1
|
Spatenkova V, Mlcek M, Mejstrik A, Cisar L, Kuriscak E. Standard versus individualised positive end-expiratory pressure (PEEP) compared by electrical impedance tomography in neurocritical care: a pilot prospective single centre study. Intensive Care Med Exp 2024; 12:67. [PMID: 39103646 DOI: 10.1186/s40635-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Individualised bedside adjustment of mechanical ventilation is a standard strategy in acute coma neurocritical care patients. This involves customising positive end-expiratory pressure (PEEP), which could improve ventilation homogeneity and arterial oxygenation. This study aimed to determine whether PEEP titrated by electrical impedance tomography (EIT) results in different lung ventilation homogeneity when compared to standard PEEP of 5 cmH2O in mechanically ventilated patients with healthy lungs. METHODS In this prospective single-centre study, we evaluated 55 acute adult neurocritical care patients starting controlled ventilation with PEEPs close to 5 cmH2O. Next, the optimal PEEP was identified by EIT-guided decremental PEEP titration, probing PEEP levels between 9 and 2 cmH2O and finding the minimal amount of collapse and overdistension. EIT-derived parameters of ventilation homogeneity were evaluated before and after the PEEP titration and after the adjustment of PEEP to its optimal value. Non-EIT-based parameters, such as peripheral capillary Hb saturation (SpO2) and end-tidal pressure of CO2, were recorded hourly and analysed before PEEP titration and after PEEP adjustment. RESULTS The mean PEEP value before titration was 4.75 ± 0.94 cmH2O (ranging from 3 to max 8 cmH2O), 4.29 ± 1.24 cmH2O after titration and before PEEP adjustment, and 4.26 ± 1.5 cmH2O after PEEP adjustment. No statistically significant differences in ventilation homogeneity were observed due to the adjustment of PEEP found by PEEP titration. We also found non-significant changes in non-EIT-based parameters following the PEEP titration and subsequent PEEP adjustment, except for the mean arterial pressure, which dropped statistically significantly (with a mean difference of 3.2 mmHg, 95% CI 0.45 to 6.0 cmH2O, p < 0.001). CONCLUSION Adjusting PEEP to values derived from PEEP titration guided by EIT does not provide any significant changes in ventilation homogeneity as assessed by EIT to ventilated patients with healthy lungs, provided the change in PEEP does not exceed three cmH2O. Thus, a reduction in PEEP determined through PEEP titration that is not greater than 3 cmH2O from an initial value of 5 cmH2O is unlikely to affect ventilation homogeneity significantly, which could benefit mechanically ventilated neurocritical care patients.
Collapse
Affiliation(s)
- Vera Spatenkova
- Neurocenter, Neurointensive Care Unit, Regional Hospital Liberec, Husova 357/10, 460 01, Liberec, Czech Republic.
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic.
- Department of Anaesthesia and Intensive Care, Third Faculty of Medicine, Charles University, Srobarova 50, 100 34, Prague, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Mikulas Mlcek
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
| | - Alan Mejstrik
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
- 2nd Department of Medicine-Department of Cardiovascular Medicine, Charles University in Prague, U nemocnice 2, 128 08, Prague, Czech Republic
| | - Lukas Cisar
- Technical Department, Regional Hospital Liberec, Husova 357/10, 460 01, Liberec, Czech Republic
| | - Eduard Kuriscak
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague, Czech Republic
| |
Collapse
|
2
|
Franchineau G, Jonkman AH, Piquilloud L, Yoshida T, Costa E, Rozé H, Camporota L, Piraino T, Spinelli E, Combes A, Alcala GC, Amato M, Mauri T, Frerichs I, Brochard LJ, Schmidt M. Electrical Impedance Tomography to Monitor Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2024; 209:670-682. [PMID: 38127779 DOI: 10.1164/rccm.202306-1118ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.
Collapse
Affiliation(s)
- Guillaume Franchineau
- Service de Medecine Intensive Reanimation, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eduardo Costa
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Hadrien Rozé
- Department of Thoraco-Abdominal Anesthesiology and Intensive Care, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
- Réanimation Polyvalente, Centre Hospitalier Côte Basque, Bayonne, France
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Department of Adult Critical Care, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Thomas Piraino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alain Combes
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| | - Glasiele C Alcala
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Marcelo Amato
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Kiel, Germany; and
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schmidt
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Widing H, Pellegrini M, Chiodaroli E, Persson P, Hallén K, Perchiazzi G. Positive end-expiratory pressure limits inspiratory effort through modulation of the effort-to-drive ratio: an experimental crossover study. Intensive Care Med Exp 2024; 12:10. [PMID: 38311676 PMCID: PMC10838888 DOI: 10.1186/s40635-024-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND How assisted spontaneous breathing should be used during acute respiratory distress syndrome is questioned. Recent evidence suggests that high positive end-expiratory pressure (PEEP) may limit the risk of patient self-inflicted lung injury (P-SILI). The aim of this study was to assess the effects of PEEP on esophageal pressure swings, inspiratory drive, and the neuromuscular efficiency of ventilation. We hypothesized that high PEEP would reduce esophageal pressure swings, regardless of inspiratory drive changes, by modulating the effort-to-drive ratio (EDR). This was tested retrospectively in an experimental animal crossover study. Anesthetized pigs (n = 15) were subjected to mild to moderate lung injury and different PEEP levels were applied, changing PEEP from 0 to 15 cmH2O and back to 0 cmH2O in steps of 3 cmH2O. Airway pressure, esophageal pressure (Pes), and electric activity of the diaphragm (Edi) were collected. The EDR was calculated as the tidal change in Pes divided by the tidal change in Edi. Statistical differences were tested using the Wilcoxon signed-rank test. RESULTS Inspiratory esophageal pressure swings decreased from - 4.2 ± 3.1 cmH2O to - 1.9 ± 1.5 cmH2O (p < 0.01), and the mean EDR fell from - 1.12 ± 1.05 cmH2O/µV to - 0.24 ± 0.20 (p < 0.01) as PEEP was increased from 0 to 15 cmH2O. The EDR was significantly correlated to the PEEP level (rs = 0.35, p < 0.01). CONCLUSIONS Higher PEEP limits inspiratory effort by modulating the EDR of the respiratory system. These findings indicate that PEEP may be used in titration of the spontaneous impact on ventilation and in P-SILI risk reduction, potentially facilitating safe assisted spontaneous breathing. Similarly, ventilation may be shifted from highly spontaneous to predominantly controlled ventilation using PEEP. These findings need to be confirmed in clinical settings.
Collapse
Affiliation(s)
- Hannes Widing
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Ing 40, 3 tr, 751 85, Uppsala, Sweden.
- Department of Anesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden.
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Ing 40, 3 tr, 751 85, Uppsala, Sweden
- Department of Anesthesia, Operation, and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Ing 40, 3 tr, 751 85, Uppsala, Sweden
- Anesthesia and Intensive Care Medicine, Polo Universitario San Paolo, University of Milan, Milan, Italy
| | - Per Persson
- Department of Anesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katarina Hallén
- Department of Anesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Ing 40, 3 tr, 751 85, Uppsala, Sweden
- Department of Anesthesia, Operation, and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Frerichs I, Schädler D, Becher T. Setting positive end-expiratory pressure by using electrical impedance tomography. Curr Opin Crit Care 2024; 30:43-52. [PMID: 38085866 DOI: 10.1097/mcc.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review presents the principles and possibilities of setting positive end-expiratory pressure (PEEP) using electrical impedance tomography (EIT). It summarizes the major findings of recent studies where EIT was applied to monitor the effects of PEEP on regional lung function and to guide the selection of individualized PEEP setting. RECENT FINDINGS The most frequent approach of utilizing EIT for the assessment of PEEP effects and the PEEP setting during the time period from January 2022 till June 2023 was based on the analysis of pixel tidal impedance variation, typically acquired during stepwise incremental and/or decremental PEEP variation. The most common EIT parameters were the fraction of ventilation in various regions of interest, global inhomogeneity index, center of ventilation, silent spaces, and regional compliance of the respiratory system. The studies focused mainly on the spatial and less on the temporal distribution of ventilation. Contrast-enhanced EIT was applied in a few studies for the estimation of ventilation/perfusion matching. SUMMARY The availability of commercial EIT devices resulted in an increase in clinical studies using this bedside imaging technology in neonatal, pediatric and adult critically ill patients. The clinical interest in EIT became evident but the potential of this method in clinical decision-making still needs to be fully exploited.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | |
Collapse
|