypothesized that CF cells may have reduced T2R/NO responses, possibly contributing to reduced innate immunity in CF. Methods Immunofluorescence, qPCR, and live cell imaging were used to measure T2R localization, calcium and NO signaling, ciliary beating, and antimicrobial responses in air-liquid interface cultures of primary human nasal epithelial cells and immortalized bronchial cell lines. Immunofluorescence and live cell imaging was used to measure T2R signaling and phagocytosis in primary human monocyte-derived macrophages. Results Primary nasal epithelial cells from both CF and non-CF patients exhibited similar T2R expression, localization, and calcium signals. However, CF cells exhibited reduced NO production also observed in immortalized CFBE41o- CF cells and non-CF 16HBE cells CRISPR modified with CF-causing mutations in the CF transmembrane conductance regulator (CFTR). NO was restored by VX-770/VX-809 corrector/potentiator pre-treatment, suggesting reduced NO in CF cells is due to loss of CFTR function. In nasal cells, reduced NO correlated with reduced ciliary and antibacterial responses. In primary human macrophages, inhibition of CFTR reduced NO production and phagocytosis during T2R stimulation. Conclusions Together, these data suggest an intrinsic deficiency in T2R/NO signaling caused by loss of CFTR function that may contribute to intrinsic susceptibilities of CF patients to P. aeruginosa and other gram-negative bacteria that activate T2Rs.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Carey RM, Hariri BM, Adappa ND, Palmer JN, Lee RJ. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells 2022; 11:1478. [PMID: 35563784 PMCID: PMC9101439 DOI: 10.3390/cells11091478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors (GPCRs) expressed in various cell types including ciliated airway epithelial cells and macrophages. T2Rs in these two innate immune cell types are activated by bitter products, including those secreted by Pseudomonas aeruginosa, leading to Ca2+-dependent activation of endothelial nitric oxide (NO) synthase (eNOS). NO enhances mucociliary clearance and has direct antibacterial effects in ciliated epithelial cells. NO also increases phagocytosis by macrophages. Using biochemistry and live-cell imaging, we explored the role of heat shock protein 90 (HSP90) in regulating T2R-dependent NO pathways in primary sinonasal epithelial cells, primary monocyte-derived macrophages, and a human bronchiolar cell line (H441). Immunofluorescence showed that H441 cells express eNOS and T2Rs and that the bitter agonist denatonium benzoate activates NO production in a Ca2+- and HSP90-dependent manner in cells grown either as submerged cultures or at the air-liquid interface. In primary sinonasal epithelial cells, we determined that HSP90 inhibition reduces T2R-stimulated NO production and ciliary beating, which likely limits pathogen clearance. In primary monocyte-derived macrophages, we found that HSP-90 is integral to T2R-stimulated NO production and phagocytosis of FITC-labeled Escherichia coli and pHrodo-Staphylococcus aureus. Our study demonstrates that HSP90 serves as an innate immune modulator by regulating NO production downstream of T2R signaling by augmenting eNOS activation without impairing upstream Ca2+ signaling. These findings suggest that HSP90 plays an important role in airway antibacterial innate immunity and may be an important target in airway diseases such as chronic rhinosinusitis, asthma, or cystic fibrosis.
Collapse
Affiliation(s)
- Ryan M. Carey
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|