1
|
Adusumilli SH, Dabburu GR, Kumar M, Arora P, Chattopadhyaya B, Behera D, Bachhawat AK. The potential of R. toruloides mevalonate pathway genes in increasing isoprenoid yields in S. cerevisiae: Evaluation of GGPPS and HMG-CoA reductase. Enzyme Microb Technol 2024; 174:110374. [PMID: 38147781 DOI: 10.1016/j.enzmictec.2023.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
The enzymes of the mevalonate pathway need to be improved to achieve high yields of isoprenoids in the yeast Saccharomyces cerevisiae. The red yeast Rhodosporidium toruloides produces high levels of carotenoids and may have evolved to carry a naturally high flux of isoprenoids. Enzymes from such yeasts are likely to be promising candidates for improvement. Towards this end, we have systematically investigated the various enzymes of the mevalonate pathway of R. toruloides and custom synthesized, expressed, and evaluated six key enzymes in S. cerevisiae. The two nodal enzymes geranyl pyrophosphate synthase (RtGGPPS) and truncated HMG-CoA reductase (RttHMG) of R. toruloides showed a significant advantage to the cells for isoprenoid production as seen by a visual carotenoid screen. These two were analyzed further, and attempts were also made at further improvement. RtGGPPS was confirmed to be superior to the S. cerevisiae enzyme, as seen from in vitro activity determinations and in vivo production of the heterologous diterpenoid sclareol. Four mutants were created through rational mutagenesis but were unable to improve the activity further. In the case of RttHMG, functional evaluation of the enzyme revealed that it was very unstable despite functioning very well in S. cerevisiae. We succeeded in stabilizing the enzyme through mutation of a conserved serine in the catalytic region, which did not alter the enzyme activity per se. In vivo evaluation of the mutant revealed that it could enable better sclareol yields. Therefore, these two enzymes from the red yeast are excellent candidates for heterologous isoprenoid production.
Collapse
Affiliation(s)
- Sri Harsha Adusumilli
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | | | - Manish Kumar
- Department of Biophysics, University of Delhi (South Campus), India
| | - Prateek Arora
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Banani Chattopadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Diptimayee Behera
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Lu Z, Wang B, Qiu Z, Zhang R, Zheng J, Jia Z. YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli. Int J Mol Sci 2022; 23:ijms23031560. [PMID: 35163484 PMCID: PMC8835842 DOI: 10.3390/ijms23031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.
Collapse
Affiliation(s)
- Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Biying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
- Correspondence: (J.Z.); (Z.J.)
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (J.Z.); (Z.J.)
| |
Collapse
|
3
|
Analysing intracellular isoprenoid metabolites in diverse prokaryotic and eukaryotic microbes. Methods Enzymol 2022; 670:235-284. [DOI: 10.1016/bs.mie.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Takemura M, Sahara T, Misawa N. Violaxanthin: natural function and occurrence, biosynthesis, and heterologous production. Appl Microbiol Biotechnol 2021; 105:6133-6142. [PMID: 34338805 DOI: 10.1007/s00253-021-11452-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Violaxanthin is biosynthesized from zeaxanthin with zeaxanthin epoxidase (ZEP) by way of antheraxanthin only in photosynthetic eukaryotes including higher plants and involved in the xanthophyll cycle to eliminate excessive light energy. Violaxanthin and antheraxanthin have commercially been unavailable, in contrast to commercial production of other carotenoids contained in higher plants, e.g., lycopene, β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and capsanthin. One of the reasons is considered that resource plants or other resource organisms do not exist for enabling efficient supply of the epoxy-carotenoids, which are expected to be produced through (metabolic) pathway engineering with heterologous microbial hosts such as Escherichia coli and Saccharomyces cerevisiae. In this Mini-Review, we show heterologous production of violaxanthin with the two microorganisms that have exhibited significant advances these days. We further describe natural function and occurrence, and biosynthesis involving violaxanthin, antheraxanthin, and their derivatives that include auroxanthin and mutatoxanthin. KEY POINTS: • A comprehensive review on epoxy-carotenoids violaxanthin and antheraxanthin. • Pathway engineering for the epoxy-carotenoids in heterologous microbes. • Our new findings on violaxanthin production with the budding yeast.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba-shi, 305-8566, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan.
| |
Collapse
|
5
|
Wang Z, Sun J, Yang Q, Yang J. Metabolic Engineering Escherichia coli for the Production of Lycopene. Molecules 2020; 25:molecules25143136. [PMID: 32659911 PMCID: PMC7397254 DOI: 10.3390/molecules25143136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
Lycopene, a potent antioxidant, has been widely used in the fields of pharmaceuticals, nutraceuticals, and cosmetics. However, the production of lycopene extracted from natural sources is far from meeting the demand. Consequently, synthetic biology and metabolic engineering have been employed to develop microbial cell factories for lycopene production. Due to the advantages of rapid growth, complete genetic background, and a reliable genetic operation technique, Escherichia coli has become the preferred host cell for microbial biochemicals production. In this review, the recent advances in biological lycopene production using engineered E. coli strains are summarized: First, modification of the endogenous MEP pathway and introduction of the heterogeneous MVA pathway for lycopene production are outlined. Second, the common challenges and strategies for lycopene biosynthesis are also presented, such as the optimization of other metabolic pathways, modulation of regulatory networks, and optimization of auxiliary carbon sources and the fermentation process. Finally, the future prospects for the improvement of lycopene biosynthesis are also discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - JingXin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence: (Q.Y.); (J.Y.); Tel.: +86-131-4543-1413 (Q.Y.); +86-135-8938-5827 (J.Y.); Fax: +86-532-589-57640 (J.Y.)
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence: (Q.Y.); (J.Y.); Tel.: +86-131-4543-1413 (Q.Y.); +86-135-8938-5827 (J.Y.); Fax: +86-532-589-57640 (J.Y.)
| |
Collapse
|
6
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|
7
|
Fabris M, George J, Kuzhiumparambil U, Lawson CA, Jaramillo-Madrid AC, Abbriano RM, Vickers CE, Ralph P. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synth Biol 2020; 9:598-612. [PMID: 32032487 DOI: 10.1021/acssynbio.9b00455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom Phaeodactylum tricornutum, for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that P. tricornutum, unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered P. tricornutum through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, P. tricornutum reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of P. tricornutum endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of P. tricornutum as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Bongers M, Perez-Gil J, Hodson MP, Schrübbers L, Wulff T, Sommer MO, Nielsen LK, Vickers CE. Adaptation of hydroxymethylbutenyl diphosphate reductase enables volatile isoprenoid production. eLife 2020; 9:48685. [PMID: 32163032 PMCID: PMC7067565 DOI: 10.7554/elife.48685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
Volatile isoprenoids produced by plants are emitted in vast quantities into the atmosphere, with substantial effects on global carbon cycling. Yet, the molecular mechanisms regulating the balance between volatile and non-volatile isoprenoid production remain unknown. Isoprenoids are synthesised via sequential condensation of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), with volatile isoprenoids containing fewer isopentenyl subunits. The DMAPP:IPP ratio could affect the balance between volatile and non-volatile isoprenoids, but the plastidic DMAPP:IPP ratio is generally believed to be similar across different species. Here we demonstrate that the ratio of DMAPP:IPP produced by hydroxymethylbutenyl diphosphate reductase (HDR/IspH), the final step of the plastidic isoprenoid production pathway, is not fixed. Instead, this ratio varies greatly across HDRs from phylogenetically distinct plants, correlating with isoprenoid production patterns. Our findings suggest that adaptation of HDR plays a previously unrecognised role in determining in vivo carbon availability for isoprenoid emissions, directly shaping global biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Mareike Bongers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Jordi Perez-Gil
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Lars Schrübbers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| |
Collapse
|
9
|
Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Microb Cell Fact 2019; 18:192. [PMID: 31690314 PMCID: PMC6833178 DOI: 10.1186/s12934-019-1235-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpenoids are of high interest as chemical building blocks and pharmaceuticals. In microbes, terpenoids can be synthesized via the methylerythritol phosphate (MEP) or mevalonate (MVA) pathways. Although the MEP pathway has a higher theoretical yield, metabolic engineering has met with little success because the regulation of the pathway is poorly understood. RESULTS We applied metabolic control analysis to the MEP pathway in Escherichia coli expressing a heterologous isoprene synthase gene (ispS). The expression of ispS led to the accumulation of isopentenyl pyrophosphate (IPP)/dimethylallyl pyrophosphate (DMAPP) and severely impaired bacterial growth, but the coexpression of ispS and isopentenyl diphosphate isomerase (idi) restored normal growth and wild-type IPP/DMAPP levels. Targeted proteomics and metabolomics analysis provided a quantitative description of the pathway, which was perturbed by randomizing the ribosome binding site in the gene encoding 1-deoxyxylulose 5-phosphate synthase (Dxs). Dxs has a flux control coefficient of 0.35 (i.e., a 1% increase in Dxs activity resulted in a 0.35% increase in pathway flux) in the isoprene-producing strain and therefore exerted significant control over the flux though the MEP pathway. At higher dxs expression levels, the intracellular concentration of 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) increased substantially in contrast to the other MEP pathway intermediates, which were linearly dependent on the abundance of Dxs. This indicates that 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (IspG), which consumes MEcPP, became saturated and therefore limited the flux towards isoprene. The higher intracellular concentrations of MEcPP led to the efflux of this intermediate into the growth medium. DISCUSSION These findings show the importance of Dxs, Idi and IspG and metabolite export for metabolic engineering of the MEP pathway and will facilitate further approaches for the microbial production of valuable isoprenoids.
Collapse
|
10
|
Takemura M, Kubo A, Higuchi Y, Maoka T, Sahara T, Yaoi K, Ohdan K, Umeno D, Misawa N. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:9393-9399. [PMID: 31673744 DOI: 10.1007/s00253-019-10182-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 11/27/2022]
Abstract
Carotenoids are naturally synthesized in some species of bacteria, archaea, and fungi (including yeasts) as well as all photosynthetic organisms. Escherichia coli has been the most popular bacterial host for the heterologous production of a variety of carotenoids, including even xanthophylls unique to photosynthetic eukaryotes such as lutein, antheraxanthin, and violaxanthin. However, conversion efficiency of these epoxy-xanthophylls (antheraxanthin and violaxanthin) from zeaxanthin remained substantially low. We here examined several factors affecting their productivity in E. coli. Two sorts of plasmids were introduced into the bacterial host, i.e., a plasmid to produce zeaxanthin due to the presence of the Pantoea ananatis crtE, crtB, crtI, crtY, and crtZ genes in addition to the Haematococcus pluvialis IDI gene, and one containing each of zeaxanthin epoxidase (ZEP) genes originated from nine photosynthetic eukaryotes. It was consequently found that paprika (Capsicum annuum) ZEP (CaZEP) showed the highest conversion activity. Next, using the CaZEP gene, we performed optimization experiments in relation to E. coli strains as the production hosts, expression vectors, and ribosome-binding site (RBS) sequences. As a result, the highest productivity of violaxanthin (231 μg/g dry weight) was observed, when the pUC18 vector was used with CaZEP preceded by a RBS sequence of score 5000 in strain JM101(DE3).
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Akiko Kubo
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Yuki Higuchi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takashi Maoka
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
- Division of Food Function and Chemistry, Research Institute for Production Development, Kyoto, 606-0805, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Kohji Ohdan
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, 555-8502, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, 263-8522, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
11
|
Taylor GM, Mordaka PM, Heap JT. Start-Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res 2019; 47:e17. [PMID: 30462270 PMCID: PMC6379671 DOI: 10.1093/nar/gky1182] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
DNA assembly allows individual DNA constructs or libraries to be assembled quickly and reliably. Most methods are either: (i) Modular, easily scalable and suitable for combinatorial assembly, but leave undesirable 'scar' sequences; or (ii) bespoke (non-modular), scarless but less suitable for construction of combinatorial libraries. Both have limitations for metabolic engineering. To overcome this trade-off we devised Start-Stop Assembly, a multi-part, modular DNA assembly method which is both functionally scarless and suitable for combinatorial assembly. Crucially, 3 bp overhangs corresponding to start and stop codons are used to assemble coding sequences into expression units, avoiding scars at sensitive coding sequence boundaries. Building on this concept, a complete DNA assembly framework was designed and implemented, allowing assembly of up to 15 genes from up to 60 parts (or mixtures); monocistronic, operon-based or hybrid configurations; and a new streamlined assembly hierarchy minimizing the number of vectors. Only one destination vector is required per organism, reflecting our optimization of the system for metabolic engineering in diverse organisms. Metabolic engineering using Start-Stop Assembly was demonstrated by combinatorial assembly of carotenoid pathways in Escherichia coli resulting in a wide range of carotenoid production and colony size phenotypes indicating the intended exploration of design space.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paweł M Mordaka
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:1620-1630. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
Collapse
Affiliation(s)
- Yanwei Ma
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark V. Somerville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Baidoo EEK, Wang G, Joshua CJ, Benites VT, Keasling JD. Liquid Chromatography and Mass Spectrometry Analysis of Isoprenoid Intermediates in Escherichia coli. Methods Mol Biol 2019; 1859:209-224. [PMID: 30421231 DOI: 10.1007/978-1-4939-8757-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Isoprenoids are a highly diverse group of natural products with broad application as high value chemicals and advanced biofuels. They are synthesized using two primary building blocks, namely, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that are generated via the mevalonate (MVA) or deoxy-D-xylulose-5-phosphate (DXP) pathways. Isoprenoid biosynthetic pathways are prevalent in eukaryotes, archaea, and bacteria. Measurement of isoprenoid intermediates via standard liquid chromatography-mass spectrometry (LC-MS) protocols is generally challenging because of the hydrophilicity and complex physicochemical properties of the molecules. In addition, there is currently no reliable analytical method that can simultaneously measure metabolic intermediates from MVA and DXP pathways, including the prenyl diphosphates. Therefore, we describe a robust hydrophilic interaction liquid chromatography time-of-flight mass spectrometry (HILIC-TOF-MS) method for analyzing isoprenoid intermediates from metabolically engineered Escherichia coli strains.
Collapse
Affiliation(s)
- Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| | - George Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Chijioke J Joshua
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Veronica Teixeira Benites
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute of Synthetic Biology Research, Shenzhen Institutes of Advanced Technologies, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
15
|
Koduru L, Lakshmanan M, Lee DY. In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microb Cell Fact 2018; 17:167. [PMID: 30359263 PMCID: PMC6201637 DOI: 10.1186/s12934-018-1015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cellular metabolism is tightly regulated by hard-wired multiple layers of biological processes to achieve robust and homeostatic states given the limited resources. As a result, even the most intuitive enzyme-centric metabolic engineering endeavours through the up-/down-regulation of multiple genes in biochemical pathways often deliver insignificant improvements in the product yield. In this regard, targeted engineering of transcriptional regulators (TRs) that control several metabolic functions in modular patterns is an interesting strategy. However, only a handful of in silico model-added techniques are available for identifying the TR manipulation candidates, thus limiting its strain design application. RESULTS We developed hierarchical-Beneficial Regulatory Targeting (h-BeReTa) which employs a genome-scale metabolic model and transcriptional regulatory network (TRN) to identify the relevant TR targets suitable for strain improvement. We then applied this method to industrially relevant metabolites and cell factory hosts, Escherichia coli and Corynebacterium glutamicum. h-BeReTa suggested several promising TR targets, many of which have been validated through literature evidences. h-BeReTa considers the hierarchy of TRs in the TRN and also accounts for alternative metabolic pathways which may divert flux away from the product while identifying suitable metabolic fluxes, thereby performing superior in terms of global TR target identification. CONCLUSIONS In silico model-guided strain design framework, h-BeReTa, was presented for identifying transcriptional regulator targets. Its efficacy and applicability to microbial cell factories were successfully demonstrated via case studies involving two cell factory hosts, as such suggesting several intuitive targets for overproducing various value-added compounds.
Collapse
Affiliation(s)
- Lokanand Koduru
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
16
|
Vavitsas K, Fabris M, Vickers CE. Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes (Basel) 2018; 9:E520. [PMID: 30360565 PMCID: PMC6266707 DOI: 10.3390/genes9110520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Terpenoids are a group of natural products that have a variety of roles, both essential and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability for commercial applications is commonly not achievable by using natural source organisms or chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to achieve commercial viability. However, our poor understanding of regulatory mechanisms and other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging. Moreover, production from carbon dioxide via photosynthesis would significantly increase the environmental and potentially the economic credentials of these processes by disintermediating biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular organisms-such as algae and cyanobacteria-might be preferred production platforms for the expression of some of the more challenging terpenoid pathways.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Claudia E Vickers
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia.
| |
Collapse
|
17
|
Englund E, Shabestary K, Hudson EP, Lindberg P. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 2018; 49:164-177. [PMID: 30025762 DOI: 10.1016/j.ymben.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/25/2022]
Abstract
Of the two natural metabolic pathways for making terpenoids, biotechnological utilization of the mevalonate (MVA) pathway has enabled commercial production of valuable compounds, while the more recently discovered but stoichiometrically more efficient methylerythritol phosphate (MEP) pathway is underdeveloped. We conducted a study on the overexpression of each enzyme in the MEP pathway in the unicellular cyanobacterium Synechocystis sp. PCC 6803, to identify potential targets for increasing flux towards terpenoid production, using isoprene as a reporter molecule. Results showed that the enzymes Ipi, Dxs and IspD had the biggest impact on isoprene production. By combining and creating operons out of those genes, isoprene production was increased 2-fold compared to the base strain. A genome-scale model was used to identify targets upstream of the MEP pathway that could redirect flux towards terpenoids. A total of ten reactions from the Calvin-Benson-Bassham cycle, lower glycolysis and co-factor synthesis pathways were probed for their effect on isoprene synthesis by co-expressing them with the MEP enzymes, resulting in a 60% increase in production from the best strain. Lastly, we studied two isoprene synthases with the highest reported catalytic rates. Only by expressing them together with Dxs and Ipi could we get stable strains that produced 2.8 mg/g isoprene per dry cell weight, a 40-fold improvement compared to the initial strain.
Collapse
Affiliation(s)
- Elias Englund
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden; School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Kiyan Shabestary
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Elton P Hudson
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
18
|
Kotopka BJ, Li Y, Smolke CD. Synthetic biology strategies toward heterologous phytochemical production. Nat Prod Rep 2018; 35:902-920. [DOI: 10.1039/c8np00028j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review summarizes the recent progress in heterologous phytochemical biosynthetic pathway reconstitution in plant, bacteria, and yeast, with a focus on the synthetic biology strategies applied in these engineering efforts.
Collapse
Affiliation(s)
| | - Yanran Li
- Department of Chemical and Environmental Engineering
- Riverside
- USA
| | - Christina D. Smolke
- Department of Bioengineering
- Stanford University
- Stanford
- USA
- Chan Zuckerberg Biohub
| |
Collapse
|
19
|
Kemper K, Hirte M, Reinbold M, Fuchs M, Brück T. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Beilstein J Org Chem 2017; 13:845-854. [PMID: 28546842 PMCID: PMC5433224 DOI: 10.3762/bjoc.13.85] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 01/24/2023] Open
Abstract
With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli, this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.
Collapse
Affiliation(s)
- Katarina Kemper
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Max Hirte
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Markus Reinbold
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Monika Fuchs
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- Professorship for Industrial Biocatalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
20
|
Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600278] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Cátia Santa
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research (III); University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
21
|
Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab Eng Commun 2017; 4:1-11. [PMID: 29142827 PMCID: PMC5678898 DOI: 10.1016/j.meteno.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium glutamicum shows yellow pigmentation due to biosynthesis of the C50 carotenoid decaprenoxanthin and its glycosides. This bacterium has been engineered for production of various non-native cyclic C40 and C50 carotenoids such as β-carotene, astaxanthin or sarcinaxanthin. In this study, the effect of modulating gene expression more broadly by overexpression of sigma factor genes on carotenoid production by C. glutamicum was characterized. Overexpression of the primary sigma factor gene sigA improved lycopene production by recombinant C. glutamicum up to 8-fold. In C. glutamicum wild type, overexpression of sigA led to 2-fold increased accumulation of the native carotenoid decaprenoxanthin in the stationary growth phase. Under these conditions, genes related to thiamine synthesis and aromatic compound degradation showed increased RNA levels and addition of thiamine and the aromatic iron chelator protocatechuic acid to the culture medium enhanced carotenoid production when sigA was overexpressed. Deletion of the gene for the alternative sigma factor SigB, which is expected to replace SigA in RNA polymerase holoenzymes during transition to the stationary growth phase, also increased carotenoid production. The strategy of sigA overexpression could be successfully transferred to production of the non-native carotenoids β-carotene and bisanhydrobacterioruberin (BABR). Production of the latter is the first demonstration that C. glutamicum may accumulate a non-native linear C50 carotenoid instead of the native cyclic C50 carotenoid decaprenoxanthin. Overexpression of the primary sigma factor gene sigA enhanced carotenoid production. Enhanced production of carotenoids in the absence of alternative sigma factor SigB. Production of the linear C50 carotenoid bisanhydrobacterioruberin established.
Collapse
|
22
|
Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab Eng 2017; 39:209-219. [DOI: 10.1016/j.ymben.2016.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|