1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
3
|
Czarnota A, Raszplewicz A, Sławińska A, Bieńkowska-Szewczyk K, Grzyb K. Minicircle-based vaccine induces potent T-cell and antibody responses against hepatitis C virus. Sci Rep 2024; 14:26698. [PMID: 39496832 PMCID: PMC11535267 DOI: 10.1038/s41598-024-78049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
An effective vaccine against hepatitis C virus (HCV) should elicit both humoral and cellular immune responses. Previously, we characterized a bivalent vaccine candidate against hepatitis B (HBV) and HCV using chimeric HBV-HCV virus-like particles (VLP), in which the highly conserved epitope of HCV E2 glycoprotein (residues 412-425) was inserted into the hydrophilic loop of HBV small surface antigen (sHBsAg). While sHBsAg_412-425 elicited cross-neutralizing antibodies, it did not trigger a T-cell response against HCV. Thus, this study aimed to develop a vaccine candidate engaging both arms of adaptive immune response, potentially offering stronger protection against HCV. We evaluated the immunogenicity of minicircle (MC) DNA vaccines encoding sHBsAg_412-425 and HCV nonstructural (NS) proteins in BALB/c mice. Co-administration of sHBsAg_412-425 and NS induced a potent T-cell response, especially against NS3 and high titers of antibodies specific to HCV E2. Additionally, these antibodies recognized native HCV envelope glycoprotein heterodimers (E1E2) across multiple HCV genotypes and showed binding profiles to E1E2 alanine mutants comparable to the broadly neutralizing AP33 antibody. Overall, the findings demonstrate that MC DNA vaccine incorporating both sHBsAg_412-425 and HCV NS protein sequences induces robust, T-cell and AP33-like antibody responses, highlighting its potential as pan-genotypic prophylactic vaccine against HCV.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Aleksandra Raszplewicz
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Aleksandra Sławińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
4
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
5
|
Avižinienė A, Dalgėdienė I, Armalytė J, Petraitytė-Burneikienė R. Immunogenicity of novel vB_EcoS_NBD2 bacteriophage-originated nanotubes as a carrier for peptide-based vaccines. Virus Res 2024; 345:199370. [PMID: 38614253 PMCID: PMC11059446 DOI: 10.1016/j.virusres.2024.199370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.
Collapse
Affiliation(s)
- Aliona Avižinienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania.
| | - Indrė Dalgėdienė
- Department of Immunology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, Lithuania
| |
Collapse
|
6
|
Yoon KW, Chu KB, Eom GD, Mao J, Kim MJ, Lee H, No JH, Quan FS. Protective Humoral Immune Response Induced by Recombinant Virus-like Particle Vaccine Expressing Leishmania donovani Surface Antigen. ACS Infect Dis 2023; 9:2583-2592. [PMID: 38014824 DOI: 10.1021/acsinfecdis.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To date, Leishmania spp. vaccine studies have mainly focused on cellular immunity induction, which plays a crucial role in host protection. In contrast, vaccine-induced humoral immunity is largely neglected. Virus-like particle (VLP) vaccines generated using the baculovirus expression system are well-known inducers of humoral immunity and would serve as a suitable platform for evaluating humoral immunity-mediated protection against visceral Leishmaniasis. In this study, we investigated the humoral immunity evoked through VLPs expressing the L. donovani promastigote surface antigen (PSA-VLPs) and assessed their contribution to protection in mice. PSA-VLPs vaccines were generated using the baculovirus expression system and used for mouse immunizations. Mice were intramuscularly immunized twice with PSA-VLPs and challenged with L. donovani to confirm vaccine-induced protective immunity. PSA-VLP immunization elicited parasite-specific antibody responses in the sera of mice, which were induced in a dose-dependent manner. B cell, germinal center B cell, and memory B cell responses in the spleen were found to be higher in vaccinated mice compared to unimmunized controls. PSA-VLP immunization diminished the production of pro-inflammatory cytokines IFN-γ and IL-6 in the liver. Overall, the PSA-VLPs conferred protection against L. donovani challenge infection by reducing the total parasite burden within the internal organs. These results suggest that PSA-VLPs induced protective immunity against the L. donovani challenge infection.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
8
|
Czarnota A, Offersgaard A, Owsianka A, Alzua GP, Bukh J, Gottwein JM, Patel AH, Bieńkowska-Szewczyk K, Grzyb K. Effect of Glycan Shift on Antibodies against Hepatitis C Virus E2 412-425 Epitope Elicited by Chimeric sHBsAg-Based Virus-Like Particles. Microbiol Spectr 2023; 11:e0254622. [PMID: 36719195 PMCID: PMC10100762 DOI: 10.1128/spectrum.02546-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412-425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412-425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412-425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412-425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change. IMPORTANCE Epitope I, located within amino acids 412 to 423 of the HCV E2 glycoprotein, is an important target for an epitope-based HCV vaccine. One interesting feature of epitope I is the N417 glycosylation site, where a single change to S417 or T417 can shift the glycosylation site to position N415. This shift can effectively prevent the binding of broadly neutralizing antibodies targeting epitope I. Aiming to overcome glycan-shift-mediated immune evasion, we constructed sHBsAg_N417S VLPs carrying E2 epitope I, with N417S, and compared them with VLPs carrying wild-type epitope I. We show that antibodies elicited by the sHBsAg-based VLPs presenting two variants of the 412-425 epitope targeted two distinct glycan variants of the HCV E1E2 heterodimer. Our study suggests that due to the conformational flexibility of the E2 glycoprotein and epitope I, future vaccine antigens should elicit antibodies targeting more than one conformation and glycosylation variant of the 412-423 epitope.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ania Owsianka
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Garazi Peña Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
10
|
Zimna M, Brzuska G, Salát J, Svoboda P, Baranska K, Szewczyk B, Růžek D, Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antiviral Res 2023; 209:105511. [PMID: 36581050 DOI: 10.1016/j.antiviral.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic.
| | - Pavel Svoboda
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 61242, Brno, Czech Republic.
| | - Klaudia Baranska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
11
|
Panasiuk M, Zimmer K, Czarnota A, Narajczyk M, Peszyńska-Sularz G, Chraniuk M, Hovhannisyan L, Żołędowska S, Nidzworski D, Żaczek AJ, Gromadzka B. Chimeric virus-like particles presenting tumour-associated MUC1 epitope result in high titers of specific IgG antibodies in the presence of squalene oil-in-water adjuvant: towards safe cancer immunotherapy. J Nanobiotechnology 2022; 20:160. [PMID: 35351156 PMCID: PMC8961490 DOI: 10.1186/s12951-022-01357-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immunotherapy is emerging as a powerful treatment approach for several types of cancers. Modulating the immune system to specifically target cancer cells while sparing healthy cells, is a very promising approach for safer therapies and increased survival of cancer patients. Tumour-associated antigens are favorable targets for cancer immunotherapy, as they are exclusively expressed by the cancer cells, minimizing the risk of an autoimmune reaction. The ability to initiate the activation of the immune system can be achieved by virus-like particles (VLPs) which are safe and potent delivery tools. VLP‐based vaccines have evolved dramatically over the last few decades and showed great potential in preventing infectious diseases. Immunogenic potency of engineered VLPs as a platform for the development of effective therapeutic cancer vaccines has been studied extensively. This study involves recombinant VLPs presenting multiple copies of tumour-specific mucin 1 (MUC1) epitope as a potentially powerful tool for future immunotherapy. Results In this report VLPs based on the structural protein of Norovirus (NoV VP1) were genetically modified to present multiple copies of tumour-specific MUC1 epitope on their surface. Chimeric MUC1 particles were produced in the eukaryotic Leishmania tarentolae expression system and used in combination with squalene oil-in-water emulsion MF59 adjuvant to immunize BALB/c mice. Sera from vaccinated mice demonstrated high titers of IgG and IgM antibodies which were specifically recognizing MUC1 antigen. Conclusions The obtained results show that immunization with recombinant chimeric NoV VP1- MUC1 VLPs result in high titers of MUC1 specific IgG antibodies and show great therapeutic potential as a platform to present tumour-associated antigens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biala, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Milena Chraniuk
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Medical University of Gdańsk, Dębinki 1, 80-210, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland. .,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
12
|
Panasiuk M, Zimmer K, Czarnota A, Grzyb K, Narajczyk M, Peszyńska-Sularz G, Żołędowska S, Nidzworski D, Hovhannisyan L, Gromadzka B. Immunization with Leishmania tarentolae-derived norovirus virus-like particles elicits high humoral response and stimulates the production of neutralizing antibodies. Microb Cell Fact 2021; 20:186. [PMID: 34560881 PMCID: PMC8464126 DOI: 10.1186/s12934-021-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sabina Żołędowska
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Dawid Nidzworski
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland. .,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
13
|
Structure-Based and Rational Design of a Hepatitis C Virus Vaccine. Viruses 2021; 13:v13050837. [PMID: 34063143 PMCID: PMC8148096 DOI: 10.3390/v13050837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.
Collapse
|
14
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
15
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
16
|
Kumar A, Pandey R, Yadav IS, Bharadwaj M. Structural and Epitope Analysis (T- and B-Cell Epitopes) of Hepatitis C Virus (HCV) Glycoproteins: An in silico Approach. J Clin Exp Hepatol 2018; 8:352-361. [PMID: 30568344 PMCID: PMC6286880 DOI: 10.1016/j.jceh.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/23/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic infection with Hepatitis C Virus (HCV) poses a major risk for liver disease like cirrhosis, liver failure and hepatocellular carcinoma. In terms of percentage, the prevalence of HCV in India was found to be low to moderate (1-1.5%), but in terms of sheer numbers, India has a significant number of global HCV patients. Presently, HCV can be treated with direct acting-antibody drugs but there is no prophylactic or therapeutic vaccine available against it. In HCV infection, T- and B-cell immunity is important for clearing the virus. In the present study immunoinformatics was used to identify potent vaccine target for HCV vaccine development. METHODS Sequence of HCV was retrieved from NCBI and their structural analysis was done by using Protpram, PSIPRED, iTASSER and PDBsum servers. T-cell and B-cell epitopes were predicted by Immune Epitope Database and ACBPRED servers. RESULTS On epitope prediction, 25 and 55 potent MHC-I epitopes and 7 and 13 potent B-cell epitopes were predicted for E1 and E2 protein respectively. Their antigenicity score was also calculated. The most potent MHC-I epitopes were MMMNWSPAV and MAWDMMMNW for HLA-A*02:01 and HLA-B*53:01 and most potent B-cell epitope was TGHRMAWDMMMNWSPA for E1 protein. For E2, four MHC-I epitopes having the lowest binding energy and most potent B-cell epitope was DRPYCWHYAPRPCDTI. CONCLUSION In the present study, most potent epitopes for HCV was determined on the basis of their antigenicity along with 3D modeling and docking. Identified B- and T-cell epitopes can be used for the development of potent vaccine against most prevalent HCV type in India to limit its infection.
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer prevention and research (NICPR) formerly Institute of Cytology and Preventive Oncology, Noida, India,Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, India
| | - Roma Pandey
- Department of Biotechnology, Mangalmay Institute of Management and Technology, Greater Noida, India
| | - Inderjit S. Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer prevention and research (NICPR) formerly Institute of Cytology and Preventive Oncology, Noida, India,Address for correspondence: Mausumi Bharadwaj, Scientist F, Division of Molecular Genetics and Biochemistry, Institute of Cytology and Preventive Oncology (ICMR), Noida, India.
| |
Collapse
|
17
|
Krapchev VB, Rychłowska M, Chmielewska A, Zimmer K, Patel AH, Bieńkowska-Szewczyk K. Recombinant Flag-tagged E1E2 glycoproteins from three hepatitis C virus genotypes are biologically functional and elicit cross-reactive neutralizing antibodies in mice. Virology 2018; 519:33-41. [PMID: 29631174 PMCID: PMC5998380 DOI: 10.1016/j.virol.2018.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV) is a globally disseminated human pathogen for which no vaccine is currently available. HCV is highly diverse genetically and can be classified into 7 genotypes and multiple sub-types. Due to this antigenic variation, the induction of cross-reactive and at the same time neutralizing antibodies is a challenge in vaccine production. Here we report the analysis of immunogenicity of recombinant HCV envelope glycoproteins from genotypes 1a, 1b and 2a, with a Flag tag inserted in the hypervariable region 1 of E2. This modification did not affect protein expression or conformation or its capacity to bind the crucial virus entry factor, CD81. Importantly, in immunogenicity studies on mice, the purified E2-Flag mutants elicited high-titer, cross-reactive antibodies that were able to neutralize HCV infectious particles from two genotypes tested (1a and 2a). These findings indicate that E1E2-Flag envelope glycoproteins could be important immunogen candidates for vaccine aiming to induce broad HCV-neutralizing responses.
Collapse
Affiliation(s)
- Vasil B Krapchev
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Malgorzata Rychłowska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Alicja Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland (UK)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland.
| |
Collapse
|
18
|
Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A. Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol 2016; 33:4. [DOI: 10.1007/s11274-016-2172-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/04/2016] [Indexed: 01/27/2023]
|