1
|
Yang B, Vaisvil B, Schmitt D, Collins J, Young E, Kapatral V, Rao R. A correlative study of the genomic underpinning of virulence traits and drug tolerance of Candida auris. Infect Immun 2024; 92:e0010324. [PMID: 38722168 PMCID: PMC11326119 DOI: 10.1128/iai.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased β-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.
Collapse
Affiliation(s)
- Bo Yang
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | | | - Joseph Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | - Reeta Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Gila BC, Antal K, Birkó Z, Keserű JS, Pócsi I, Emri T. Strategies Shaping the Transcription of Carbohydrate-Active Enzyme Genes in Aspergillus nidulans. J Fungi (Basel) 2022; 8:jof8010079. [PMID: 35050018 PMCID: PMC8780418 DOI: 10.3390/jof8010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the coordinated regulation of the hundreds of carbohydrate-active enzyme (CAZyme) genes occurring in the genomes of fungi has great practical importance. We recorded genome-wide transcriptional changes of Aspergillus nidulans cultivated on glucose, lactose, or arabinogalactan, as well as under carbon-starved conditions. We determined both carbon-stress-specific changes (weak or no carbon source vs. glucose) and carbon-source-specific changes (one type of culture vs. all other cultures). Many CAZyme genes showed carbon-stress-specific and/or carbon-source-specific upregulation on arabinogalactan (138 and 62 genes, respectively). Besides galactosidase and arabinan-degrading enzyme genes, enrichment of cellulolytic, pectinolytic, mannan, and xylan-degrading enzyme genes was observed. Fewer upregulated genes, 81 and 107 carbon stress specific, and 6 and 16 carbon source specific, were found on lactose and in carbon-starved cultures, respectively. They were enriched only in galactosidase and xylosidase genes on lactose and rhamnogalacturonanase genes in both cultures. Some CAZyme genes (29 genes) showed carbon-source-specific upregulation on glucose, and they were enriched in β-1,4-glucanase genes. The behavioral ecological background of these characteristics was evaluated to comprehensively organize our knowledge on CAZyme production, which can lead to developing new strategies to produce enzymes for plant cell wall saccharification.
Collapse
Affiliation(s)
- Barnabás Cs. Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly Catholic University, Eszterházy tér 1, 3300 Eger, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.B.); (J.S.K.)
| | - Judit Sz. Keserű
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.B.); (J.S.K.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (B.C.G.); (I.P.)
- Correspondence:
| |
Collapse
|
4
|
Casado-del Castillo V, MacCabe AP, Orejas M. Agrobacterium tumefaciens-Mediated Transformation of NHEJ Mutant Aspergillus nidulans Conidia: An Efficient Tool for Targeted Gene Recombination Using Selectable Nutritional Markers. J Fungi (Basel) 2021; 7:961. [PMID: 34829246 PMCID: PMC8623315 DOI: 10.3390/jof7110961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Protoplast transformation for the introduction of recombinant DNA into Aspergillus nidulans is technically demanding and dependant on the availability and batch variability of commercial enzyme preparations. Given the success of Agrobacterium tumefaciens-mediated transformation (ATMT) in diverse pathogenic fungi, we have adapted this method to facilitate transformation of A. nidulans. Using suitably engineered binary vectors, gene-targeted ATMT of A. nidulans non-homologous end-joining (NHEJ) mutant conidia has been carried out for the first time by complementation of a nutritional requirement (uridine/uracil auxotrophy). Site-specific integration in the ΔnkuA host genome occurred at high efficiency. Unlike other transformation techniques, however, cross-feeding of certain nutritional requirements from the bacterium to the fungus was found to occur, thus limiting the choice of auxotrophies available for ATMT. In complementation tests and also for comparative purposes, integration of recombinant cassettes at a specific locus could provide a means to reduce the influence of position effects (chromatin structure) on transgene expression. In this regard, targeted disruption of the wA locus permitted visual identification of transformants carrying site-specific integration events by conidial colour (white), even when auxotrophy selection was compromised due to cross-feeding. The protocol described offers an attractive alternative to the protoplast procedure for obtaining locus-targeted A. nidulans transformants.
Collapse
Affiliation(s)
| | - Andrew P. MacCabe
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), c/Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain; (V.C.-d.C.); (M.O.)
| | | |
Collapse
|
5
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
6
|
Catabolism of L-rhamnose in A. nidulans proceeds via the non-phosphorylated pathway and is glucose repressed by a CreA-independent mechanism. Microb Cell Fact 2020; 19:188. [PMID: 33008411 PMCID: PMC7532622 DOI: 10.1186/s12934-020-01443-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 12/02/2022] Open
Abstract
l-rhamnose (6-deoxy-mannose) occurs in nature mainly as a component of certain plant structural polysaccharides and bioactive metabolites but has also been found in some microorganisms and animals. The release of l-rhamnose from these substrates is catalysed by extracellular enzymes including α-l-rhamnosidases, the production of which is induced in its presence. The free sugar enters cells via specific uptake systems where it can be metabolized. Of two l-rhamnose catabolic pathways currently known in microorganisms a non-phosphorylated pathway has been identified in fungi and some bacteria but little is known of the regulatory mechanisms governing it in fungi. In this study two genes (lraA and lraB) are predicted to be involved in the catabolism of l-rhamnose, along with lraC, in the filamentous fungus Aspergillus nidulans. Transcription of all three is co-regulated with that of the genes encoding α-l-rhamnosidases, i.e. induction mediated by the l-rhamnose-responsive transcription factor RhaR and repression of induction in the presence of glucose via a CreA-independent mechanism. The participation of lraA/AN4186 (encoding l-rhamnose dehydrogenase) in l-rhamnose catabolism was revealed by the phenotypes of knock-out mutants and their complemented strains. lraA deletion negatively affects both growth on l-rhamnose and the synthesis of α-l-rhamnosidases, indicating not only the indispensability of this pathway for l-rhamnose utilization but also that a metabolite derived from this sugar is the true physiological inducer.
Collapse
|
7
|
Khosravi C, Kowalczyk JE, Chroumpi T, Battaglia E, Aguilar Pontes MV, Peng M, Wiebenga A, Ng V, Lipzen A, He G, Bauer D, Grigoriev IV, de Vries RP. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics 2019; 20:853. [PMID: 31726994 PMCID: PMC6854810 DOI: 10.1186/s12864-019-6235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of use with respect to plant biomass degradation and for that reason have become 'model' species for this topic. A. niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot (corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the (hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during growth on two pentose-rich substrates by transcriptome analysis. RESULTS Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were found in the expression profiles of both mutants on CS compared to SBH. CONCLUSION This study demonstrates the high complexity of the plant biomass degradation process by fungi, by showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much less clear-cut phenotypes and transcriptomes on crude plant biomass.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Joanna E. Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Maria-Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
9
|
Kumar A, Jaiswal V, Kumar V, Dey A, Kumar A. Functional redundancy in Echinocandin B in-cluster transcription factor ecdB of Emericella rugulosa NRRL 11440. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00264. [PMID: 29992098 PMCID: PMC6036647 DOI: 10.1016/j.btre.2018.e00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 10/30/2022]
Abstract
Echinocandin B is a potent antifungal against the majority of fungal pathogens and its biosynthesis occurred by ecd and hty gene clusters in Emericella rugulosa NRRL 11440. We elucidated the functional necessity of in-clustered transcription factor; ecdB in the production of echinocandin B. We deleted the ecdB gene and found that ΔecdB mutant has no significant effect on echinocandin B production. The expression level of most of the ecd and hty cluster genes was not significantly altered except few of them up-regulated in knockout strain. The complete abrogation in ecdB gene expression was observed in ΔecdB strain. However, the interactions of purified EcdB protein with DNA sequence of ecdA, ecdH, ecdK and ecdI promoter was confirmed in-vitro. Our results conclude that EcdB protein in-vitro binds to the ecdA, ecdH, ecdK and ecdI promoter but in-vivo, it could not significantly affect the gene expression and echinocandin B production in Emericella rugulosa.
Collapse
Key Words
- Arg, Arginine
- Biosynthetic regulation
- CTAB, cetyl trimethylammonium bromide
- ECB, echinocandin B
- Echinocandin B
- Emericella rugulosa
- Functional redundancy
- GMM, glucose minimal medium
- HPLC, high performance liquid chromatography
- ICU, intensive care unit
- In-clustered transcription factor
- MEGA, molecular evolutionary genetics analysis
- MP, maximum parsimony
- ORF, open reading frame
- PCR, polymerase chain reaction
- RT-PCR, reverse transcription polymerase chain reaction
- SPR, subtree-pruning-regrafting
- TF, transcription factor
- UTR, un-translated region
- WT, wild type
- YG, yeast glucose medium
- bp, base pair
- d, day
- h, hour
- kb, kilo base pair
Collapse
Affiliation(s)
- Arvind Kumar
- Centre for Biological Science (Biotechnology), Central University of South Bihar, BIT Campus, P.O. B. V. College, Patna, 800014, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Oachghat-Kumarhatti Highway, Bajol, Solan, 173229, India
| | - Vinay Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amitava Dey
- Division of Livestock and Fisheries Management, ICAR-Research Complex for Eastern Region, Phulwari Road, Patna, 800014, India
| | - Antresh Kumar
- Centre for Biological Science (Biotechnology), Central University of South Bihar, BIT Campus, P.O. B. V. College, Patna, 800014, India
| |
Collapse
|
10
|
Khosravi C, Kun RS, Visser J, Aguilar-Pontes MV, de Vries RP, Battaglia E. In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiol 2017; 17:214. [PMID: 29110642 PMCID: PMC5674754 DOI: 10.1186/s12866-017-1118-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Background The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. Result In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. Conclusion This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate. Electronic supplementary material The online version of this article (doi: 10.1186/s12866-017-1118-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| |
Collapse
|
11
|
Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:149. [PMID: 28616073 PMCID: PMC5469009 DOI: 10.1186/s13068-017-0807-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/29/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.
Collapse
Affiliation(s)
- Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vincent W. Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - Axel Dietschmann
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Infection Biology, Institute for Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität, Erlangen-Nuremberg, Germany
| | - Asaf A. Salamov
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jenifer Johnson
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Igor V. Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chris R. Somerville
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - J. Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger. PLoS Genet 2016; 12:e1006468. [PMID: 27984587 PMCID: PMC5161314 DOI: 10.1371/journal.pgen.1006468] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The study of plant biomass utilization by fungi is a research field of great interest due to its many implications in ecology, agriculture and biotechnology. Most of the efforts done to increase the understanding of the use of plant cell walls by fungi have been focused on the degradation of cellulose and hemicellulose, and transport and metabolism of their constituent monosaccharides. Pectin is another important constituent of plant cell walls, but has received less attention. In relation to the uptake of pectic building blocks, fungal transporters for the uptake of galacturonic acid recently have been reported in Aspergillus niger and Neurospora crassa. However, not a single L-rhamnose (6-deoxy-L-mannose) transporter has been identified yet in fungi or in other eukaryotic organisms. L-rhamnose is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but is also found in diverse plant secondary metabolites (e.g. anthocyanins, flavonoids and triterpenoids), in the green seaweed sulfated polysaccharide ulvan, and in glycan structures from viruses and bacteria. Here, a comparative plasmalemma proteomic analysis was used to identify candidate L-rhamnose transporters in A. niger. Further analysis was focused on protein ID 1119135 (RhtA) (JGI A. niger ATCC 1015 genome database). RhtA was classified as a Family 7 Fucose: H+ Symporter (FHS) within the Major Facilitator Superfamily. Family 7 currently includes exclusively bacterial transporters able to use different sugars. Strong indications for its role in L-rhamnose transport were obtained by functional complementation of the Saccharomyces cerevisiae EBY.VW.4000 strain in growth studies with a range of potential substrates. Biochemical analysis using L-[3H(G)]-rhamnose confirmed that RhtA is a L-rhamnose transporter. The RhtA gene is located in tandem with a hypothetical alpha-L-rhamnosidase gene (rhaB). Transcriptional analysis of rhtA and rhaB confirmed that both genes have a coordinated expression, being strongly and specifically induced by L-rhamnose, and controlled by RhaR, a transcriptional regulator involved in the release and catabolism of the methyl-pentose. RhtA is the first eukaryotic L-rhamnose transporter identified and functionally validated to date. The growth of filamentous fungi on plant biomass, which occurs through the utilization of its components (e.g. D-glucose, D-xylose, L-arabinose, L-rhamnose) as carbon sources, is a highly regulated event. L-rhamnose (6-deoxy-L-mannose) is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but also in diverse plant secondary metabolites, ulvan from green seaweeds and glycan structures from virus and bacteria. The utilization, transformation or detoxification of this monosaccharide by fungi involves a first step of chemical hydrolysis, performed by alpha-L-rhamnosidases, and a second step of transport into the cell, prior to its metabolization. While many rhamnosidases have been identified, not a single eukaryotic plasma membrane L-rhamnose transporter is known to date. In this study we identified and characterized, for the first time, a fungal L-rhamnose transporter (RhtA), from the industrial workhorse Aspergillus niger. We also found that RhtA putative orthologs are conserved throughout different fungal orders, opening the possibility of identifying new transporters of its kind.
Collapse
|
13
|
Li LF, Fu LJ, Lin JQ, Pang X, Liu XM, Wang R, Wang ZB, Lin JQ, Chen LX. The σ54-dependent two-component system regulating sulfur oxidization (Sox) system in Acidithiobacillus caldus and some chemolithotrophic bacteria. Appl Microbiol Biotechnol 2016; 101:2079-2092. [DOI: 10.1007/s00253-016-8026-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
|
14
|
Wang ZB, Li YQ, Lin JQ, Pang X, Liu XM, Liu BQ, Wang R, Zhang CJ, Wu Y, Lin JQ, Chen LX. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus. Front Microbiol 2016; 7:1755. [PMID: 27857710 PMCID: PMC5093147 DOI: 10.3389/fmicb.2016.01755] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19 bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR, and ΔrsrS strains cultivated in K2S4O6-medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights toward the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus.
Collapse
Affiliation(s)
- Zhao-Bao Wang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Ya-Qing Li
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | | | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Yan Wu
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| |
Collapse
|
15
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Niño-Sánchez J, Tello V, Casado-Del Castillo V, Thon MR, Benito EP, Díaz-Mínguez JM. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum. Front Microbiol 2015; 6:234. [PMID: 25883592 PMCID: PMC4383042 DOI: 10.3389/fmicb.2015.00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2.
Collapse
Affiliation(s)
- Jonathan Niño-Sánchez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Vega Tello
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Virginia Casado-Del Castillo
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Michael R Thon
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Ernesto P Benito
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - José María Díaz-Mínguez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|