1
|
Fu J, Zaghen S, Lu H, Konzock O, Poorinmohammad N, Kornberg A, Ledesma-Amaro R, Koseto D, Wentzel A, Di Bartolomeo F, Kerkhoven EJ. Reprogramming Yarrowia lipolytica metabolism for efficient synthesis of itaconic acid from flask to semipilot scale. SCIENCE ADVANCES 2024; 10:eadn0414. [PMID: 39121230 PMCID: PMC11313960 DOI: 10.1126/sciadv.adn0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Itaconic acid is an emerging platform chemical with extensive applications. Itaconic acid is currently produced by Aspergillus terreus through biological fermentation. However, A. terreus is a fungal pathogen that needs additional morphology controls, making itaconic acid production on industrial scale problematic. Here, we reprogrammed the Generally Recognized As Safe (GRAS) yeast Yarrowia lipolytica for competitive itaconic acid production. After preventing carbon sink into lipid accumulation, we evaluated itaconic acid production both inside and outside the mitochondria while fine-tuning its biosynthetic pathway. We then mimicked the regulation of nitrogen limitation in nitrogen-replete conditions by down-regulating NAD+-dependent isocitrate dehydrogenase through weak promoters, RNA interference, or CRISPR interference. Ultimately, we optimized fermentation parameters for fed-batch cultivations and produced itaconic acid titers of 130.1 grams per liter in 1-liter bioreactors and 94.8 grams per liter in a 50-liter bioreactor on semipilot scale. Our findings provide effective approaches to harness the GRAS microorganism Y. lipolytica for competitive industrial-scale production of itaconic acid.
Collapse
Affiliation(s)
- Jing Fu
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Naghmeh Poorinmohammad
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Alexander Kornberg
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Deni Koseto
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | | | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- SciLifeLab, Chalmers University of Technology, Göteborg 412 96, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Wachino JI, Jin W, Norizuki C, Kimura K, Tsuji M, Kurosaki H, Arakawa Y. Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in Enterobacterales. Microbiol Spectr 2024; 12:e0234423. [PMID: 38315122 PMCID: PMC10913484 DOI: 10.1128/spectrum.02344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Metallo-β-lactamases (MBLs) represent one of the main causes of carbapenem resistance in the order Enterobacterales. To combat MBL-producing carbapenem-resistant Enterobacterales, the development of MBL inhibitors can restore carbapenem efficacy for such resistant bacteria. Microbial natural products are a promising source of attractive seed compounds for the development of antimicrobial agents. Here, we report that hydroxyhexylitaconic acids (HHIAs) produced by a member of the genus Aspergillus can suppress carbapenem resistance conferred by MBLs, particularly IMP (imipenemase)-type MBLs. HHIAs were found to be competitive inhibitors with micromolar orders of magnitude against IMP-1 and showed weak inhibitory activity toward VIM-2, while no inhibitory activity against NDM-1 was observed despite the high dosage. The elongated methylene chains of HHIAs seem to play a crucial role in exerting inhibitory activity because itaconic acid, a structural analog without long methylene chains, did not show inhibitory activity against IMP-1. The addition of HHIAs restored meropenem and imipenem efficacy to satisfactory clinical levels against IMP-type MBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. Unlike EDTA and Aspergillomarasmine A, HHIAs did not cause the loss of zinc ions from the active site, resulting in the structural instability of MBLs. X-ray crystallography and in silico docking simulation analyses revealed that two neighboring carboxylates of HHIAs coordinated with two zinc ions in the active sites of VIM-2 and IMP-1, which formed a key interaction observed in MBL inhibitors. Our results indicated that HHIAs are promising for initiating the design of potent inhibitors of IMP-type MBLs.IMPORTANCEThe number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan
| | - Chihiro Norizuki
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Yoshichika Arakawa
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Yang X, Mao Z, Huang J, Wang R, Dong H, Zhang Y, Ma H. Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments. Synth Syst Biotechnol 2023; 8:597-605. [PMID: 37743907 PMCID: PMC10514394 DOI: 10.1016/j.synbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells. The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years. However, if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of l-serine and l-tryptophan. A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Our work is of great value for the structural improvement of constraints-based models.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Ruoyu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huaming Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
4
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
5
|
Liu J, Zhang S, Li W, Wang G, Xie Z, Cao W, Gao W, Liu H. Engineering a Phosphoketolase Pathway to Supplement Cytosolic Acetyl-CoA in Aspergillus niger Enables a Significant Increase in Citric Acid Production. J Fungi (Basel) 2023; 9:jof9050504. [PMID: 37233215 DOI: 10.3390/jof9050504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Citric acid is widely used in the food, chemical and pharmaceutical industries. Aspergillus niger is the workhorse used for citric acid production in industry. A canonical citrate biosynthesis that occurred in mitochondria was well established; however, some research suggested that the cytosolic citrate biosynthesis pathway may play a role in this chemical production. Here, the roles of cytosolic phosphoketolase (PK), acetate kinase (ACK) and acetyl-CoA synthetase (ACS) in citrate biosynthesis were investigated by gene deletion and complementation in A. niger. The results indicated that PK, ACK and ACS were important for cytosolic acetyl-CoA accumulation and had significant effects on citric acid biosynthesis. Subsequently, the functions of variant PKs and phosphotransacetylase (PTA) were evaluated, and their efficiencies were determined. Finally, an efficient PK-PTA pathway was reconstructed in A. niger S469 with Ca-PK from Clostridium acetobutylicum and Ts-PTA from Thermoanaerobacterium saccharolyticum. The resultant strain showed an increase of 96.4% and 88% in the citrate titer and yield, respectively, compared with the parent strain in the bioreactor fermentation. These findings indicate that the cytosolic citrate biosynthesis pathway is important for citric acid biosynthesis, and increasing the cytosolic acetyl-CoA level can significantly enhance citric acid production.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shanshan Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenhao Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guanyi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
6
|
Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. FERMENTATION 2023. [DOI: 10.3390/fermentation9010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Itaconic acid (ITA) is one of the top 12 platform chemicals. The global ITA market is expanding due to the rising demand for bio-based unsaturated polyester resin and its non-toxic qualities. Although bioconversion using microbes is the main approach in the current industrial production of ITA, ecological production of bio-based ITA faces several issues due to: low production efficiency, the difficulty to employ inexpensive raw materials, and high manufacturing costs. As metabolic engineering advances, the engineering of microorganisms offers a novel strategy for the promotion of ITA bio-production. In this review, the most recent developments in the production of ITA through fermentation and metabolic engineering are compiled from a variety of perspectives, including the identification of the ITA synthesis pathway, the metabolic engineering of natural ITA producers, the design and construction of the ITA synthesis pathway in model chassis, and the creation, as well as application, of new metabolic engineering strategies in ITA production. The challenges encountered in the bio-production of ITA in microbial cell factories are discussed, and some suggestions for future study are also proposed, which it is hoped offers insightful views to promote the cost-efficient and sustainable industrial production of ITA.
Collapse
|
7
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
8
|
Baumschabl M, Ata Ö, Mitic BM, Lutz L, Gassler T, Troyer C, Hann S, Mattanovich D. Conversion of CO 2 into organic acids by engineered autotrophic yeast. Proc Natl Acad Sci U S A 2022; 119:e2211827119. [PMID: 36383601 PMCID: PMC9704707 DOI: 10.1073/pnas.2211827119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/13/2022] [Indexed: 10/23/2023] Open
Abstract
The increase of CO2 emissions due to human activity is one of the preeminent reasons for the present climate crisis. In addition, considering the increasing demand for renewable resources, the upcycling of CO2 as a feedstock gains an extensive importance to establish CO2-neutral or CO2-negative industrial processes independent of agricultural resources. Here we assess whether synthetic autotrophic Komagataella phaffii (Pichia pastoris) can be used as a platform for value-added chemicals using CO2 as a feedstock by integrating the heterologous genes for lactic and itaconic acid synthesis. 13C labeling experiments proved that the resulting strains are able to produce organic acids via the assimilation of CO2 as a sole carbon source. Further engineering attempts to prevent the lactic acid consumption increased the titers to 600 mg L-1, while balancing the expression of key genes and modifying screening conditions led to 2 g L-1 itaconic acid. Bioreactor cultivations suggest that a fine-tuning on CO2 uptake and oxygen demand of the cells is essential to reach a higher productivity. We believe that through further metabolic and process engineering, the resulting engineered strain can become a promising host for the production of value-added bulk chemicals by microbial assimilation of CO2, to support sustainability of industrial bioprocesses.
Collapse
Affiliation(s)
- Michael Baumschabl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Özge Ata
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Bernd M. Mitic
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Lisa Lutz
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Thomas Gassler
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Present address: Institute of Microbiology, ETH Zurich, Zurich, 8093, Switzerland
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Stephan Hann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| |
Collapse
|
9
|
Wang Y, Guo Y, Cao W, Liu H. Synergistic effects on itaconic acid production in engineered Aspergillus niger expressing the two distinct biosynthesis clusters from Aspergillus terreus and Ustilago maydis. Microb Cell Fact 2022; 21:158. [PMID: 35953829 PMCID: PMC9367143 DOI: 10.1186/s12934-022-01881-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Itaconic acid (IA) is a versatile platform chemical widely used for the synthesis of various polymers and current methods for IA production based on Aspergillus terreus fermentation are limited in terms of process efficiency and productivity. To construct more efficient IA production strains, A. niger was used as a chassis for engineering IA production by assembling the key components of IA biosynthesis pathways from both A. terreus and Ustilago maydis. RESULTS Recombinant A. niger S1596 overexpressing the A. terreus IA biosynthesis genes cadA, mttA, mfsA produced IA of 4.32 g/L, while A. niger S2120 overexpressing the U. maydis IA gene cluster adi1, tad1, mtt1, itp1 achieved IA of 3.02 g/L. Integration of the two IA production pathways led to the construction of A. niger S2083 with IA titers of 5.58 g/L. Increasing cadA copy number in strain S2083 created strain S2209 with titers of 7.99 g/L and deleting ictA to block IA degradation in S2209 created strain S2288 with IA titers of 8.70 g/L. Overexpressing acoA to enhance the supply of IA precursor in strain S2288 generated strain S2444 with IA titers of 9.08 g/L in shake flask. CONCLUSION Recombinant A. niger overexpressing the U. maydis IA biosynthesis pathway was capable of IA accumulation. Combined expression of the two IA biosynthesis pathways from A. terreus and U. maydis in A. niger resulted in much higher IA titers. Furthermore, increasing cadA copy number, deleting ictA to block IA degradation and overexpressing acoA to enhance IA precursor supply all showed beneficial effects on IA accumulation.
Collapse
Affiliation(s)
- Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yufei Guo
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
10
|
Nascimento MF, Marques N, Correia J, Faria NT, Mira NP, Ferreira FC. Integrated perspective on microbe-based production of itaconic acid: from metabolic and strain engineering to upstream and downstream strategies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Upton DJ, Kaushal M, Whitehead C, Faas L, Gomez LD, McQueen-Mason SJ, Srivastava S, Wood AJ. Integration of Aspergillus niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:4. [PMID: 35418297 PMCID: PMC8756645 DOI: 10.1186/s13068-021-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Citric acid is typically produced industrially by Aspergillus niger-mediated fermentation of a sucrose-based feedstock, such as molasses. The fungus Aspergillus niger has the potential to utilise lignocellulosic biomass, such as bagasse, for industrial-scale citric acid production, but realising this potential requires strain optimisation. Systems biology can accelerate strain engineering by systematic target identification, facilitated by methods for the integration of omics data into a high-quality metabolic model. In this work, we perform transcriptomic analysis to determine the temporal expression changes during fermentation of bagasse hydrolysate and develop an evolutionary algorithm to integrate the transcriptomic data with the available metabolic model to identify potential targets for strain engineering. RESULTS The novel integrated procedure matures our understanding of suboptimal citric acid production and reveals potential targets for strain engineering, including targets consistent with the literature such as the up-regulation of citrate export and pyruvate carboxylase as well as novel targets such as the down-regulation of inorganic diphosphatase. CONCLUSIONS In this study, we demonstrate the production of citric acid from lignocellulosic hydrolysate and show how transcriptomic data across multiple timepoints can be coupled with evolutionary and metabolic modelling to identify potential targets for further engineering to maximise productivity from a chosen feedstock. The in silico strategies employed in this study can be applied to other biotechnological goals, assisting efforts to harness the potential of microorganisms for bio-based production of valuable chemicals.
Collapse
Affiliation(s)
- Daniel J Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| | - Mehak Kaushal
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Caragh Whitehead
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Laura Faas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Leonardo D Gomez
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Shireesh Srivastava
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - A Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
12
|
McNaughton AD, Bredeweg EL, Manzer J, Zucker J, Munoz Munoz N, Burnet MC, Nakayasu ES, Pomraning KR, Merkley ED, Dai Z, Chrisler WB, Baker SE, St. John PC, Kumar N. Bayesian Inference for Integrating Yarrowia lipolytica Multiomics Datasets with Metabolic Modeling. ACS Synth Biol 2021; 10:2968-2981. [PMID: 34636549 DOI: 10.1021/acssynbio.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Optimizing the metabolism of microbial cell factories for yields and titers is a critical step for economically viable production of bioproducts and biofuels. In this process, tuning the expression of individual enzymes to obtain the desired pathway flux is a challenging step, in which data from separate multiomics techniques must be integrated with existing biological knowledge to determine where changes should be made. Following a design-build-test-learn strategy, building on recent advances in Bayesian metabolic control analysis, we identify key enzymes in the oleaginous yeast Yarrowia lipolytica that correlate with the production of itaconate by integrating a metabolic model with multiomics measurements. To this extent, we quantify the uncertainty for a variety of key parameters, known as flux control coefficients (FCCs), needed to improve the bioproduction of target metabolites and statistically obtain key correlations between the measured enzymes and boundary flux. Based on the top five significant FCCs and five correlated enzymes, our results show phosphoglycerate mutase, acetyl-CoA synthetase (ACSm), carbonic anhydrase (HCO3E), pyrophosphatase (PPAm), and homoserine dehydrogenase (HSDxi) enzymes in rate-limiting reactions that can lead to increased itaconic acid production.
Collapse
Affiliation(s)
- Andrew D. McNaughton
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin L. Bredeweg
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James Manzer
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy Zucker
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nathalie Munoz Munoz
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Meagan C. Burnet
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ernesto S. Nakayasu
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D. Merkley
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ziyu Dai
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William B. Chrisler
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Scott E. Baker
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Peter C. St. John
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Neeraj Kumar
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Du X, Li H, Qi J, Chen C, Lu Y, Wang Y. Genome mining of secondary metabolites from a marine-derived Aspergillus terreus B12. Arch Microbiol 2021; 203:5621-5633. [PMID: 34459930 DOI: 10.1007/s00203-021-02548-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
Owing to the prominent capabilities of bioconversion and biosynthesis, A. terreus has become attractive in biotechnical and pharmaceutical industry. In this work, an Aspergillus strain with potential antibacterial activities, was isolated from sponge in South China Sea. Based on the morphological and phylogenetic analysis, the strain was identified as A. terreus B12. Via the Illumina MiSeq sequencing platform, the complete genome was obtained, showing a genetic richness of biosynthetic gene clusters (BGCs), which might underpin the metabolic plasticity and adaptive resilience for the strain. Genome mining identified 67 BGCs, among which, 6 gene clusters could allocate to known BGCs (100% identity), corresponding to diverse metabolites like clavaric acid, dihydroisoflavipucine/isoflavipucine, dimethylcoprogen, alternariol, aspterric acid, and pyranonigrin E. Moreover, a range of compounds was isolated from B12 fermentation, e.g., terrein, butyrolactone I, terretonin A&E, acoapetaline B, and epi-aszonalenins A. Of note, acoapetaline B and epi-aszonalenins A, which had been respectively reported in plants and A. novofumigatus but with scarce information, was unexpectedly obtained from this species for the first time. The genomic and metabolic heterogeneity observed in strain B12, should be at least partially attributed to the genetic variability and biochemical diversity of A. terreus, which could be an interesting issue open to future efforts.
Collapse
Affiliation(s)
- Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanhuan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaoyi Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
14
|
Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways. Microbiol Spectr 2021; 9:e0089821. [PMID: 34523946 PMCID: PMC8557879 DOI: 10.1128/spectrum.00898-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fungal secondary metabolites are widely used as therapeutics and are vital components of drug discovery programs. A major challenge hindering discovery of novel secondary metabolites is that the underlying pathways involved in their biosynthesis are transcriptionally silent under typical laboratory growth conditions, making it difficult to identify the transcriptional networks that they are embedded in. Furthermore, while the genes participating in secondary metabolic pathways are typically found in contiguous clusters on the genome, known as biosynthetic gene clusters (BGCs), this is not always the case, especially for global and pathway-specific regulators of pathways’ activities. To address these challenges, we used 283 genome-wide gene expression data sets of the ascomycete cell factory Aspergillus niger generated during growth under 155 different conditions to construct two gene coexpression networks based on Spearman’s correlation coefficients (SCCs) and on mutual rank-transformed Pearson’s correlation coefficients (MR-PCCs). By mining these networks, we predicted six transcription factors, named MjkA to MjkF, to regulate secondary metabolism in A. niger. Overexpression of each transcription factor using the Tet-On cassette modulated the production of multiple secondary metabolites. We found that the SCC and MR-PCC approaches complemented each other, enabling the delineation of putative global (SCC) and pathway-specific (MR-PCC) transcription factors. These results highlight the potential of coexpression network approaches to identify and activate fungal secondary metabolic pathways and their products. More broadly, we argue that drug discovery programs in fungi should move beyond the BGC paradigm and focus on understanding the global regulatory networks in which secondary metabolic pathways are embedded. IMPORTANCE There is an urgent need for novel bioactive molecules in both agriculture and medicine. The genomes of fungi are thought to contain vast numbers of metabolic pathways involved in the biosynthesis of secondary metabolites with diverse bioactivities. Because these metabolites are biosynthesized only under specific conditions, the vast majority of the fungal pharmacopeia awaits discovery. To discover the genetic networks that regulate the activity of secondary metabolites, we examined the genome-wide profiles of gene activity of the cell factory Aspergillus niger across hundreds of conditions. By constructing global networks that link genes with similar activities across conditions, we identified six putative global and pathway-specific regulators of secondary metabolite biosynthesis. Our study shows that elucidating the behavior of the genetic networks of fungi under diverse conditions harbors enormous promise for understanding fungal secondary metabolism, which ultimately may lead to novel drug candidates.
Collapse
|
15
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays Biochem 2021; 65:213-224. [PMID: 33955461 PMCID: PMC8314004 DOI: 10.1042/ebc20200139] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The filamentous ascomycete fungus Aspergillus niger is a prolific secretor of organic acids, proteins, enzymes and secondary metabolites. Throughout the last century, biotechnologists have developed A. niger into a multipurpose cell factory with a product portfolio worth billions of dollars each year. Recent technological advances, from genome editing to other molecular and omics tools, promise to revolutionize our understanding of A. niger biology, ultimately to increase efficiency of existing industrial applications or even to make entirely new products. However, various challenges to this biotechnological vision, many several decades old, still limit applications of this fungus. These include an inability to tightly control A. niger growth for optimal productivity, and a lack of high-throughput cultivation conditions for mutant screening. In this mini-review, we summarize the current state-of-the-art for A. niger biotechnology with special focus on organic acids (citric acid, malic acid, gluconic acid and itaconic acid), secreted proteins and secondary metabolites, and discuss how new technological developments can be applied to comprehensively address a variety of old and persistent challenges.
Collapse
|
18
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
19
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
21
|
Palys S, Pham TTM, Tsang A. Biosynthesis of Alkylcitric Acids in Aspergillus niger Involves Both Co-localized and Unlinked Genes. Front Microbiol 2020; 11:1378. [PMID: 32695080 PMCID: PMC7338620 DOI: 10.3389/fmicb.2020.01378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi are an abundant source of bioactive secondary metabolites (SMs). In many cases, the biosynthetic processes of SMs are not well understood. This work focuses on a group of SMs, the alkylcitric acids, each of which contains a saturated alkyl "tail," and a citrate-derived "head." We initially identified their biosynthetic gene cluster and the transcriptional regulator (akcR) involved in the biosynthesis of alkylcitrates in the filamentous fungus Aspergillus niger by examining the functional annotation of SM gene clusters predicted from genomic data. We overexpressed the transcription regulator gene akcR and obtained from one liter of culture filtrate 8.5 grams of extract, which are represented by seven alkylcitric acids as determined by NMR. Hexylaconitic acid A comprised 94.1% of the total production, and four of the seven identified alkylcitrates have not been reported previously. Analysis of orthologous alkylcitrate gene clusters in the Aspergilli revealed that in A. oryzae and A. flavus an in-cluster gene displays sequence similarity to cis-aconitate decarboxylase, the orthologue of which in A. niger, NRRL3_00504, is located on a different chromosome. Overexpression of the A. niger NRRL3_00504 and akcR genes together shifted the profile of alkylcitrates production from primarily hexylaconitic acids to mainly hexylitaconic acids, suggesting that NRRL3_00504 encodes an enzyme with hexyl aconitate decarboxylase activity. We also detected two additional, previously unreported, alkylcitric acids in the double overexpression strain. This study shows that phylogenomic analysis together with experimental manipulations can be used to reconstruct a more complete biosynthetic pathway in generating a broader spectrum of alkylcitric compounds. The approach adopted here has the potential of elucidating the complexity of other SM biosynthetic pathways in fungi.
Collapse
Affiliation(s)
| | | | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
22
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
23
|
Fatma Z, Schultz JC, Zhao H. Recent advances in domesticating non‐model microorganisms. Biotechnol Prog 2020; 36:e3008. [DOI: 10.1002/btpr.3008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - J. Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Departments of Chemistry, Biochemistry, and Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
24
|
Deletion analysis of the itaconic acid biosynthesis gene cluster components in Aspergillus pseudoterreus ATCC32359. Appl Microbiol Biotechnol 2020; 104:3981-3992. [DOI: 10.1007/s00253-020-10418-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
25
|
Xie H, Ma Q, Wei D, Wang F. Metabolic engineering of an industrial Aspergillus niger strain for itaconic acid production. 3 Biotech 2020; 10:113. [PMID: 32117674 DOI: 10.1007/s13205-020-2080-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 02/04/2023] Open
Abstract
Itaconic acid is a value-added organic acid that is widely applied in industrial production. It can be converted from citric acid by some microorganisms including Aspergillus terreus and Aspergillus niger. Because of high citric acid production (more than 200 g/L), A. niger strains may be developed into powerful itaconic acid-producing microbial cell factories. In this study, industrial citric acid-producing strain A. niger YX-1217, capable of producing 180.0-200.0 g/L, was modified to produce itaconic acid by metabolic engineering. A key gene cadA encoding aconitase was expressed in A. niger YX-1217 under the control of three different promoters. Analyses showed that the PglaA promoter resulted in higher levels of gene expression than the PpkiA and PgpdA promoters. Moreover, the synthesis pathway of itaconic acid was extended by introducing the acoA gene, and the cadA gene, encoding aconitate decarboxylase, into A. niger YX-1217 under the function of the two rigid short-peptide linkers L1 or L2. The resulting recombinant strains L-1 and L-2 were induced to produce itaconic acid in fed-batch fermentations under three-stage control of agitation speed. After fermentation for 104 h, itaconic acid concentrations in the recombinant strain L-2 culture reached 7.2 g/L, which represented a 71.4% increase in itaconic acid concentration compared with strain Z-17 that only expresses cadA. Therefore, co-expression of acoA and cadA resulted in an extension of the citric acid metabolic pathway to the itaconic acid metabolic pathway, thereby increasing the production of itaconic acid by A. niger.
Collapse
Affiliation(s)
- Hui Xie
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
- 2Life Science College, Henan Agricultural University, Zhengzhou, 450002 China
| | - Qinyuan Ma
- Weifang Ensign Industry Co., Ltd, Weifang, 262499 China
| | - Dongzhi Wei
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Fengqing Wang
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
26
|
Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria NT, Ferreira FC, Mira NP, Shao Z. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metab Eng Commun 2020; 10:e00124. [PMID: 32346511 PMCID: PMC7178482 DOI: 10.1016/j.mec.2020.e00124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Itaconic acid (IA), or 2-methylenesuccinic acid, has a broad spectrum of applications in the biopolymer industry owing to the presence of one vinyl bond and two acid groups in the structure. Its polymerization can follow a similar mechanism as acrylic acid but additional functionality can be incorporated into the extra beta acid group. Currently, the bio-based production of IA in industry relies on the fermentation of the filamentous fungus Aspergillus terreus. However, the difficulties associated with the fermentation undertaken by filamentous fungi together with the pathogenic potential of A. terreus pose a serious challenge for industrial-scale production. In recent years, there has been increasing interest in developing alternative production hosts for fermentation processes that are more homogenous in the production of organic acids. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH, which is a highly desirable trait by easing downstream processing. We introduced cis-aconitic acid decarboxylase gene (cad) from A. terreus (designated At_cad) into this yeast and established the initial titer of IA at 135 ± 5 mg/L. Subsequent overexpression of a native mitochondrial tricarboxylate transporter (herein designated Pk_mttA) presumably delivered cis-aconitate efficiently to the cytosol and doubled the IA production. By introducing the newly invented CRISPR-Cas9 system into P. kudriavzevii, we successfully knocked out both copies of the gene encoding isocitrate dehydrogenase (ICD), aiming to increase the availability of cis-aconitate. The resulting P. kudriavzevii strain, devoid of ICD and overexpressing Pk_mttA and At_cad on its genome produced IA at 505 ± 17.7 mg/L in shake flasks, and 1232 ± 64 mg/L in fed-batch fermentation. Because the usage of an acid-tolerant species does not require pH adjustment during fermentation, this work demonstrates the great potential of engineering P. kudriavzevii as an industrial chassis for the production of organic acid. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH. Engineering P. kudriavzevii to produce itaconic acid, a highly sought after biopolymer precursor. First description of a cis-aconitic acid transporter identified from a host besides the native producer of itaconic acid. Discussion on the potential of P. kudriavzevii as an industrial chassis for the production of organic acids.
Collapse
Affiliation(s)
- Wan Sun
- Interdepartmental Microbiology Program, Iowa State University, Ames, USA
| | - Ana Vila-Santa
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Tanya Prozorov
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Nuno Torres Faria
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Nuno Pereira Mira
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Zengyi Shao
- Interdepartmental Microbiology Program, Iowa State University, Ames, USA.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa, USA.,Department of Chemical and Biological Engineering, Iowa State University, Ames, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
| |
Collapse
|
27
|
Cortesão M, Schütze T, Marx R, Moeller R, Meyer V. Fungal Biotechnology in Space: Why and How? GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Hossain AH, Hendrikx A, Punt PJ. Identification of novel citramalate biosynthesis pathways in Aspergillus niger. Fungal Biol Biotechnol 2019; 6:19. [PMID: 31827810 PMCID: PMC6862759 DOI: 10.1186/s40694-019-0084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022] Open
Abstract
Background The filamentous fungus Aspergillus niger is frequently used for industrial production of fermentative products such as enzymes, proteins and biochemicals. Notable examples of industrially produced A. niger fermentation products are glucoamylase and citric acid. Most notably, the industrial production of citric acid achieves high titers, yield and productivities, a feat that has prompted researchers to propose A. niger to serve as heterologous production host for the industrial production of itaconic acid (IA), a promising sustainable chemical building-block for the fabrication of various synthetic resins, coatings, and polymers. Heterologous production of IA in A. niger has resulted in unexpected levels of metabolic rewiring that has led us to the identification of IA biodegradation pathway in A. niger. In this study we have attempted to identify the final product of the IA biodegradation pathway and analyzed the effect of metabolic rewiring on the bioproduction of 9 industrially relevant organic acids. Results IA biodegradation manifests in diminishing titers of IA and the occurrence of an unidentified compound in the HPLC profile. Based on published results on the IA biodegradation pathway, we hypothesized that the final product of IA biodegradation in A. niger may be citramalic acid (CM). Based on detailed HPLC analysis, we concluded that the unidentified compound is indeed CM. Furthermore, by transcriptome analysis we explored the effect of metabolic rewiring on the production of 9 industrially relevant organic acids by transcriptome analysis of IA producing and WT A. niger strains. Interestingly, this analysis led to the identification of a previously unknown biosynthetic cluster that is proposed to be involved in the biosynthesis of CM. Upon overexpression of the putative citramalate synthase and a genomically clustered organic acid transporter, we have observed CM bioproduction by A. niger. Conclusion In this study, we have shown that the end product of IA biodegradation pathway in A. niger is CM. Knock-out of the IA biodegradation pathway results in the cessation of CM production. Furthermore, in this study we have identified a citramalate biosynthesis pathway, which upon overexpression drives citramalate bioproduction in A. niger.
Collapse
Affiliation(s)
- Abeer H Hossain
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands.,2Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aiko Hendrikx
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J Punt
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
29
|
Scarcia P, Gorgoglione R, Messina E, Fiermonte G, Blank LM, Wierckx N, Palmieri L, Agrimi G. Mitochondrial carriers of
Ustilago maydis
and
Aspergillus terreus
involved in itaconate production: same physiological role but different biochemical features. FEBS Lett 2019; 594:728-739. [DOI: 10.1002/1873-3468.13645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
| | - Lars Mathias Blank
- Institute of Applied Microbiology‐iAMB Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich Germany
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) Bari Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari ALDO MORO Italy
| |
Collapse
|
30
|
Wierckx N, Agrimi G, Lübeck PS, Steiger MG, Mira NP, Punt PJ. Metabolic specialization in itaconic acid production: a tale of two fungi. Curr Opin Biotechnol 2019; 62:153-159. [PMID: 31689647 DOI: 10.1016/j.copbio.2019.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
Some of the oldest and most established industrial biotechnology processes involve the fungal production of organic acids. In these fungi, the transport of metabolites between cellular compartments, and their secretion, is a major factor. In this review we exemplify the importance of both mitochondrial and plasma membrane transporters in the case of itaconic acid production in two very different fungal systems, Aspergillus and Ustilago. Homologous and heterologous overexpression of both types of transporters, and biochemical analysis of mitochondrial transporter function, show that these two fungi produce the same compound through very different pathways. The way these fungi respond to itaconate stress, especially at low pH, also differs, although this is still an open field which clearly needs additional research.
Collapse
Affiliation(s)
- Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-1) and Bioeconomy Science Center (BioSC), 52425 Jülich, Germany.
| | - Gennaro Agrimi
- University of Bari "Aldo Moro", Department of Biosciences, Biotechnologies and Biopharmaceutics, via Orabona 4, 70125 Bari, Italy
| | - Peter Stephensen Lübeck
- Aalborg University, Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, A.C. Meyers Vaenge 15, DK-2450 Copenhagen SV, Denmark
| | - Matthias G Steiger
- Austrian Centre of Industrial Biotechnology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 1a, 1060 Vienna, Austria
| | - Nuno Pereira Mira
- Instituto Superior Técnico, Universidade de Lisboa, iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Peter J Punt
- Dutch DNA Biotech BV Padualaan 8, 3584CH Utrecht, the Netherlands
| |
Collapse
|
31
|
Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 2019; 59:65-70. [DOI: 10.1016/j.copbio.2019.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 02/02/2023]
|
32
|
Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ. Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:233. [PMID: 31583019 PMCID: PMC6767652 DOI: 10.1186/s13068-019-1577-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/21/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bio-based production of organic acids promises to be an attractive alternative for the chemicals industry to substitute petrochemicals as building-block chemicals. In recent years, itaconic acid (IA, methylenesuccinic acid) has been established as a sustainable building-block chemical for the manufacture of various products such as synthetic resins, coatings, and biofuels. The natural IA producer Aspergillus terreus is currently used for industrial IA production; however, the filamentous fungus Aspergillus niger has been suggested to be a more suitable host for this purpose. In our previous report, we communicated the overexpression of a putative cytosolic citrate synthase citB in an A. niger strain carrying the full IA biosynthesis gene cluster from A. terreus, which resulted in the highest final titer reported for A. niger (26.2 g/L IA). In this research, we have attempted to improve this pathway by increasing the cytosolic acetyl-CoA pool. Additionally, we have also performed fermentation optimization by varying the nitrogen source and concentration. RESULTS To increase the cytosolic acetyl-CoA pool, we have overexpressed genes acl1 and acl2 that together encode for ATP-citrate lyase (ACL). Metabolic engineering of ACL resulted in improved IA production through an apparent increase in glycolytic flux. Strains that overexpress acl12 show an increased yield, titer and productivity in comparison with parental strain CitB#99. Furthermore, IA fermentation conditions were improved by nitrogen supplementation, which resulted in alkalization of the medium and thereby reducing IA-induced weak-acid stress. In turn, the alkalizing effect of nitrogen supplementation enabled an elongated idiophase and allowed final titers up to 42.7 g/L to be reached at a productivity of 0.18 g/L/h and yield of 0.26 g/g in 10-L bioreactors. CONCLUSION Ultimately, this study shows that metabolic engineering of ACL in our rewired IA biosynthesis pathway leads to improved IA production in A. niger due to an increase in glycolytic flux. Furthermore, IA fermentation conditions were improved by nitrogen supplementation that alleviates IA induced weak-acid stress and extends the idiophase.
Collapse
Affiliation(s)
- Abeer H. Hossain
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Roy van Gerven
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Karin M. Overkamp
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter S. Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen SV, Denmark
| | - Hatice Taşpınar
- Pakmaya, Kosekoy Mah. Ankara Cad. No:277, 41310 Kartepe, Kocaeli Turkey
| | - Mustafa Türker
- Pakmaya, Kosekoy Mah. Ankara Cad. No:277, 41310 Kartepe, Kocaeli Turkey
| | - Peter J. Punt
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
33
|
Kolláth IS, Molnár ÁP, Soós Á, Fekete E, Sándor E, Kovács B, Kubicek CP, Karaffa L. Manganese Deficiency Is Required for High Itaconic Acid Production From D-Xylose in Aspergillus terreus. Front Microbiol 2019; 10:1589. [PMID: 31338087 PMCID: PMC6629873 DOI: 10.3389/fmicb.2019.01589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Itaconic acid is used as a bio-based, renewable building block in the polymer industry. It is produced by submerged fermentations of the filamentous fungus Aspergillus terreus from molasses or starch, but research over the efficient utilization of non-food, lignocellulosic plant biomass is soaring. The objective of this study was to test whether the application of two key cultivation parameters for obtaining itaconic acid from D-glucose in high yields - Mn2+ ion deficiency and high concentration of the carbon source - would also occur on D-xylose, the principal monomer of lignocellulose. To this end, a carbon and energy balance for itaconic acid formation was established, which is 0.83 moles/mole D-xylose. The effect of Mn2+ ions on itaconic acid formation was indeed similar to that on D-glucose and maximal yields were obtained below 3 μg L-1 Mn2+ ions, which were, however, only 0.63 moles of itaconic acid per mole D-xylose. In contrast to the case on D-glucose, increasing D-xylose concentration over 50 g L-1 did not change the above yield. By-products such as xylitol and α-ketoglutarate were found, but in total they remained below 2% of the concentration of D-xylose. Mass balance of the fermentation with 110 g L-1 D-xylose revealed that >95% of the carbon from D-xylose was accounted as biomass, itaconic acid, and the carbon dioxide released in the last step of itaconic acid biosynthesis. Our data show that the efficiency of biomass formation is the critical parameter for itaconic acid yield from D-xylose under otherwise optimal conditions.
Collapse
Affiliation(s)
- István S. Kolláth
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ákos P. Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Áron Soós
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Christian P. Kubicek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
34
|
Teleky BE, Vodnar DC. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers. Polymers (Basel) 2019; 11:E1035. [PMID: 31212656 PMCID: PMC6630286 DOI: 10.3390/polym11061035] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
35
|
The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet Biol 2019; 125:45-52. [DOI: 10.1016/j.fgb.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 11/27/2022]
|
36
|
Karaffa L, Kubicek CP. Citric acid and itaconic acid accumulation: variations of the same story? Appl Microbiol Biotechnol 2019; 103:2889-2902. [PMID: 30758523 PMCID: PMC6447509 DOI: 10.1007/s00253-018-09607-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,, 1100, Vienna, Austria
| |
Collapse
|
37
|
Zhao C, Cui Z, Zhao X, Zhang J, Zhang L, Tian Y, Qi Q, Liu J. Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol 2019; 103:2181-2192. [DOI: 10.1007/s00253-019-09627-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022]
|
38
|
Hossain AH, Ter Beek A, Punt PJ. Itaconic acid degradation in Aspergillus niger: the role of unexpected bioconversion pathways. Fungal Biol Biotechnol 2019; 6:1. [PMID: 30622724 PMCID: PMC6320622 DOI: 10.1186/s40694-018-0062-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Itaconic acid (IA), a C5-dicarboxylic acid, has previously been identified as one of the top twelve biochemicals that can be produced by biotechnological means. IA is naturally produced by Aspergillus terreus, however, heterologous production in the related species Aspergillus niger has been proposed earlier. Remarkably, we observed that during high producing conditions and elevated titers A. niger detoxifies the extracellular medium of IA. In order to determine the genes responsible for this decline in IA titers a transcriptome analysis was performed. RESULTS Transcriptome analysis has led to the identification of two novel and previously unknown IA bioconversion pathways in A. niger. One pathway is proposed to convert IA into pyruvate and acetyl-CoA through the action of itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA) and citramalyl-CoA lyase, similar to the pathway identified in A. terreus. Another pathway putatively converts IA into 1-methyl itaconate through the action of trans-aconitate methyltransferase (TmtA). Upon deleting the key genes ictA and ichA we have observed increased IA production and titers and cessation of IA bioconversion. Surprisingly, deletion of tmtA lead to strong reduction of heterologous IA production. CONCLUSION Heterologous IA production in A. niger induces the expression of IA bioconversion pathways. These pathways can be inhibited by deleting the key genes ictA, ichA and tmtA. Deletion of ictA and ichA resulted in increased IA production. Deletion of tmtA, however, resulted in almost complete cessation of IA production.
Collapse
Affiliation(s)
- Abeer H. Hossain
- Dutch DNA Biotech B.V, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Peter J. Punt
- Dutch DNA Biotech B.V, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
39
|
Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonnell E, Barry K, Clum A, Chen C, LaButti K, Haridas S, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat Genet 2018; 50:1688-1695. [PMID: 30349117 DOI: 10.1038/s41588-018-0246-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation. We further predicted 17,903 carbohydrate-active enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.
Collapse
Affiliation(s)
- Tammi C Vesth
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jane L Nybo
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sebastian Theobald
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens C Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian F Nielsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Hoof
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julian Brandl
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Amyris, Inc., Emeryville, CA, USA
| | - John M Gladden
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Sandia National Laboratory, Livermore, CA, USA
| | - Pallavi Phatale
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Morten T Nielsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ellen K Lyhne
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin E Kogle
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kimchi Strasser
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Jon K Magnuson
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Blake A Simmons
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Uffe H Mortensen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Scott E Baker
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA. .,Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Mikael R Andersen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
40
|
High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Appl Microbiol Biotechnol 2018; 102:8799-8808. [PMID: 30141084 DOI: 10.1007/s00253-018-9325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Itaconic acid is a five-carbon dicarboxylic acid with an unsaturated alkene bond, frequently used as a building block for the industrial production of a variety of synthetic polymers. It is also one of the major products of fungal "overflow metabolism" which can be produced in submerged fermentations of the filamentous fungus Aspergillus terreus. At the present, molar yields of itaconate are lower than those obtained in citric acid production in Aspergillus niger. Here, we have studied the possibility that the yield may be limited by the oxygen supply during fermentation and hence tested the effect of the dissolved oxygen concentration on the itaconic acid formation rate and yield in lab-scale bioreactors. The data show that a dissolved oxygen concentration of 2% saturation was sufficient for maximal biomass formation. Raising it to 30% saturation had no effect on biomass formation or the growth rate, but the itaconate yield augmented substantially from 0.53 to 0.85 mol itaconate/mol glucose. Furthermore, the volumetric and specific rates of itaconic acid formation ameliorated by as much as 150% concurrent with faster glucose consumption, shortening the fermentation time by 48 h. Further increasing the dissolved oxygen concentration over 30% saturation had no effect. Moreover, we show that this increase in itaconic acid production coincides with an increase in alternative respiration, circumventing the formation of surplus ATP by the cytochrome electron transport chain, as well as with increased levels of alternative oxidase transcript. We conclude that high(er) itaconic acid accumulation requires a dissolved oxygen concentration that is much higher than that needed for maximal biomass formation, and postulate that the induction of alternative respiration allows the necessary NADH reoxidation ratio without surplus ATP production to increase the glucose consumption and the flux through overflow metabolism.
Collapse
|
41
|
Young EM, Zhao Z, Gielesen BE, Wu L, Benjamin Gordon D, Roubos JA, Voigt CA. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 2018; 48:33-43. [DOI: 10.1016/j.ymben.2018.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
|
42
|
|
43
|
|
44
|
Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF. World market and biotechnological production of itaconic acid. 3 Biotech 2018; 8:138. [PMID: 29484277 DOI: 10.1007/s13205-018-1151-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/28/2022] Open
Abstract
The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.
Collapse
|
45
|
Zhao M, Lu X, Zong H, Li J, Zhuge B. Itaconic acid production in microorganisms. Biotechnol Lett 2018; 40:455-464. [DOI: 10.1007/s10529-017-2500-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
|
46
|
Bafana R, Pandey RA. New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol 2017; 38:68-82. [DOI: 10.1080/07388551.2017.1312268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richa Bafana
- AcSIR (Academy of Scientific & Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, India
| | - R. A. Pandey
- AcSIR (Academy of Scientific & Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, India
| |
Collapse
|
47
|
P gas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger. Appl Environ Microbiol 2017; 83:AEM.03222-16. [PMID: 28087530 DOI: 10.1128/aem.03222-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022] Open
Abstract
The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only.IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering.
Collapse
|
48
|
Krull S, Hevekerl A, Kuenz A, Prüße U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol 2017; 101:4063-4072. [DOI: 10.1007/s00253-017-8192-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
|
49
|
Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. ACTA ACUST UNITED AC 2017; 44:303-315. [DOI: 10.1007/s10295-016-1878-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L−1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L−1). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.
Collapse
|
50
|
Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep 2017; 7:39768. [PMID: 28051098 PMCID: PMC5209708 DOI: 10.1038/srep39768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Itaconate, a C5 unsaturated dicarboxylic acid, is an important chemical building block that is used in manufacturing high-value products, such as latex and superabsorbent polymers. Itaconate is produced by fermentation of sugars by the filamentous fungus Aspergillus terreus. However, fermentation by A. terreus involves a long fermentation period and the formation of various byproducts, resulting in high production costs. E. coli has been developed as an alternative for producing itaconate. However, fermentation of glucose gives low conversion yields and low productivity. Here, we report the whole-cell bioconversion of citrate to itaconate with enhanced aconitase and cis-aconitate decarboxylase activities by controlling the expression of multiple cadA genes. In addition, this bioconversion system does not require the use of buffers, which reduces the production cost and the byproducts released during purification. Using this whole-cell bioconversion system, we were able to catalyze the conversion of 319.8 mM of itaconate (41.6 g/L) from 500 mM citrate without any buffer system or additional cofactors, with 64.0% conversion in 19 h and a productivity of 2.19 g/L/h. Our bioconversion system suggests very high productivity for itaconate production.
Collapse
|