1
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Luo J, Song C, Cui W, Wang Q, Zhou Z, Han L. Precise redesign for improving enzyme robustness based on coevolutionary analysis and multidimensional virtual screening. Chem Sci 2024:d4sc02058h. [PMID: 39257856 PMCID: PMC11382147 DOI: 10.1039/d4sc02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/27/2024] [Indexed: 09/12/2024] Open
Abstract
Natural enzymes are able to function effectively under optimal physiological conditions, but the intrinsic performance often fails to meet the demands of industrial production. Existing strategies are based mainly on the evaluation and subsequent combination of single-point mutations; however, this approach often suffers from a limited number of designable residues and from low accuracy. Here, we propose a strategy (Co-MdVS) based on coevolutionary analysis and multidimensional virtual screening for precise design to improve enzyme robustness, employing nattokinase as a model. Using this strategy, we efficiently screened 8 dual mutants with enhanced thermostability from a virtual mutation library containing 7980 mutants. After further iterative combination, the optimal mutant M6 exhibited a 31-fold increase in half-life at 55 °C, significantly enhanced acid resistance, and improved catalytic efficiency with different substrates. Molecular dynamics simulations indicated that the reduced flexibility of thermal and acid-sensitive regions resulted in a significantly increased robustness of M6. Furthermore, the potential of multidimensional virtual screening in enhancing design precision has been validated on l-rhamnose isomerase and PETase. Therefore, the Co-MdVS strategy introduced in this research may offer a viable approach for developing enzymes with enhanced robustness.
Collapse
Affiliation(s)
- Jie Luo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Chenshuo Song
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Qiong Wang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
3
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
6
|
Arjmand S. Promoters in Pichia pastoris: A Toolbox for Fine-Tuned Gene Expression. Methods Mol Biol 2024; 2844:159-178. [PMID: 39068339 DOI: 10.1007/978-1-0716-4063-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.
Collapse
Affiliation(s)
- Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Jun JS, Jeong HE, Hong KW. Exploring and Engineering Novel Strong Promoters for High-Level Protein Expression in Bacillus subtilis DB104 through Transcriptome Analysis. Microorganisms 2023; 11:2929. [PMID: 38138072 PMCID: PMC10745405 DOI: 10.3390/microorganisms11122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis is widely employed for recombinant protein expression. B. subtilis DB104 offers a distinct advantage as a protein expression host because it is an extracellular protease-deficient derivative of B. subtilis 168. We have conducted a time-course transcriptome analysis of B. subtilis DB104 in a prior study. In the present study, we identified 10 genes that exhibited strong expression at each time point or all, based on transcriptome data. Subsequently, we assessed the strength of 12 promoters that transcribe these genes using enhanced green fluorescent protein (eGFP) as a reporter. Among these promoters, Psdp and PskfA had the highest expression levels. At 24 h, these two promoters exhibited 34.5- and 38.8-fold higher strength, respectively, than the strength of P43, the control promoter. Consequently, these two promoters were selected for further development. We enhanced these promoters by optimizing spacer length, promoter sequence, Shine-Dalgarno sequence, regulator binding sites, and terminator sequences. As a result, we successfully engineered the most potent protein expression cassette, Psdp-4, which exhibited a 3.84-fold increase in strength compared to the original Psdp promoter. Furthermore, we constructed an expression cassette for a human epidermal growth factor (hEGF) using Psdp-4 to evaluate its general application. The expression level of His tagged hEGF, quantified using ImageJ analysis and applied to SDS-PAGE, reached the highest yield of 103.9 μg/mL under the control of Psdp-4 at 24 h. The expressed hEGF protein was purified, and its bioactivity was confirmed through a cell proliferation assay using HT-29 cells. Our work demonstrates the construction of a highly efficient expression system for B. subtilis DB104 based on transcriptome data and promoter engineering. This system enables rapid, inducer-free protein expression within 24 h. It can be used as a valuable tool for various industrial applications.
Collapse
Affiliation(s)
| | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.)
| |
Collapse
|
8
|
Rao Y, Wang J, Yang X, Xie X, Zhan Y, Ma X, Cai D, Chen S. A novel toolbox for precise regulation of gene expression and metabolic engineering in Bacillus licheniformis. Metab Eng 2023; 78:159-170. [PMID: 37307865 DOI: 10.1016/j.ymben.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Despite industrial bio-manufacturing progress using Bacillus licheniformis, the absence of a well-characterized toolbox allowing precise regulation of multiple genes limits its expansion for basic research and application. Here, a novel gene expression toolbox (GET) was developed for precise regulation of gene expression and high-level production of 2-phenylethanol. Firstly, we established a novel promoter core region mosaic combination model to combine, characterize and analyze different core regions. Characterization and orthogonal design of promoter ribbons allowed convenient construction of an adaptable and robust GET, gene gfp expression intensity was 0.64%-16755.77%, with a dynamic range of 2.61 × 104 times, which is the largest regulatory range of GET in Bacillus based on modification of promoter P43. Then we verified the protein and species universality of GET using different proteins expressed in B. licheniformis and Bacillus subtilis. Finally, the GET for 2-phenylethanol metabolic breeding, resulting in a plasmid-free strain producing 6.95 g/L 2-phenylethanol with a yield and productivity of 0.15 g/g glucose and 0.14 g/L/h, respectively, the highest de novo synthesis yield of 2-phenylethanol reported. Taken together, this is the first report elucidating the impact of mosaic combination and tandem of multiple core regions to initiate transcription and improve the output of proteins and metabolites, which provides strong support for gene regulation and diversified product production in Bacillus.
Collapse
Affiliation(s)
- Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jiaqi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Xinyuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Xinxin Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
9
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
10
|
Yeak KYC, Boekhorst J, Wels M, Abee T, Wells-Bennik MHJ. Prediction and validation of novel SigB regulon members in Bacillus subtilis and regulon structure comparison to Bacillales members. BMC Microbiol 2023; 23:17. [PMID: 36653740 PMCID: PMC9847131 DOI: 10.1186/s12866-022-02700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Host Microbe Interactomics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Wels
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.426040.4Rijk Zwaan Breeding B.V, Fijnaart, The Netherlands
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
11
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
13
|
Song H, Yang Y, Li H, Du J, Hu Z, Chen Y, Yang N, Mei M, Xiong Z, Tang K, Yi L, Zhang Y, Yang S. Determination of Nucleotide Sequences within Promoter Regions Affecting Promoter Compatibility between Zymomonas mobilis and Escherichia coli. ACS Synth Biol 2022; 11:2811-2819. [PMID: 35771099 DOI: 10.1021/acssynbio.2c00187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A promoter plays a crucial role in controlling the expression of the target gene in cells, thus being one of the key biological parts for synthetic biology practices. Although significant efforts have been made to identify and characterize promoters with different strengths in various microorganisms, the compatibility of promoters within different hosts still lacks investigation. In this study, we chose the native Pgap promoter of Zymomonas mobilis to investigate nucleotide sequences within promoter regions affecting promoter compatibility between Escherichia coli and Z. mobilis. Pgap is one of the strongest promotors in Z. mobilis that has many excellent characteristics to be developed as microbial cell factories. Using EGFP as a reporter, a Z. mobilis-derived Pgap mutant library was constructed and sorted in E. coli, with candidate promoters exhibiting high fluorescence intensity collected. A total of 53 variants were finally selected and sequenced by Sanger sequencing. The sequencing results grouped these variants into 12 different Pgap variant types, among which seven types presented higher promoter strength than native Pgap in E. coli. The next-generation sequencing technique was then employed to identify key mutations within the Pgap promoter region that affect the promoter compatibility. Finally, six important sites were identified and confirmed to help increase Pgap strength in E. coli while keeping similar strength of native Pgap in Z. mobilis. Compared to native Pgap, synthetic promoters combining these sites had enhanced strength; especially, Pgap-6M combining all six sites exhibited 20-fold greater strength than native Pgap in E. coli. This study thus not only determined six important sites affecting promoter compatibility but also confirmed a series of Pgap promoter variants with strong promoter activity in both E. coli and Z. mobilis. In addition, a strategy was established in this study to investigate and determine nucleotide sequences in promoter regions affecting promoter compatibility, which can be applied in other microorganisms to help reveal universal factors affecting promoter compatibility and design promoters with desired strengths among different microbial cell factories.
Collapse
Affiliation(s)
- Haoyue Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jun Du
- Beijing Tsingke Biotechnology Co., Ltd., Beijing 101111, China
| | - Zhousheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiqiang Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ke Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
14
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
15
|
Vaknin I, Amit R. Molecular and experimental tools to design synthetic enhancers. Curr Opin Biotechnol 2022; 76:102728. [PMID: 35525178 DOI: 10.1016/j.copbio.2022.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
Understanding the grammar of enhancers and how they regulate gene expression is key for both basic research and for the pharma and biotech industries. The design and characterization of synthetic enhancers can expand the known regulatory space. This is achieved by the utilization of DNA Oligo Libraries (OLs), which facilitates screening of as many as millions of synthetic enhancer variants simultaneously. This review includes the latest commercial DNA OL synthesis technology and its capabilities, and a general 'know-how' guide for the design, construction, and analysis of OL-based synthetic enhancer characterization experiments. Specifically, we focus on synthetic-enhancer-based massively parallel reporter assay, Sort-seq methodologies (e.g. flow cytometry, deep sequencing), and a brief description of machine learning-based attempts for OL-analysis and follow-up validation experiments.
Collapse
Affiliation(s)
- Inbal Vaknin
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200000, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200000, Israel; The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200000, Israel.
| |
Collapse
|
16
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
17
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
18
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
19
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
20
|
Rao Y, Li P, Xie X, Li J, Liao Y, Ma X, Cai D, Chen S. Construction and Characterization of a Gradient Strength Promoter Library for Fine-Tuned Gene Expression in Bacillus licheniformis. ACS Synth Biol 2021; 10:2331-2339. [PMID: 34449215 DOI: 10.1021/acssynbio.1c00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacillus licheniformis DW2 is an important industrial strain for bacitracin production, and it is also used for biochemical production, however, the lack of effective toolkit for precise regulation of gene expression hindered its application seriously. Here, a gradient strength promoter library was constructed based on bacitracin synthetase gene cluster promoter PbacA. First, different PbacA promoter variants were constructed via coupling PbacA with various 5'-UTRs, and expression ranges of 32.6-741.8% were attained among these promoters. Then, three promoters, PUbay (strong), PbacA (middle), and PUndh (weakest), were applied for red fluorescent protein (RFP) and keratinase expression assays, and these promoters were proven to have good universality for different proteins. Second, the promoter of bacitracin synthetase gene cluster was replaced by these three promoters, and bacitraicn titer was enhanced by 14.62% when PUbay was applied, which was decreased by 98.05% under the mediation of PUndh compared with that of the original strain DW2. Third, promoters PUbay, PUyvgO, and PUndh were selected to regulate the expression levels of critical genes that are responsible for pucheriminic acid synthesis, and pucheriminic acid yield was increased by 194.1% via manipulating synthetic and competitive pathways. Finally, promoters PUbay, PbacA, and PUndh were applied for green fluorescent protein (GFP) and RFP expression in Escherichia coli, and consistent effects were attained based on our results. Taken together, a gradient strength promoter library was constructed in this research, which provided an effective toolkit for fine-tuning gene expression and reprogramming metabolite metabolic flux in B. licheniformis.
Collapse
Affiliation(s)
- Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Peifen Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xinxin Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jiemin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, People's Republic of China
| |
Collapse
|
21
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
23
|
Temperature effects on RNA polymerase initiation kinetics reveal which open complex initiates and that bubble collapse is stepwise. Proc Natl Acad Sci U S A 2021; 118:2021941118. [PMID: 34290140 DOI: 10.1073/pnas.2021941118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription initiation is highly regulated by promoter sequence, transcription factors, and ligands. All known transcription inhibitors, an important class of antibiotics, act in initiation. To understand regulation and inhibition, the biophysical mechanisms of formation and stabilization of the "open" promoter complex (OC), of synthesis of a short RNA-DNA hybrid upon nucleotide addition, and of escape of RNA polymerase (RNAP) from the promoter must be understood. We previously found that RNAP forms three different OC with λPR promoter DNA. The 37 °C RNAP-λPR OC (RPO) is very stable. At lower temperatures, RPO is less stable and in equilibrium with an intermediate OC (I3). Here, we report step-by-step rapid quench-flow kinetic data for initiation and growth of the RNA-DNA hybrid at 25 and 37 °C that yield rate constants for each step of productive nucleotide addition. Analyzed together, with previously published data at 19 °C, our results reveal that I3 and not RPO is the productive initiation complex at all temperatures. From the strong variations of rate constants and activation energies and entropies for individual steps of hybrid extension, we deduce that contacts of RNAP with the bubble strands are disrupted stepwise as the hybrid grows and translocates. Stepwise disruption of RNAP-strand contacts is accompanied by stepwise bubble collapse, base stacking, and duplex formation, as the hybrid extends to a 9-mer prior to disruption of upstream DNA-RNAP contacts and escape of RNAP from the promoter.
Collapse
|
24
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Chen Q, Cui W, Zhou Z, Han L. Exploration of key residues and conformational change of anti-terminator protein GlpP for ligand and RNA binding. Proteins 2021; 89:623-631. [PMID: 33455022 DOI: 10.1002/prot.26045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Anti-terminator protein GlpP regulates gene expression of glycerol uptake operon at post-transcriptional level in a number of bacteria. By now, the molecular dynamics details of ligand and RNA binding by GlpP are still obscure. In this study, we employed the molecular dynamic (MD) simulation and constructed a functional verification platform of GlpP to resolve these puzzles. By combining molecular docking, MD simulation and alanine scanning mutagenesis, a ligand binding pocket consisting of R14, R104 and R157 was identified. Among these residues with positive charge, R14 was dominant for binding glycerol-3-phosphate (G3P). Moreover, the "parallel to crossed" conformational change of the predicted RNA binding region was observed in MD simulation. In this process, the interaction between R104 and E129 was crucial to trigger the conformational change. To further verify this speculation, three ligand independent mutants were obtained by error-prone PCR. The MD simulation indicated that the conformational change happened in all the three mutants, confirming the "parallel to crossed" conformational change endowed GlpP the activity of binding RNA. In recent years, as a potable biological part, anti-terminator was more and more widely used to regulate gene expression in metabolic engineering and synthetic biology. The work in this study deepened our understanding to the typical anti-terminator GlpP, contributing to the further engineering and application of this type of regulator.
Collapse
Affiliation(s)
- Qiaoqing Chen
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Optimization of Cephalosporin C Acylase Expression in Escherichia coli by High-Throughput Screening a Constitutive Promoter Mutant library. Appl Biochem Biotechnol 2021; 193:1056-1071. [PMID: 33405008 DOI: 10.1007/s12010-020-03482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Cephalosporin C acylase (CCA) is capable of catalyzing cephalosporin C (CPC) to produce 7-aminocephalosporanic acid (7-ACA), an intermediate of semi-synthetic cephalosporins. Inducible expression is usually used for CCA. To improve the efficiency of CCA expression without gene induction, three recombinant strains regulated by constitutive promoters BBa_J23105, PLtetO1, and tac were constructed, respectively. Among them, BBa_J23105 was the best promoter and its mutant libraries were established using saturation mutagenesis. In order to obtain the mutants with enhanced activity, a high-throughput screening method based on flow cytometric sorting techniques was developed by using green fluorescent protein (GFP) as the reporter gene. A series of mutants were screened at 28 °C, 200 rpm, and 24-h culture condition. The study of mutants showed that the enzyme activity, fluorescence intensity, and promoter transcriptional strength were positively correlated. The enzyme activity of the optimal mutant obtained by screening reached 12772 U/L, 3.47 times that of the original strain.
Collapse
|
27
|
Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front Bioeng Biotechnol 2020; 8:570828. [PMID: 33304888 PMCID: PMC7693651 DOI: 10.3389/fbioe.2020.570828] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Riboflavin is a crucial micronutrient that is a precursor to coenzymes flavin mononucleotide and flavin adenine dinucleotide, and it is required for biochemical reactions in all living cells. For decades, one of the most important applications of riboflavin has been its global use as an animal and human nutritional supplement. Being well-informed of the latest research on riboflavin production via the fermentation process is necessary for the development of new and improved microbial strains using biotechnology and metabolic engineering techniques to increase vitamin B2 yield. In this review, we describe well-known industrial microbial producers, namely, Ashbya gossypii, Bacillus subtilis, and Candida spp. and summarize their biosynthetic pathway optimizations through genetic and metabolic engineering, combined with random chemical mutagenesis and rational medium components to increase riboflavin production.
Collapse
Affiliation(s)
- Liudmila A. Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Larissa A. Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Oksana M. Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Anna B. Podvolotskaya
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Liudmila A. Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| |
Collapse
|
28
|
Abstract
The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.
Collapse
Affiliation(s)
- Maria Eugenia Inda
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Timothy K. Lu
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020; 5:245-251. [PMID: 32775709 PMCID: PMC7394859 DOI: 10.1016/j.synbio.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.
Collapse
Affiliation(s)
- Mengjie Xiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
30
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
31
|
Han L, Cui W, Lin Q, Chen Q, Suo F, Ma K, Wang Y, Hao W, Cheng Z, Zhou Z. Efficient Overproduction of Active Nitrile Hydratase by Coupling Expression Induction and Enzyme Maturation via Programming a Controllable Cobalt-Responsive Gene Circuit. Front Bioeng Biotechnol 2020; 8:193. [PMID: 32266230 PMCID: PMC7105576 DOI: 10.3389/fbioe.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
A robust and portable expression system is of great importance in enzyme production, metabolic engineering, and synthetic biology, which maximizes the performance of the engineered system. In this study, a tailor-made cobalt-induced expression system (CIES) was developed for low-cost and eco-friendly nitrile hydratase (NHase) production. First, the strong promoter Pveg from Bacillus subtilis, the Ni(II)/Co(II) responsive repressor RcnR, and its operator were reorganized to construct a CIES. In this system, the expression of reporter green fluorescent protein (GFP) was specifically triggered by Co(II) over a broad range of concentration. The performance of the cobalt-induced system was evolved to version 2.0 (CIES 2.0) for adaptation to different concentrations of Co(II) through programming a homeostasis system that rebalances cobalt efflux and influx with RcnA and NiCoT, respectively. Harnessing these synthetic platforms, the induced expression of NHase was coupled with enzyme maturation by Co(II) in a synchronizable manner without requiring additional inducers, which is a unique feature relative to other induced systems for production of NHase. The yield of NHase was 111.2 ± 17.9 U/ml using CIES and 114.9 ± 1.4 U/ml using CIES 2.0, which has a producing capability equivalent to that of commonly used isopropyl thiogalactoside (IPTG)-induced systems. In a scale-up system using a 5-L fermenter, the yielded enzymatic activity reached 542.2 ± 42.8 U/ml, suggesting that the designer platform for NHase is readily applied to the industry. The design of CIES in this study not only provided a low-cost and eco-friendly platform to overproduce NHase but also proposed a promising pipeline for development of synthetic platforms for expression of metalloenzymes.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Feiya Suo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Ke Ma
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Yang Wang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenliang Hao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| |
Collapse
|
32
|
Han L, Chen Q, Lin Q, Cheng J, Zhou L, Liu Z, Guo J, Zhang L, Cui W, Zhou Z. Realization of Robust and Precise Regulation of Gene Expression by Multiple Sigma Recognizable Artificial Promoters. Front Bioeng Biotechnol 2020; 8:92. [PMID: 32140461 PMCID: PMC7042180 DOI: 10.3389/fbioe.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σA, σH and σW, had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jintao Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|