1
|
Zhao S, Li F, Yang F, Ma Q, Liu L, Huang Z, Fan X, Li Q, Liu X, Gu P. Microbial production of valuable chemicals by modular co-culture strategy. World J Microbiol Biotechnol 2022; 39:6. [PMID: 36346491 DOI: 10.1007/s11274-022-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
Nowadays, microbial synthesis has become a common way for producing valuable chemicals. Traditionally, microbial production of valuable chemicals is accomplished by a single strain. For the purpose of increasing the production titer and yield of a recombinant strain, complicated pathways and regulation layers should be fine-tuned, which also brings a heavy metabolic burden to the host. In addition, utilization of various complex and mixed substrates further interferes with the normal growth of the host strain and increases the complexity of strain engineering. As a result, modular co-culture technology, which aims to divide a target complex pathway into separate modules located at different single strains, poses an alternative solution for microbial production. Recently, modular co-culture strategy has been employed for the synthesis of different natural products. Therefore, in this review, various chemicals produced with application of co-cultivation technology are summarized, including co-culture with same species or different species, and regulation of population composition between the co-culture members. In addition, development prospects and challenges of this promising field are also addressed, and possible solution for these issues were also provided.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai, 264003, People's Republic of China
| | - Fan Yang
- Tsingtao Brewery Co., Ltd., Qingdao, 266071, People's Republic of China
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Liwen Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
2
|
Mhatre A, Shinde S, Jha AK, Rodriguez A, Wardak Z, Jansen A, Gladden JM, George A, Davis RW, Varman AM. Corynebacterium glutamicum as an Efficient Omnivorous Microbial Host for the Bioconversion of Lignocellulosic Biomass. Front Bioeng Biotechnol 2022; 10:827386. [PMID: 35433642 PMCID: PMC9011048 DOI: 10.3389/fbioe.2022.827386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Corynebacterium glutamicum has been successfully employed for the industrial production of amino acids and other bioproducts, partially due to its native ability to utilize a wide range of carbon substrates. We demonstrated C. glutamicum as an efficient microbial host for utilizing diverse carbon substrates present in biomass hydrolysates, such as glucose, arabinose, and xylose, in addition to its natural ability to assimilate lignin-derived aromatics. As a case study to demonstrate its bioproduction capabilities, L-lactate was chosen as the primary fermentation end product along with acetate and succinate. C. glutamicum was found to grow well in different aromatics (benzoic acid, cinnamic acid, vanillic acid, and p-coumaric acid) up to a concentration of 40 mM. Besides, 13C-fingerprinting confirmed that carbon from aromatics enter the primary metabolism via TCA cycle confirming the presence of β-ketoadipate pathway in C. glutamicum. 13C-fingerprinting in the presence of both glucose and aromatics also revealed coumarate to be the most preferred aromatic by C. glutamicum contributing 74 and 59% of its carbon for the synthesis of glutamate and aspartate respectively. 13C-fingerprinting also confirmed the activity of ortho-cleavage pathway, anaplerotic pathway, and cataplerotic pathways. Finally, the engineered C. glutamicum strain grew well in biomass hydrolysate containing pentose and hexose sugars and produced L-lactate at a concentration of 47.9 g/L and a yield of 0.639 g/g from sugars with simultaneous utilization of aromatics. Succinate and acetate co-products were produced at concentrations of 8.9 g/L and 3.2 g/L, respectively. Our findings open the door to valorize all the major carbon components of biomass hydrolysate by using C. glutamicum as a microbial host for biomanufacturing.
Collapse
Affiliation(s)
- Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Somnath Shinde
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Alberto Rodriguez
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Zohal Wardak
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - John M. Gladden
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States,Joint BioEnergy Institute, Emeryville, CA, United States
| | - Anthe George
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, United States
| | - Ryan W. Davis
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| | - Arul M. Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States,*Correspondence: Ryan W. Davis, ; Arul M. Varman,
| |
Collapse
|
3
|
Wiatrowski M, Klein BC, Davis RW, Quiroz-Arita C, Tan ECD, Hunt RW, Davis RE. Techno-economic assessment for the production of algal fuels and value-added products: opportunities for high-protein microalgae conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:8. [PMID: 35418157 PMCID: PMC8764804 DOI: 10.1186/s13068-021-02098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microalgae possess numerous advantages for use as a feedstock in producing renewable fuels and products, with techno-economic analysis (TEA) frequently used to highlight the economic potential and technical challenges of utilizing this biomass in a biorefinery context. However, many historical TEA studies have focused on the conversion of biomass with elevated levels of carbohydrates and lipids and lower levels of protein, incurring substantial burdens on the ability to achieve high cultivation productivity rates relative to nutrient-replete, high-protein biomass. Given a strong dependence of algal biomass production costs on cultivation productivity, further TEA assessment is needed to understand the economic potential for utilizing potentially lower-cost but lower-quality, high-protein microalgae for biorefinery conversion. RESULTS In this work, we conduct rigorous TEA modeling to assess the economic viability of two conceptual technology pathways for processing proteinaceous algae into a suite of fuels and products. One approach, termed mild oxidative treatment and upgrading (MOTU), makes use of a series of thermo-catalytic operations to upgrade solubilized proteins and carbohydrates to hydrocarbon fuels, while another alternative focuses on the biological conversion of those substrates to oxygenated fuels in the form of mixed alcohols (MA). Both pathways rely on the production of polyurethanes from unsaturated fatty acids and valorization of unconverted solids for use as a material for synthesizing bioplastics. The assessment found similar, albeit slightly higher fuel yields and lower costs for the MA pathway, translating to a residual solids selling price of $899/ton for MA versus $1033/ton for MOTU as would be required to support a $2.50/gallon gasoline equivalent (GGE) fuel selling price. A variation of the MA pathway including subsequent upgrading of the mixed alcohols to hydrocarbon fuels (MAU) reflected a required solids selling price of $975/ton. CONCLUSION The slight advantages observed for the MA pathway are partially attributed to a boundary that stops at oxygenated fuels versus fungible drop-in hydrocarbon fuels through a more complex MOTU configuration, with more comparable results obtained for the MAU scenario. In either case, it was shown that an integrated algal biorefinery can be economical through optimal strategies to utilize and valorize all fractions of the biomass.
Collapse
Affiliation(s)
- Matthew Wiatrowski
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Bruno C Klein
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Carlos Quiroz-Arita
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Eric C D Tan
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Hunt
- Algix, 5168 Water Tower Rd, Meridian, MS, 39301, USA
| | - Ryan E Davis
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
4
|
Bahls MO, Platz L, Morgado G, Schmidt GW, Panke S. Directed evolution of biofuel-responsive biosensors for automated optimization of branched-chain alcohol biosynthesis. Metab Eng 2021; 69:98-111. [PMID: 34767976 DOI: 10.1016/j.ymben.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
The biosynthesis of short-chain alcohols is a carbon-neutral alternative to petroleum-derived production, but strain screening operations are encumbered by laborious analytics. Here, we built, characterized and applied whole cell biosensors by directed evolution of the transcription factor AlkS for screening microbial strain libraries producing industrially relevant alcohols. A selected AlkS variant was applied for in situ product detection in two screening applications concerning key steps in alcohol production. Further, the biosensor strains enabled the implementation of an automated, robotic platform-based workflow with data clustering, which readily allowed the identification of significantly improved strain variants for isopentanol production.
Collapse
Affiliation(s)
- Maximilian O Bahls
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Lukas Platz
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Gaspar Morgado
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
5
|
Kruyer NS, Realff MJ, Sun W, Genzale CL, Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nat Commun 2021; 12:6166. [PMID: 34697313 PMCID: PMC8546151 DOI: 10.1038/s41467-021-26393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Mars colonization demands technological advances to enable the return of humans to Earth. Shipping the propellant and oxygen for a return journey is not viable. Considering the gravitational and atmospheric differences between Mars and Earth, we propose bioproduction of a Mars-specific rocket propellant, 2,3-butanediol (2,3-BDO), from CO2, sunlight and water on Mars via a biotechnology-enabled in situ resource utilization (bio-ISRU) strategy. Photosynthetic cyanobacteria convert Martian CO2 into sugars that are upgraded by engineered Escherichia coli into 2,3-BDO. A state-of-the-art bio-ISRU for 2,3-BDO production uses 32% less power and requires a 2.8-fold higher payload mass than proposed chemical ISRU strategies, and generates 44 tons of excess oxygen to support colonization. Attainable, model-guided biological and materials optimizations result in an optimized bio-ISRU that uses 59% less power and has a 13% lower payload mass, while still generating 20 tons excess oxygen. Addressing the identified challenges will advance prospects for interplanetary space travel. Returning from Mars to Earth requires propellant. The authors propose a biotechnology-enabled in situ resource utilization (bioISRU) process to produce a Mars specific rocket propellant, 2,3-butanediol, using cyanobacteria and engineered E. coli, with lower payload mass and energy usage compared to chemical ISRU strategies.
Collapse
Affiliation(s)
- Nicholas S Kruyer
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Matthew J Realff
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenting Sun
- School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Caroline L Genzale
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pamela Peralta-Yahya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Chiang CJ, Hu RC, Huang ZC, Chao YP. Production of Succinic Acid from Amino Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8172-8178. [PMID: 34282894 DOI: 10.1021/acs.jafc.1c02958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glutamate (Glu) and aspartate (Asp) are the most abundant amino acids in various sources of protein waste, recognized as a sustainable resource. In this study, Escherichia coli was engineered to produce succinic acid (SA) from Glu and Asp. Succinate dehydrogenase involved in the tricarboxylic acid was inactivated in the Glu-utilizing strain. To grow on Asp, this mutant strain was subjected to metabolic evolution. One resulting strain capable of metabolizing Asp was further evolved to improve the growth of Glu and Asp. After the deletion of arcA, the resulting strain was employed for the aerobic production of SA. The shake-flask culture was conducted with the minimal medium containing 10 g/L Glu and 10 g/L Asp. Finally, it resulted in the SA production, with a titer, the molar yield, and productivity reaching 72.8 mM (i.e., 8.6 g/L), 0.54 (ca. 75.4% of the theoretical yield), and 0.66 g/L/h, respectively. Overall, this study opens up a new avenue of the biorefinery platform based on renewable amino acids.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ruo-Ciao Hu
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Zih-Ci Huang
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
7
|
Biorefinery: The Production of Isobutanol from Biomass Feedstocks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental issues have prompted the vigorous development of biorefineries that use agricultural waste and other biomass feedstock as raw materials. However, most current biorefinery products are cellulosic ethanol. There is an urgent need for biorefineries to expand into new bioproducts. Isobutanol is an important bulk chemical with properties that are close to gasoline, making it a very promising biofuel. The use of microorganisms to produce isobutanol has been extensively studied, but there is still a considerable gap to achieving the industrial production of isobutanol from biomass. This review summarizes current metabolic engineering strategies that have been applied to biomass isobutanol production and recent advances in the production of isobutanol from different biomass feedstocks.
Collapse
|
8
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
9
|
Bioconversion of Plant Hydrolysate Biomass into Biofuels Using an Engineered Bacillus subtilis and Escherichia coli Mixed-whole Cell Biotransformation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0487-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Gulli J, Kroll E, Rosenzweig F. Encapsulation enhances protoplast fusant stability. Biotechnol Bioeng 2020; 117:1696-1709. [PMID: 32100874 PMCID: PMC7318116 DOI: 10.1002/bit.27318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
A barrier to cost‐efficient biomanufacturing is the instability of engineered genetic elements, such as plasmids. Instability can also manifest at the whole‐genome level, when fungal dikaryons revert to parental species due to nuclear segregation during cell division. Here, we show that by encapsulating Saccharomyces cerevisiae‐Pichia stipitis dikaryons in an alginate matrix, we can limit cell division and preserve their expanded metabolic capabilities. As a proxy to cellulosic ethanol production, we tested the capacity of such cells to carry out ethanologenic fermentation of glucose and xylose, examining substrate use, ploidy, and cell viability in relation to planktonic fusants, as well as in relation to planktonic and encapsulated cell cultures consisting of mixtures of these species. Glucose and xylose consumption and ethanol production by encapsulated dikaryons were greater than planktonic controls. Simultaneous co‐fermentation did not occur; rather the order and kinetics of glucose and xylose catabolism by encapsulated dikaryons were similar to cultures where the two species were encapsulated together. Over repeated cycles of fed‐batch culture, encapsulated S. cerevisiae‐P. stipitis fusants exhibited a dramatic increase in genomic stability, relative to planktonic fusants. Encapsulation also increased the stability of antibiotic‐resistance plasmids used to mark each species and preserved a fixed ratio of S. cerevisiae to P. stipitis cells in mixed cultures. Our data demonstrate how encapsulating cells in an extracellular matrix restricts cell division and, thereby, preserves the stability and biological activity of entities ranging from genomes to plasmids to mixed populations, each of which can be essential to cost‐efficient biomanufacturing.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Eugene Kroll
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Frank Rosenzweig
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
11
|
DeRose K, Liu F, Davis RW, Simmons BA, Quinn JC. Conversion of Distiller's Grains to Renewable Fuels and High Value Protein: Integrated Techno-Economic and Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10525-10533. [PMID: 31381851 DOI: 10.1021/acs.est.9b03273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Distiller's grains are a byproduct of corn ethanol production and provide an opportunity for increasing the economic viability and sustainability of the overall grain-to-fuels process. Typically, these grains are dried and sold as a ruminant feed adjunct. This study considers utilization of the residuals in a novel supplementary fermentation process to produce two products, enriched protein and fusel alcohols. The value-added proposition and environmental impact of this second fermentation step for distiller's grains are evaluated by considering three different processing scenarios. Techno-economic results show the minimum protein selling price, assuming fusel alcohol products are valued at $0.79 per liter gasoline equivalent, ranges between $1.65-$2.48 kg protein-1 for the different cases. Environmental impacts of the systems were evaluated through life cycle assessment. Results show a baseline emission results of 17 g CO2-eq (MJ fuel)-1 for the fuel product and 10.3 kg CO2-eq kg protein-1 for the protein product. Sensitivity to allocation methods show a dramatic impact with results ranging between -8 to 140 g CO2-eq (MJ fuel)-1 for the fuel product and -0.3 to 6.4 kg CO2-eq kg protein-1 for the protein product. The discussion is focused on the potential impact of the technology on corn ethanol production economics and sustainability.
Collapse
Affiliation(s)
- Katherine DeRose
- Mechanical Engineering , Colorado State University Fort Collins , Colorado 80523 , United States
| | - Fang Liu
- Biomass Science and Conversion Technologies , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Ryan W Davis
- Biomass Science and Conversion Technologies , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Deconstruction Division , Lawrence Berkeley National Laboratory , Emeryville , California 94720 , United States
| | - Jason C Quinn
- Mechanical Engineering , Colorado State University Fort Collins , Colorado 80523 , United States
| |
Collapse
|
12
|
Liu F, Lane P, Hewson JC, Stavila V, Tran-Gyamfi MB, Hamel M, Lane TW, Davis RW. Development of a closed-loop process for fusel alcohol production and nutrient recycling from microalgae biomass. BIORESOURCE TECHNOLOGY 2019; 283:350-357. [PMID: 30933901 DOI: 10.1016/j.biortech.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Improving the economic feasibility is necessary for algae-based processes to achieve commercial scales for biofuels and bioproducts production. A closed-loop system for fusel alcohol production from microalgae biomass with integrated nutrient recycling was developed, which enables the reuse of nitrogen and phosphorus for downstream application and thus reduces the operational requirement for external major nutrients. Mixed fusel alcohols, primarily isobutanol and isopentanol were produced from Microchloropsis salina hydrolysates by an engineered E. coli co-culture. During the process, cellular nitrogen from microalgae biomass was converted into ammonium, whereas cellular phosphorus was liberated by an osmotic shock treatment. The formation of struvite from the liberated ammonium and phosphate, and the subsequent utilization of struvite to support M. salina cultivation was demonstrated. The closed loop system established here should help overcome one of the identified economic barriers to scale-up of microalgae production, and enhance the sustainability of microalgae-based chemical commodities production.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Pamela Lane
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - John C Hewson
- Department of Fire Science and Technology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Vitalie Stavila
- Department of Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Mary B Tran-Gyamfi
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Michele Hamel
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Todd W Lane
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Ryan W Davis
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA.
| |
Collapse
|
13
|
Flores AD, Ayla EZ, Nielsen DR, Wang X. Engineering a Synthetic, Catabolically Orthogonal Coculture System for Enhanced Conversion of Lignocellulose-Derived Sugars to Ethanol. ACS Synth Biol 2019; 8:1089-1099. [PMID: 30979337 DOI: 10.1021/acssynbio.9b00007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fermentation of lignocellulosic sugar mixtures is often suboptimal due to inefficient xylose catabolism and sequential sugar utilization caused by carbon catabolite repression. Unlike in conventional applications employing a single engineered strain, the alternative development of synthetic microbial communities facilitates the execution of complex metabolic tasks by exploiting the unique community features, including modularity, division of labor, and facile tunability. A series of synthetic, catabolically orthogonal coculture systems were systematically engineered, as derived from either wild-type Escherichia coli W or ethanologenic LY180. Net catabolic activities were effectively balanced by simple tuning of the inoculum ratio between specialist strains, which enabled coutilization (98% of 100 g L-1 total sugars) of glucose-xylose mixtures (2:1 by mass) for both culture systems in simple batch fermentations. The engineered ethanologenic cocultures achieved ethanol titer (46 g L-1), productivity (488 mg L-1 h-1), and yield (∼90% of theoretical maximum), which were all significantly increased compared to LY180 monocultures.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, Davis RW, Mirsiaghi M, Sundstrom E, Pray T, Skerker JM, George A, Gladden JM. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Fact 2019; 18:54. [PMID: 30885220 PMCID: PMC6421710 DOI: 10.1186/s12934-019-1099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xun Zhuang
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Oliver Kilian
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Eric Monroe
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Masakazu Ito
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Mary Bao Tran-Gymfi
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Fang Liu
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Mona Mirsiaghi
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Eric Sundstrom
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Todd Pray
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jeffrey M Skerker
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Anthe George
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| | - John M Gladden
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| |
Collapse
|
15
|
Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101412] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|