1
|
Tayyib NA, Ramaiah P, Alshahrani SH, Margiana R, Almalki SG, Kareem AK, Zabibah RS, Shbeer AM, Ali SHJ, Mustafa YF. Soluble receptor for advanced glycation end products (sRAGE) is associated with obesity rates: a systematic review and meta-analysis of cross-sectional study. BMC Endocr Disord 2023; 23:275. [PMID: 38102636 PMCID: PMC10722718 DOI: 10.1186/s12902-023-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Several studies have highlighted the possible positive effects of soluble receptor for advanced glycation end products (sRAGE) against obesity. However, due to their inconsistent results, this systematic review and meta-analysis aimed to quantitatively evaluate and critically review the results of studies evaluating the relationship between sRAGE with obesity among adult population. METHODS In the systematic search, the eligibility criteria were as follows: studies conducted with a cross-sectional design, included apparently healthy adults, adults with obesity, or obesity-related disorders, aged over 18 years, and evaluated the association between general or central obesity indices with sRAGE. RESULTS Our systematic search in electronic databases, including PubMed, Scopus, and Embase up to 26 October, 2023 yielded a total of 21,612 articles. After removing duplicates, screening the titles and abstracts, and reading the full texts, 13 manuscripts were included in the final meta-analysis. According to our results, those at the highest category of circulating sRAGE concentration with median values of 934.92 pg/ml of sRAGE, had 1.9 kg/m2 lower body mass index (BMI) (WMD: -1.927; CI: -2.868, -0.986; P < 0.001) compared with those at the lowest category of sRAGE concentration with median values of 481.88 pg/ml. Also, being at the highest sRAGE category with the median values of 1302.3 pg/ml sRAGE, was accompanied with near 6 cm lower waist circumference (WC) (WMD: -5.602; CI: -8.820, -2.383; P < 0.001 with 86.4% heterogeneity of I2) compared with those at the lowest category of sRAGE concentration with median values of 500.525 pg/ml. Individuals with obesity had significantly lower circulating sRAGE concentrations (WMD: -135.105; CI: -256.491, -13.72; P = 0.029; with 79.5% heterogeneity of I2). According to the subgrouping and meta-regression results, country and baseline BMI were possible heterogeneity sources. According to Begg's and Egger's tests and funnel plots results, there was no publication bias. CONCLUSION According to our results, higher circulating sRAGE concentrations was associated with lower BMI and WC among apparently healthy adults. Further randomized clinical trials are warranted for possible identification of causal associations.
Collapse
Affiliation(s)
- Nahla A Tayyib
- Vice Deanship, Postgraduate Research and Scientific Studies, Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
2
|
Delrue C, Delanghe JR, Speeckaert MM. The role of sRAGE in cardiovascular diseases. Adv Clin Chem 2023; 117:53-102. [PMID: 37973322 DOI: 10.1016/bs.acc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Advanced glycation end products (AGEs), by-products of glucose metabolism, have been linked to the emergence of cardiovascular disorders (CVD). AGEs can cause tissue damage in four different ways: (1) by altering protein function, (2) by crosslinking proteins, which makes tissue stiffer, (3) by causing the generation of free radicals, and (4) by activating an inflammatory response after binding particular AGE receptors, such as the receptor for advanced glycation end products (RAGE). It is suggested that the soluble form of RAGE (sRAGE) blocks ligand-mediated pro-inflammatory and oxidant activities by serving as a decoy. Therefore, several studies have investigated the possible anti-inflammatory and anti-oxidant characteristics of sRAGE, which may help lower the risk of CVD. According to the results of various studies, the relationship between circulating sRAGE, cRAGE, and esRAGE and CVD is inconsistent. To establish the potential function of sRAGE as a therapeutic target in the treatment of cardiovascular illnesses, additional studies are required to better understand the relationship between sRAGE and CVD. In this review, we explored the potential function of sRAGE in different CVD, highlighting unanswered concerns and outlining the possibilities for further investigation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
3
|
Cao Y, Ye X, Yuan X, Liu J, Zhang Q. Serum Pentosidine is Associated with Cardiac Dysfunction and Atherosclerosis in T2DM. Diabetes Metab Syndr Obes 2023; 16:237-244. [PMID: 36760597 PMCID: PMC9885869 DOI: 10.2147/dmso.s398119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Aim The purpose of this paper is to investigate the relationship between serum pentosidine levels and cardiac function and vascular disease in diabetic patients, and to provide a new reference indicator for the early detection of diabetic cardiovascular complications. Materials and Methods This was a cross-sectional study. One hundred and twenty-two patients with type 2 diabetes were grouped by LVEF quartiles to compare the differences between their clinical data and serum pentosidine levels. Also, the correlation between serum pentosidine and clinical indicators was assessed. The effect of serum pentosidine on cardiac function and vascular stiffness was analyzed by multiple stepwise regression. Results Serum pentosidine levels were higher in patients with LVEF ≤57%. Serum pentosidine levels were positively correlated with waist-to-hip ratio, hemoglobin, AIP, baPWV, LVESD, and ARD, and negatively correlated with LVEF. Low serum pentosidine was associated with increased LVESD; high pentosidine was significantly associated with increased ARD, high AIP and high baPWV. Conclusion The results suggest that serum pentosidine, a member of AGEs, may reflect cardiac remodeling and dysfunction as well as atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Cao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoqing Yuan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Juan Liu
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qing Zhang
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
4
|
Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. Int J Mol Sci 2022; 23:ijms23147886. [PMID: 35887234 PMCID: PMC9318065 DOI: 10.3390/ijms23147886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. In 2019, 550 million people were suffering from CVD and 18 million of them died as a result. Most of them had associated risk factors such as high fasting glucose, which caused 134 million deaths, and obesity, which accounted for 5.02 million deaths. Diabesity, a combination of type 2 diabetes and obesity, contributes to cardiac, metabolic, inflammation and neurohumoral changes that determine cardiac dysfunction (diabesity-related cardiomyopathy). Epicardial adipose tissue (EAT) is distributed around the myocardium, promoting myocardial inflammation and fibrosis, and is associated with an increased risk of heart failure, particularly with preserved systolic function, atrial fibrillation and coronary atherosclerosis. In fact, several hypoglycaemic drugs have demonstrated a volume reduction of EAT and effects on its metabolic and inflammation profile. However, it is necessary to improve knowledge of the diabesity pathophysiologic mechanisms involved in the development and progression of cardiovascular diseases for comprehensive patient management including drugs to optimize glucometabolic control. This review presents the mechanisms of diabesity associated with cardiovascular disease and their therapeutic implications.
Collapse
|
5
|
Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, Wei L, Wu H, Liang B, Li H, Huang Y, Lu L, Yang Z, Xian S, Wang L. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis 2021; 12:470. [PMID: 33976108 PMCID: PMC8113558 DOI: 10.1038/s41419-021-03750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to cardiac fibrosis and heart failure (HF). Recent studies have demonstrated that EndMT is regulated by autophagy, and we previously showed suppression of excessive autophagy and alleviation of cardiac fibrosis in HF mice with inactivated receptor for advanced glycation end products (RAGE). Thus, we investigated whether reduced cardiac fibrosis due to RAGE knockout occurred by inhibiting EndMT mediated by excessive autophagy. We found a decrease in endothelial cells (CD31+/VE-Cadherin+) and an increase in cells co-expressing CD31 and α-smooth muscle actin (α-SMA, myofibroblast marker) at 8 weeks in heart tissue of mice subjected to transverse aortic constriction (TAC), which implied EndMT. Knockout RAGE decreased EndMT accompanied by decreased expression of autophagy-related proteins (LC3BII/I and Beclin 1), and alleviated cardiac fibrosis and improved cardiac function in TAC mice. Moreover, 3-methyladenine (3-MA) and chloroquine (CQ), inhibitors of autophagy, attenuated EndMT, and cardiac fibrosis in TAC mice. Importantly, EndMT induced by AGEs could be blocked by autophagy inhibitor in vivo and in vitro. These results suggested that AGEs/RAGE-autophagy-EndMT axis involved in the development of cardiac fibrosis and knockout RAGE ameliorated cardiac fibrosis through decreasing EndMT regulated by autophagy, which could be a promising therapeutic strategy for HF.
Collapse
Affiliation(s)
- Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lan Wei
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hanqin Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
6
|
Zhang H, Mao YF, Zhao Y, Xu DF, Wang Y, Xu CF, Dong WW, Zhu XY, Ding N, Jiang L, Liu YJ. Upregulation of Matrix Metalloproteinase-9 Protects against Sepsis-Induced Acute Lung Injury via Promoting the Release of Soluble Receptor for Advanced Glycation End Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889313. [PMID: 33628393 PMCID: PMC7889353 DOI: 10.1155/2021/8889313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ying Zhao
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chu-Fan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Ning Ding
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
7
|
Soluble receptor for advanced glycation end-products independently influences individual age-dependent increase of arterial stiffness. Hypertens Res 2019; 43:111-120. [DOI: 10.1038/s41440-019-0347-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
8
|
Paradela-Dobarro B, Agra RM, Álvarez L, Varela-Román A, García-Acuña JM, González-Juanatey JR, Álvarez E, García-Seara FJ. The different roles for the advanced glycation end products axis in heart failure and acute coronary syndrome settings. Nutr Metab Cardiovasc Dis 2019; 29:1050-1060. [PMID: 31371263 DOI: 10.1016/j.numecd.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
AIMS This work aimed to compare the behavior of the advanced glycation end products (AGEs) and their soluble receptor (sRAGE) in two cohorts of patients: those with heart failure (HF) and acute coronary syndrome (ACS). METHODS AND RESULTS A unicentric observational clinical study was performed in 102 patients with ACS and 102 patients with chronic HF matched by age and gender. At inclusion, fluorescent AGEs were measured by quantitative fluorescence spectroscopy of plasma, and total sRAGE and endogenous secretory RAGE (esRAGE) levels were determined by enzyme-linked immunosorbent assay kits. A 5-year follow-up period was established for recording cardiac death (primary endpoint) and the incidence of non-fatal myocardial infarction or HF readmission (secondary endpoints). Higher glycation parameters were observed in HF patients, whereas no differences in sRAGE forms were found between HF and ACS cohorts, except for cRAGE, which was higher in HF. Associations between glycation parameters and sRAGE forms were observed in HF, but not in ACS. Differences were also evidenced in the long-term prognosis of each cohort: esRAGE showed an independent prognostic value for cardiac death or non-fatal cardiovascular events in HF, but none of the AGE-RAGE variables were predictors in ACS. CONCLUSIONS A different role for the AGE-RAGE axis was observed in HF and ACS. All the sRAGE forms were directly related with glycation parameters in HF, but not in ACS. The independent value of the sRAGE forms on each cardiovascular disease was supported by esRAGE being an independent predictor of bad long-term prognosis only for HF.
Collapse
Affiliation(s)
- Beatriz Paradela-Dobarro
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain
| | - Rosa M Agra
- CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - Leyre Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - Alfonso Varela-Román
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - José M García-Acuña
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - José R González-Juanatey
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - Ezequiel Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain.
| | - Francisco J García-Seara
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain; CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| |
Collapse
|
9
|
Maresca AM, Guasti L, Bozzini S, Mongiardi C, Tandurella N, Corso R, Zerba FG, Squizzato A, Campiotti L, Dentali F, Klersy C, Grandi AM, Falcone C. sRAGE and early signs of cardiac target organ damage in mild hypertensives. Cardiovasc Diabetol 2019; 18:17. [PMID: 30755202 PMCID: PMC6371567 DOI: 10.1186/s12933-019-0821-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 01/18/2023] Open
Abstract
Background Soluble Receptor for Advanced Glycation End Products (sRAGE) may be considered a marker inversely related to inflammation and its participation has been established in patients with advanced atherosclerotic vascular diseases. However, it is still unknown whether sRAGE reduction could be early metabolic change in the first stage of hypertension and initial hypertension-associated cardiac damage. We sought to determine the sRAGE values in otherwise healthy, untreated and recently diagnosed mild hypertensives and evaluate their association with blood pressure (BP) values, metabolic parameters, and with subclinical initial signs of cardiac target organ damage (TOD). Methods sRAGE were measured in 100 hypertensive and 100 normotensive subjects matched for age, gender and body mass index (BMI), submitted to a clinic visit and both ambulatory BP monitoring and echocardiography to determine the presence of initial cardiac TOD (presence of signs of left ventricular hypertrophy: left ventricular mass indexed for height2.7 (LVMi) > 48 g/m2.7 for men and > 44 g/m2.7 for women and/or increased left atrial volume 4-chamber indexed for body surface area (LAVi) > 34 ml/m2). Results sRAGE levels were similar between hypertensive and normotensive subjects and were not significantly correlated with office and 24-h BPs values. However, when subgrouping the hypertensive patients in Hyp-TOD and Hyp-withoutTOD, sRAGE was found to be different among the three groups (p = 0.030), being lower in the Hyp-TOD group than the values of both Hyp-withoutTOD (p = 0.038) and normotensives (p = 0.038). In hypertensive patients sRAGE was negatively related with both LVMi (r = − 0.239, p = 0.034) and LAVi (r = − 0.315, p = 0.005) and was independently related to cardiac TOD also in multivariable analysis. Conclusions In this population of mild hypertensives, low circulating sRAGE may be a very early marker of initial TOD, suggesting the possible participation of oxidative stress in initial cardiac changes in human hypertension. Electronic supplementary material The online version of this article (10.1186/s12933-019-0821-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Maria Maresca
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Luigina Guasti
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Sara Bozzini
- Interdepartimental Center for Research in Molecular Medicine (CIRMC), University of Pavia, Pavia, Italy
| | - Christian Mongiardi
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicolò Tandurella
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Rossana Corso
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco G Zerba
- Interdepartimental Center for Research in Molecular Medicine (CIRMC), University of Pavia, Pavia, Italy
| | - Alessandro Squizzato
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Leonardo Campiotti
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Dentali
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Catherine Klersy
- Clinical Epidemiology and Biometry, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna M Grandi
- Research Center on Dyslipidemia, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Colomba Falcone
- Interdepartimental Center for Research in Molecular Medicine (CIRMC), University of Pavia, Pavia, Italy.,Department of Cardiology, Istituti Clinici di Pavia e Vigevano University Hospital, Pavia, Italy
| |
Collapse
|
10
|
Gu J, Pan JA, Fan YQ, Zhang HL, Zhang JF, Wang CQ. Prognostic impact of HbA1c variability on long-term outcomes in patients with heart failure and type 2 diabetes mellitus. Cardiovasc Diabetol 2018; 17:96. [PMID: 29960591 PMCID: PMC6026342 DOI: 10.1186/s12933-018-0739-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Background The prognostic impact of long-term glycemic variability on clinical outcomes in patients with heart failure (HF) and type 2 diabetes mellitus (T2DM) remains unclear. We determined and compared hemoglobin A1c (HbA1c) variability and clinical outcomes for patients with HF with preserved ejection fraction (HFpEF), HF with mid-range ejection fraction (HFmrEF) and HF with reduced ejection fraction (HFrEF) in a prospective longitudinal study. Methods Patients with HF and T2DM, undergone 3 or more HbA1c determinations during the first 18 months, were then followed for 42 months. The primary outcome was death from any cause. Secondary outcome was composite endpoints with death and HF hospitalization. Cox proportional hazards models were used to compare outcomes for patients with HFpEF, HFmrEF and HFrEF. Results Of 902 patients enrolled, 32.2% had HFpEF, 14.5% HFmrEF, and 53.3% HFrEF. During 42 months of follow-up, 270 (29.9%) patients died and 545 (60.4%) patients experienced composite endpoints of death and HF readmission. The risk of all-cause death or composite endpoints was lower for HFpEF than HFrEF. Moreover, higher HbA1c variability was associated with higher all-cause mortality or composite endpoints and HbA1c variability was an independent predictor of all-cause mortality or composite endpoints, regardless of EF. Conclusions This prospective longitudinal study showed that the all-cause death and composite events was lower for HFpEF than HFrEF. HbA1c variability was independently and similarly predictive of death or combined endpoints in the three HF phenotypes. Electronic supplementary material The online version of this article (10.1186/s12933-018-0739-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jian-An Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yu-Qi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hui-Li Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|