1
|
Wu M, Zhang S, Wu X, Zhou Y, Zhou M, Du A, Zhang Y, Wei T, Wang B, Wang S, Jiang C, Hu S, Xiao J, Wu Y. Acute hyperglycemia impedes spinal cord injury recovery via triggering excessive ferroptosis of endothelial cells. Int J Biol Macromol 2025; 301:140453. [PMID: 39884601 DOI: 10.1016/j.ijbiomac.2025.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Spinal cord injury (SCI) is a serious central nervous system injury that often causes sensory and motor dysfunction in patients. Diabetes seriously destroys the blood spinal cord barrier (BSCB) and aggravates SCI. Ferroptosis is a new type of programmed cell death. The role of ferroptosis in diabetes-medicated BSCB destruction has not been clearly elucidated. Here, we built a type 1 diabetes (T1D) combined with SCI rat model and confirmed that hyperglycemia exacerbates SCI-mediated BSCB destruction. Pathological mechanism demonstrated that except for apoptosis, the excessive ferroptosis is another caused factor for endothelial cells (ECs) loss under hyperglycemic condition. More importantly, ferrostatin-1(a ferroptosis inhibitor) treatment significantly inhibited the ferroptosis of ECs, and promoted the BSCB repair in T1D combined with SCI rat. The mechanism study further revealed that hyperglycemia not only induces the elevated reactive oxygen species (ROS) via activating RAGE, but also suppresses the xCT expression in system Xc- in ECs, which decreases GPX4 expression and induces ferroptosis. Additionally, hyperglycemia also accelerated the transfer of iron ions from serum to spinal cord after SCI. In summary, our results suggest that the excessive ferroptosis of ECs is essential for the severe BSCB destruction in T1D combined with spinal cord injury rat.
Collapse
Affiliation(s)
- Man Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Susu Zhang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Xuejuan Wu
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Yongxiu Zhou
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Mei Zhou
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Anyu Du
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Yanren Zhang
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Tao Wei
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China
| | - Beini Wang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Shuangshuang Wang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Chang Jiang
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China
| | - Siwang Hu
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| | - Jian Xiao
- The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; The Orthopaedic Center, The First People's Hospital of Wenling, Affiliated Wenling Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Taizhou 317500, China.
| |
Collapse
|
2
|
Chen X, Yao H, Lai J, Chen Y, Li X, Li S, Li L, He F. Endothelial versus Metabolic Insulin Resistance, A Descriptive Review. Curr Diabetes Rev 2025; 21:94-105. [PMID: 39676508 DOI: 10.2174/0115733998288601240327065724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 12/17/2024]
Abstract
Cardiovascular complications are a primary focus in the clinical management of type 2 diabetes, as they are the leading causes of disability and mortality in individuals with diabetes. Insulin resistance and endothelial dysfunction commonly coexist in diabetic patients. An increasing body of research indicates a reciprocal and interconnected association between endothelial function and insulin resistance. Insulin resistance can manifest in two distinct forms: endothelial and metabolic, with the former predominantly affecting vascular endothelial cells and the latter primarily impacting peripheral cells. The understanding of endothelial insulin resistance is crucial in comprehending the pathophysiology of cardiovascular complications in type 2 diabetes. Hence, the objective of this study is to examine the correlations, interplays, and molecular pathways linking endothelial insulin resistance and metabolic insulin resistance, with the aim of offering novel insights and scholarly resources for the prevention and management of diabetic vascular complications.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huajie Yao
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- Department of Pharmacy, Wuhan Polytechnic University, College of Life Science and Technology, Wuhan, China
| | - Jiaqi Lai
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanmei Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xiaodong Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shanshan Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fazhong He
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
3
|
Hartopo AB, Mayasari DS, Puspitawati I, Putri AK, Setianto BY. Endothelial-Derived Microparticles Associate with Hospital Major Adverse Cardiovascular Events but not with Long-Term Adverse Events in Acute Myocardial Infarction. Int J Angiol 2024; 33:288-296. [PMID: 39502353 PMCID: PMC11534470 DOI: 10.1055/s-0044-1785488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Endothelial-derived microparticles (EDMP) are markers of vascular function and convey roles in coagulation, inflammation, vasoactivity, angiogenesis, and cellular apoptosis, which implicate acute myocardial infarction (AMI). This study aimed to investigate whether, among AMI, on-admission EDMP counts affect hospital major adverse cardiovascular events (MACE) and whether the change of EDMP in 30-day posthospital discharge affects long-term follow-up MACE. The research design was a prospective cohort study. The subjects were 119 patients diagnosed and hospitalized with AMI, who were enrolled consecutively. The EDMP was measured on hospital admission and repeated 30-day posthospital discharge. The outcomes were in the hospital MACE comprised of cardiac mortality, heart failure, cardiogenic shock, reinfarction, and resuscitated ventricular arrhythmia. Furthermore, long-term follow-up were performed on 30-day, 90-day, and 1-year posthospital AMI discharge. The on-admission EDMP counts were significantly higher in subjects with hospital MACE compared with those without (median [interquartile range]: 27,421.0 [6,956.5-53,184.0] vs. 11,617.5 [4,599.0-23,336.7] counts/µL, p = 0.028). The EDMP counts cutoff value of >26,810.0 counts/µL (52.4% sensitivity, 81.6% specificity) had significantly increased hospital MACE occurrence (adjusted odd ratio: 4.45, 95% confidence interval: 1.47-13.53, p = 0.008). The EDMP counts were significantly increased after 30-day posthospital discharge. Both on-admission and 30-day EDMP counts and the changes in EDMP counts did not impact MACE on the long-term follow-up. In conclusion, higher on-admission EDMP counts were independently associated with hospital MACE among AMI. However, on-admission and 30-day postdischarge EDMP and their changes did not impact long-term follow-up MACE.
Collapse
Affiliation(s)
- Anggoro B. Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Dyah S. Mayasari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – UGM Academic Hospital, Yogyakarta, Indonesia
| | - Ira Puspitawati
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Astrid K. Putri
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Budi Y. Setianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Letonja J, Petrovič D. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024; 12:1322. [PMID: 38927529 PMCID: PMC11201627 DOI: 10.3390/biomedicines12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally accepted that atherosclerosis is a chronic inflammatory disease. The link between atherosclerosis and other inflammatory diseases such as psoriasis, type 2 diabetes mellitus (T2DM), and rheumatoid arthritis (RA) via metabolic, inflammatory, and immunoregulatory pathways is well established. The aim of our review was to summarize the associations between selected microRNAs (miRs) and long non-coding RNAs (lncRNAs) and atherosclerosis, psoriasis, T2DM, and RA. We reviewed the role of miR-146a, miR-210, miR-143, miR-223, miR-126, miR-21, miR-155, miR-145, miR-200, miR-133, miR-135, miR-221, miR-424, let-7, lncRNA-H19, lncRNA-MEG3, lncRNA-UCA1, and lncRNA-XIST in atherosclerosis and psoriasis, T2DM, and RA. Extracellular vesicles (EVs) are a method of intracellular signal transduction. Their function depends on surface expression, cargo, and the cell from which they originate. The majority of the studies that investigated lncRNAs and some miRs had relatively small sample sizes, which limits the generalizability of their findings and indicates the need for more research. Based on the studies reviewed, miR-146a, miR-155, miR-145, miR-200, miR-133, and lncRNA-H19 are the most promising potential biomarkers and, possibly, therapeutic targets for atherosclerosis as well as T2DM, RA, and psoriasis.
Collapse
Affiliation(s)
- Jernej Letonja
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Zhang Y, Bharadhwaj VS, Kodamullil AT, Herrmann C. A network of transcriptomic signatures identifies novel comorbidity mechanisms between schizophrenia and somatic disorders. DISCOVER MENTAL HEALTH 2024; 4:11. [PMID: 38573526 PMCID: PMC10994898 DOI: 10.1007/s44192-024-00063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF). Using this procedure, we extracted molecular signatures potentially explaining shared comorbidity mechanisms. For this, 27 case-control microarray transcriptomic datasets across multiple tissues were collected, covering three main categories of conditions including psychotic disorders, cardiovascular diseases and type II diabetes. We addressed the limitation of normal NMF for parameter selection by introducing multi-rank ensembled NMF to identify signatures under various hierarchical levels simultaneously. Analysis of comorbidity signature pairs was performed to identify several potential mechanisms involving activation of inflammatory response auxiliarily interconnecting angiogenesis, oxidative response and GABAergic neuro-action. Overall, we proposed a general cross-cohorts computing workflow for investigating the comorbid pattern across multiple symptoms, applied it to the real-data comorbidity study on schizophrenia, and further discussed the potential for future application of the approach.
Collapse
Affiliation(s)
- Youcheng Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB) & BioQuant, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Vinay S Bharadhwaj
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt Augustin, Germany
| | - Alpha T Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt Augustin, Germany
| | - Carl Herrmann
- Institute of Pharmacy and Molecular Biotechnology (IPMB) & BioQuant, Universität Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res 2024; 29:152. [PMID: 38438934 PMCID: PMC10910816 DOI: 10.1186/s40001-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ping Niu
- Rehabilitation Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
7
|
Gaceb A, Roupé L, Enström A, Almasoudi W, Carlsson R, Lindgren AG, Paul G. Pericyte Microvesicles as Plasma Biomarkers Reflecting Brain Microvascular Signaling in Patients With Acute Ischemic Stroke. Stroke 2024; 55:558-568. [PMID: 38323422 PMCID: PMC10896197 DOI: 10.1161/strokeaha.123.045720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms. METHODS Plasma samples were collected from patients with acute ischemic stroke (n=39) at 3 time points after stroke onset: 0 to 6 hours, 12 to 24 hours, and 2 to 6 days, and compared with controls (n=39). Pericyte-derived microvesicles were isolated based on cluster of differentiation 140b expression and quantified by flow cytometry. The protein content was evaluated using a proximity extension assay, and vascular signaling pathways were examined using molecular signature hallmarks and gene ontology. RESULTS In this case-control study, patients with acute ischemic stroke showed significantly increased numbers of pericyte-derived microvesicles (median, stroke versus controls) at 12 to 24 hours (1554 versus 660 microvesicles/μL; P=0.0041) and 2 to 6 days after stroke (1346 versus 660 microvesicles/μL; P=0.0237). Their proteome revealed anti-inflammatory properties mediated via downregulation of Kirsten rat sarcoma virus and IL (interleukin)-6/JAK/STAT3 signaling at 0 to 6 hours, but proangiogenic as well as proinflammatory signals at 12 to 24 hours. Between 2 and 6 days, proteins were mainly associated with vascular remodeling as indicated by activation of Hedgehog signaling in addition to proangiogenic signals. CONCLUSIONS We demonstrate that the plasma of patients with acute ischemic stroke reflects (1) an early and time-dependent increase of pericyte-derived microvesicles and (2) changes in the protein cargo of microvesicles over time indicating cell signaling specifically related to inflammation and vascular remodeling.
Collapse
Affiliation(s)
- Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Linnea Roupé
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Wejdan Almasoudi
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Arne G. Lindgren
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
- Wallenberg Center for Molecular Medicine (G.P.), Lund University, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| |
Collapse
|
8
|
Berezin AE, Berezin AA. Extracellular vesicles in heart failure. Adv Clin Chem 2024; 119:1-32. [PMID: 38514208 DOI: 10.1016/bs.acc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Physiologically, extracellular vesicles (EVs) have been implicated as crucial mediators of immune response, cell homeostasis, angiogenesis, cell differentiation and growth, and tissue repair. In heart failure (HF) they may act as regulators of cardiac remodeling, microvascular inflammation, micro environmental changes, tissue fibrosis, atherosclerosis, neovascularization of plaques, endothelial dysfunction, thrombosis, and reciprocal heart-remote organ interaction. The chapter summaries the nomenclature, isolation, detection of EVs, their biologic role and function physiologically as well as in the pathogenesis of HF. Current challenges to the utilization of EVs as diagnostic and predictive biomarkers in HF are also discussed.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | | |
Collapse
|
9
|
Arredondo-Damián JG, Martínez-Soto JM, Molina-Pelayo FA, Soto-Guzmán JA, Castro-Sánchez L, López-Soto LF, Candia-Plata MDC. Systematic review and bioinformatics analysis of plasma and serum extracellular vesicles proteome in type 2 diabetes. Heliyon 2024; 10:e25537. [PMID: 38356516 PMCID: PMC10865249 DOI: 10.1016/j.heliyon.2024.e25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Background Type 2 diabetes (T2D) is a complex metabolic ailment marked by a global high prevalence and significant attention in primary healthcare settings due to its elevated morbidity and mortality rates. The pathophysiological mechanisms underlying the onset and progression of this disease remain subjects of ongoing investigation. Recent evidence underscores the pivotal role of the intricate intercellular communication network, wherein cell-derived vesicles, commonly referred to as extracellular vesicles (EVs), emerge as dynamic regulators of diabetes-related complications. Given that the protein cargo carried by EVs is contingent upon the metabolic conditions of the originating cells, particular proteins may serve as informative indicators for the risk of activating or inhibiting signaling pathways crucial to the progression of T2D complications. Methods In this study, we conducted a systematic review to analyze the published evidence on the proteome of EVs from the plasma or serum of patients with T2D, both with and without complications (PROSPERO: CRD42023431464). Results Nine eligible articles were systematically identified from the databases, and the proteins featured in these articles underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We identified changes in the level of 426 proteins, with CST6, CD55, HBA1, S100A8, and S100A9 reported to have high levels, while FGL1 exhibited low levels. Conclusion These proteins are implicated in pathophysiological mechanisms such as inflammation, complement, and platelet activation, suggesting their potential as risk markers for T2D development and progression. Further studies are required to explore this topic in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Luis Castro-Sánchez
- University Center for Biomedical Research, University of Colima, Colima, Colima, Mexico
- CONAHCYT-University of Colima, Colima, Colima, Mexico
| | | | | |
Collapse
|
10
|
Olejarz W, Sadowski K, Radoszkiewicz K. Extracellular Vesicles in Atherosclerosis: State of the Art. Int J Mol Sci 2023; 25:388. [PMID: 38203558 PMCID: PMC10779125 DOI: 10.3390/ijms25010388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in the arteries, leading to narrowing and thrombosis that causes mortality. Emerging evidence has confirmed that atherosclerosis affects younger people and is involved in the majority of deaths worldwide. EVs are associated with critical steps in atherosclerosis, cholesterol metabolism, immune response, endothelial dysfunction, vascular inflammation, and remodeling. Endothelial cell-derived EVs can interact with platelets and monocytes, thereby influencing endothelial dysfunction, atherosclerotic plaque destabilization, and the formation of thrombus. EVs are potential diagnostic and prognostic biomarkers in atherosclerosis (AS) and cardiovascular disease (CVD). Importantly, EVs derived from stem/progenitor cells are essential mediators of cardiogenesis and cardioprotection and may be used in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
11
|
V J, M S, Wani A, Ahmad SF, Nadeem A, Sharma A, Ahmed SSSJ. Pharmacoscreening, molecular dynamics, and quantum mechanics of inermin from Panax ginseng: a crucial molecule inhibiting exosomal protein target associated with coronary artery disease progression. PeerJ 2023; 11:e16481. [PMID: 38077444 PMCID: PMC10710165 DOI: 10.7717/peerj.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Exosomes, microvesicles, carry and release several vital molecules across cells, tissues, and organs. Epicardial adipose tissue exosomes are critical in the development and progression of coronary artery disease (CAD). It is hypothesized that exosomes may transport causative molecules from inflamed tissue and deliver to the target tissue and progress CAD. Thus, identifying and inhibiting the CAD-associated proteins that are being transported to other cells via exosomes will help slow the progression of CAD. Methods This study uses a systems biological approach that integrates differential gene expression in the CAD, exosomal cargo assessment, protein network construction, and functional enrichment to identify the crucial exosomal cargo protein target. Meanwhile, absorption, distribution, metabolism, and excretion (ADME) screening of Panax ginseng-derived compounds was conducted and then docked against the protein target to identify potential inhibitors and then subjected to molecular dynamics simulation (MDS) to understand the behavior of the protein-ligand complex till 100 nanoseconds. Finally, density functional theory (DFT) calculation was performed on the ligand with the highest affinity with the target. Results Through the systems biological approach, Mothers against decapentaplegic homolog 2 protein (SMAD2) was determined as a potential target that linked with PI3K-Akt signaling, Ubiquitin mediated proteolysis, and the focal adhesion pathway. Further, screening of 190 Panax ginseng compounds, 27 showed drug-likeness properties. Inermin, a phytochemical showed good docking with -5.02 kcal/mol and achieved stability confirmation with SMAD2 based on MDS when compared to the known CAD drugs. Additionally, DFT analysis of inermin showed high chemical activity that significantly contributes to effective target binding. Overall, our computational study suggests that inermin could act against SMAD2 and may aid in the management of CAD.
Collapse
Affiliation(s)
- Janakiraman V
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Sudhan M
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Abubakar Wani
- Department of Immunology, St. Jude Children’s Research Hospital Memphis, TN, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashutosh Sharma
- Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Shiek S. S. J. Ahmed
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
12
|
Li Z, Zhang W, Wang QR, Yang YJ, Liu XH, Cheng G, Chang FJ. Effect of Thrombolysis on Circulating Microparticles in Patients with ST-Segment Elevation Myocardial Infarction. Cardiovasc Ther 2023; 2023:5559368. [PMID: 38024103 PMCID: PMC10676276 DOI: 10.1155/2023/5559368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Objective We demonstrated that circulating microparticles (MPs) are increased in patients with coronary heart disease (both chronic coronary syndrome (CCS) and acute coronary syndrome). Whether thrombolysis affects MPs in patients with ST-segment elevation myocardial infarction (STEMI) with or without percutaneous coronary intervention (PCI) is unknown. Methods This study was divided into three groups: STEMI patients with thrombolysis (n = 18) were group T, patients with chronic coronary syndrome (n = 20) were group CCS, and healthy volunteers (n = 20) were the control group. Fasting venous blood was extracted from patients in the CCS and control groups, and venous blood was extracted from patients in the T group before (pre-T) and 2 hours after (post-T) thrombolysis. MPs from each group were obtained by centrifugation. After determining the concentration, the effects of MPs on endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in rat myocardial tissue in vitro were detected by immunohistochemistry and western blotting. Changes in nitric oxide (NO) and oxygen free radicals (O2•-) were also detected. The effect of MPs on vasodilation in isolated rat thoracic aortae was detected. Results Compared with that in the control group (2.60 ± 0.38 mg/ml), the concentration of MPs was increased in patients with CCS (3.49 ± 0.72 mg/ml) and in STEMI patients before thrombolysis (4.17 ± 0.58 mg/ml). However, thrombolysis did not further increase MP levels (post-T, 4.23 ± 1.01 mg/ml) compared with those in STEMI patients before thrombolysis. Compared with those in the control group, MPs in both CCS and STEMI patients before thrombolysis inhibited the expression of eNOS (both immunohistochemistry and western blot analysis of phosphorylation at Ser1177), NO production in the isolated myocardium and vasodilation in vitro and stimulated the expression of iNOS (immunohistochemistry and western blot analysis of phosphorylation at Thr495), and the generation of O2•- in the isolated myocardium. The effects of MPs were further enhanced by MPs from STEMI patients 2 hours after thrombolysis. Conclusion Changes in MP function after thrombolysis may be one of the mechanisms leading to ischemia-reperfusion after thrombolysis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qun-Rang Wang
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian'yang, China
| | - Yu-juan Yang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin-Hong Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Feng-Jun Chang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
13
|
Indana HA, Puspitawati I, Mayasari DS, Hartopo AB. Association of Acute Hyperglycemia and Diabetes Mellitus with Platelet-derived Microparticle (PDMP) Levels During Acute Myocardial Infarction. J ASEAN Fed Endocr Soc 2023; 38:35-40. [PMID: 38045660 PMCID: PMC10692412 DOI: 10.15605/jafes.038.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 12/05/2023] Open
Abstract
Objectives This research investigates whether there is an association between acute hyperglycemia and diabetes mellitus and the level of circulating platelet-derived microparticles (PDMPs) during an initial episode of acute myocardial infarction (AMI). Methodology This was a cross-sectional study involving hospitalized AMI patients. Demographic and clinical data were obtained from hospital records. Diabetes mellitus was defined by the history of the disease, anti-diabetes medication use and/ or level of HbA1C ≥6.5%. Levels of HbA1c, admission random and fasting blood glucose levels were measured. Flow-cytometry method was used to determine the levels of PDMPs from collected venous blood through tagging with CD-41 FITC and CD-62 PE markers and a threshold size of <1 μm. The number of circulating PDMPs was compared according to glucometabolic state, namely acute hyperglycemia (admission random glucose ≥200 mg/dL and fasting glucose ≥140 mg/dL) and diabetes mellitus. The comparative analysis between groups was conducted with Student T-test or Mann-Whitney test, where applicable. Results A total of 108 subjects were included and their data analyzed. The level of circulating PDMPs was significantly lower in subjects with admission random glucose ≥200 mg/dL as compared to those with below level [median (interquartile range (IQR)]: 2,710.0 (718.0-8,167.0) count/mL vs. 4,452.0 (2,128.5-14,499.8) count/mL, p = 0.05) and in subjects with fasting glucose ≥140 mg/dL as compared to those with below level (median (IQR): 2,382.0 (779.0-6,619.0) count/mL vs. 5,972.0 (2,345.7-14,781.3) count/mL, p = 0.006). The level of circulating PDMPs was also significantly lower in patients with diabetes mellitus as compared to those without (median (IQR): 2,655.0 (840.0-5,821.0) count/mL vs. 4,562.0 (2,128.5-15,055.8) count/mL; p = 0.007). Conclusion Acute hyperglycemia and diabetes mellitus are significantly associated with a lower circulating PDMP level during an initial AMI episode.
Collapse
Affiliation(s)
- Hana Anindya Indana
- School of Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Ira Puspitawati
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Dyah Samti Mayasari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Universitas Gadjah Mada (UGM) Academic Hospital, Yogyakarta, Indonesia
| | - Anggoro Budi Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Yang W, Yang X, Jiang L, Song H, Huang G, Duan K, Jiang X, Li M, Liu P, Chen J. Combined biological effects and lung proteomics analysis in mice reveal different toxic impacts of electronic cigarette aerosol and combustible cigarette smoke on the respiratory system. Arch Toxicol 2022; 96:3331-3347. [PMID: 36173423 PMCID: PMC9521563 DOI: 10.1007/s00204-022-03378-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Combustible cigarettes produce many toxic substances that have been linked to diseases, such as lung cancer and chronic obstructive pulmonary disease. For those smokers unable or unwilling to quit, electronic cigarettes (e-cigarettes) could be used as an alternative to cigarettes. However, the effects and mechanisms of e-cigarette aerosol (ECA) on respiratory function have not been fully elucidated, and in vivo studies of its safety are limited compared to cigarette smoke (CS). In this article, we chose nicotine levels as dosing references and C57BL/6 mice for a 10-week subchronic inhalation toxicity study. A comprehensive set of toxicological endpoints was used to study the effect of exposure. Both CS (6 mg/kg) and ECA (6 or 12 mg/kg) inhalation had decreased the animal's lung function and increased levels of inflammation markers, along with pathological changes in the airways and lungs, with ECA displaying a relatively small effect at the same dose. Proteomic analysis of lung tissue showed greater overall protein changes by CS than that of ECA, with more severe inflammatory network perturbations. Compared with ECA, KEGG analysis of CS revealed upregulation of more inflammatory and virus-related pathways. Protein-protein interactions (PPI) showed that both ECA and CS significantly changed ribosome and complement system-related proteins in mouse lung tissue. The results support that e-cigarette aerosol is less harmful to the respiratory system than cigarette smoke at the same dose using this animal model, thus providing additional evidence for the relative safety of e-cigarettes.
Collapse
Affiliation(s)
- Wanchun Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuemin Yang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Lujing Jiang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guangye Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Kun Duan
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xingtao Jiang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
15
|
Badimon L, Padro T, Arderiu G, Vilahur G, Borrell-Pages M, Suades R. Extracellular vesicles in atherothrombosis: From biomarkers and precision medicine to therapeutic targets. Immunol Rev 2022; 312:6-19. [PMID: 35996799 DOI: 10.1111/imr.13127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of global mortality. Extracellular vesicles (EVs) are small phospholipid vesicles that convey molecular bioactive cargoes and play essential roles in intercellular communication and, hence, a multifaceted role in health and disease. The present review offers a glimpse into the current state and up-to-date concepts on EV field. It also covers their association with several cardiovascular risk factors and ischemic conditions, being subclinical atherosclerosis of utmost relevance for prevention. Interestingly, we show that EVs hold promise as prognostic and diagnostic as well as predictive markers of ASCVD in the precision medicine era. We then report on the role of EVs in atherothrombosis, disentangling the mechanisms involved in the initiation, progression, and complication of atherosclerosis and showing their direct effect in the context of arterial thrombosis. Finally, their potential use for therapeutic intervention is highlighted.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
17
|
Nik Ibrahim NNI, Abdul Rahman R, Azlan M, Abd Aziz A, Ghulam Rasool AH. Endothelial Microparticles as Potential Biomarkers in the Assessment of Endothelial Dysfunction in Hypercholesterolemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060824. [PMID: 35744087 PMCID: PMC9229814 DOI: 10.3390/medicina58060824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
Abstract
Background and Objectives: Endothelial microparticles (EMP) particularly CD31+/42−/AV+, CD144+/AV+ and CD62e+/AV+ have been reported as having increased in cardiovascular-related diseases, making them potential biomarkers for endothelial dysfunction. This study aimed to compare these EMPs in patients with hypercholesterolemia and healthy controls and to correlate their levels with endothelium-dependent vasodilation (EDV) assessed via pulse wave analysis (PWA); an established method of assessing endothelial function. Materials and Methods: EMPs from 88 subjects (44 hypercholesterolemia patients and 44 controls) were quantified from whole blood using flow cytometry analysis. Endothelial function was determined using PWA combined with pharmacological challenge. Results: CD31+/42−/AV+ (3.45 ± 4.74 count/µL vs. 1.33 ± 4.40 count/µL; p = 0.03), CD144+/AV+ (7.37 ± 12.66 count/µL vs. 1.42 ± 1.71 count/µL; p = 0.003) and CD62e+/AV+ (57.16 ± 56.22 count/µL vs. 20.78 ± 11.04 count/µL; p < 0.001) were significantly elevated in the hypercholesterolemic group compared with the controls, respectively. There was a significant inverse moderate correlation between all circulating EMPs and EDV: CD31+/42−/AV+ (r = −0.36, p = 0.001), CD144+/AV+ (r = −0.37, p = 0.001) and CD62e+/AV+ (r = −0.35, p = 0.002). Conclusions: All EMPs were raised in the patients with hypercholesterolemia, and these values correlated with the established method of assessing endothelial function.
Collapse
Affiliation(s)
- Nik Nor Izah Nik Ibrahim
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-9767-6141
| | - Razlina Abdul Rahman
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Maryam Azlan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Aniza Abd Aziz
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
18
|
Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells 2022; 11:cells11111845. [PMID: 35681540 PMCID: PMC9180657 DOI: 10.3390/cells11111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. This review focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection. We provide a comprehensive and updated summary of the role of EVs in the development or regression of atherosclerotic lesions, highlighting the link between thrombosis and inflammation. Importantly, we also critically describe their potential clinical use as disease biomarkers or therapeutic agents in atherothrombosis.
Collapse
|
19
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|