1
|
Panda B, Momin A, Devabattula G, Shrilekha C, Sharma A, Godugu C. Peptidyl arginine deiminase-4 inhibitor ameliorates pulmonary fibrosis through positive regulation of developmental endothelial locus-1. Int Immunopharmacol 2024; 140:112861. [PMID: 39106716 DOI: 10.1016/j.intimp.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Recurring lung injury, chronic inflammation, aberrant tissue repair and impaired tissue remodelling contribute to the pathogenesis of pulmonary fibrosis (PF). Neutrophil extracellular traps (NETs) are released by activated neutrophils to trap, immobilise and kill invading pathogen and is facilitated by peptidyl arginine deiminase-4 (PAD-4). Dysregulated NETs release and abnormal PAD-4 activation plays a crucial role in activating pro-fibrotic events in PF. Developmental endothelial locus-1 (Del-1), expressed by the endothelial cells of lungs and brain acts as an endogenous inhibitor of inflammation and fibrosis. We have hypothesised that PAD-4 inhibitor exerts anti-inflammatory and anti-fibrotic effects in mice model of PF. We have also hypothesised by PAD-4 regulated the transcription of Del-1 through co-repression and its inhibition potentiates anti-fibrotic effects of Del-1. In our study, the PAD-4 inhibitor chloro-amidine (CLA) demonstrated anti-NETotic and anti-inflammatory effects in vitro in differentiated HL-60 cells. In a bleomycin-induced PF mice model, CLA administration in two doses (3 mg/kg, I.P and 10 mg/kg, I.P) improved lung function, normalized bronchoalveolar lavage fluid parameters, and attenuated fibrotic events, including markers of extracellular matrix and epithelial-mesenchymal transition. Histological analyses confirmed the restoration of lung architecture and collagen deposition with CLA treatment. ELISA, IHC, IF, RT-PCR, and immunoblot analysis supported the anti-NETotic effects of CLA. Furthermore, BLM-induced PF reduced Del-1 and p53 expression, which was normalized by CLA treatment. These findings suggest that inhibition of PAD-4 results in amelioration of PF in animal model and may involve modulation of Del-1 and p53 pathways, warranting further investigation.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Geetanjali Devabattula
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chilvery Shrilekha
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Anamika Sharma
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
2
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul A, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic networks and related genetic variants associated with smoking and chronic obstructive pulmonary disease. BMC Genomics 2024; 25:825. [PMID: 39223457 PMCID: PMC11370252 DOI: 10.1186/s12864-024-10619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. METHODS Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed a genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. RESULTS We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. CONCLUSIONS In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Weixuan Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Niles Gilmore
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farnoush Banaei-Kashani
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | | | - Leslie A Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
3
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul AW, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic Networks and Related Genetic Variants Associated with Smoking and Chronic Obstructive Pulmonary Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303069. [PMID: 38464285 PMCID: PMC10925350 DOI: 10.1101/2024.02.26.24303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Thao Vu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Weixuan Liu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Niles Gilmore
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
4
|
Kwak N, Lee KH, Woo J, Kim J, Park J, Lee CH, Yoo CG. Del-1 Plays a Protective Role against COPD Development by Inhibiting Inflammation and Apoptosis. Int J Mol Sci 2024; 25:1955. [PMID: 38396634 PMCID: PMC10888117 DOI: 10.3390/ijms25041955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known. We investigated the role of Del-1 in the pathogenesis of COPD. Del-1 protein expression was decreased in the lungs of COPD patients, especially in epithelial cells and alveolar macrophages. In contrast to human lung tissue, Del-1 expression was upregulated in lung tissue from mice treated with cigarette smoke extracts (CSE). Overexpression of Del-1 significantly suppressed IL-8 release and apoptosis in CSE-treated epithelial cells. In contrast, knockdown of Del-1 enhanced IL-8 release and apoptosis. In macrophages, overexpression of Del-1 significantly suppressed inflammatory cytokine release, and knockdown of Del-1 enhanced it. This anti-inflammatory effect was mediated by inhibiting the phosphorylation and acetylation of NF-κB p65. Nuclear factor erythroid 2-related factor 2 (Nrf2) activators, such as quercetin, resveratrol, and sulforaphane, increased Del-1 in both cell types. These results suggest that Del-1, mediated by Nrf2, plays a protective role against the pathogenesis of COPD, at least in part through anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jiyeon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|