1
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, Herrera A, Ivanova E, Cross M, Bossowski JP, Ding H, Hayashi M, Rajalingam S, Karakousi T, Sayin VI, Khanna KM, Wong KK, Wild R, Tsirigos A, Poirier JT, Rudin CM, Davidson SM, Koralov SB, Papagiannakopoulos T. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. SCIENCE ADVANCES 2024; 10:eadm9859. [PMID: 38536921 PMCID: PMC10971495 DOI: 10.1126/sciadv.adm9859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, NY 10016, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah E. LeBoeuf
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, New York University Langone Health, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Connie New
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenna L. E. Blum
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shih Ming Huang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian Bahamon
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Warren L. Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Burcu Karadal-Ferrena
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ellie Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cross
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jozef P. Bossowski
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hongyu Ding
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahith Rajalingam
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Triantafyllia Karakousi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Volkan I. Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41345 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Kamal M. Khanna
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Robert Wild
- Dracen Pharmaceuticals Inc., San Diego, CA 92121, USA
| | - Aristotelis Tsirigos
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10655, USA
| | - Shawn M. Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
2
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
3
|
He J, Yang X, Yang K, Xu H, Chen C, Wang J, Zeng J. TPST2-mediated receptor tyrosine sulfation enhances leukocidin cytotoxicity and S. aureus infection. Front Immunol 2023; 14:1242330. [PMID: 37671153 PMCID: PMC10476081 DOI: 10.3389/fimmu.2023.1242330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background An essential fact underlying the severity of Staphylococcus aureus (S. aureus) infection is the bicomponent leukocidins released by the pathogen to target and lyse host phagocytes through specific binding cell membrane receptors. However, little is known about the impact of post-transcriptional modification of receptors on the leukocidin binding. Method In this study, we used small interfering RNA library (Horizon/Dharmacon) to screen potential genes that affect leukocidin binding on receptors. The cell permeability was investigated through flow cytometry measuring the internalization of 4',6-diamidino-2-phenylindole. Expression of C5a anaphylatoxin chemotactic receptor 1 (C5aR1), sulfated C5aR1 in, and binding of 6x-His-tagged Hemolysin C (HlgC) and Panton-Valentine leukocidin (PVL) slow-component to THP-1 cell lines was detected and analyzed via flow cytometry. Bacterial burden and Survival analysis experiment was conducted in WT and myeloid TPST-cko C57BL/6N mice. Results After short hairpin RNA (shRNA) knockdown of TPST2 gene in THP-1, HL-60, and RAW264.7, the cytotoxicity of HlgAB, HlgCB, and Panton-Valentine leukocidin on THP-1 or HL-60 cells was decreased significantly, and the cytotoxicity of HlgAB on RAW264.7 cells was also decreased significantly. Knockdown of TPST2 did not affect the C5aR1 expression but downregulated cell surface C5aR1 tyrosine sulfation on THP-1. In addition, we found that the binding of HlgC and LukS-PV on cell surface receptor C5aR1 was impaired in C5aR1+TPST2- and C5aR1-TPST2- cells. Phagocyte knockout of TPST2 protects mice from S. aureus infection and improves the survival of mice infected with S. aureus. Conclusion These results indicate that phagocyte TPST2 mediates the bicomponent leukocidin cytotoxicity by promoting cell membrane receptor sulfation modification that facilitates its binding to leukocidin S component.
Collapse
Affiliation(s)
- Jie He
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kai Yang
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | | | | | | | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|