1
|
Zhang J, Xin W, Zou Y, Yan J, Tang W, Ji Y, Li W. Dynamic changes and correlation analysis of microorganisms and flavonoids/ amino acids during white tea storage. Food Chem 2024; 455:139932. [PMID: 38843719 DOI: 10.1016/j.foodchem.2024.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.
Collapse
Affiliation(s)
- Jianming Zhang
- Research Management Service, Wuyi University, Wuyishan 354300, China
| | - Wei Xin
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenxin Tang
- Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
3
|
Kompoura V, Karapantzou I, Mitropoulou G, Parisis NA, Gkalpinos VK, Anagnostou VA, Tsiailanis AD, Vasdekis EP, Koutsaliaris IK, Tsouka AN, Karapetsi L, Madesis P, Letsiou S, Florou D, Koukkou AI, Barbouti A, Tselepis AD, Kourkoutas Y, Tzakos AG. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem 2024; 441:138175. [PMID: 38194793 DOI: 10.1016/j.foodchem.2023.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.
Collapse
Affiliation(s)
- Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Karapantzou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos A Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios K Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki A Anagnostou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioannis K Koutsaliaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Aikaterini N Tsouka
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Stavroula Letsiou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Florou
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna-Irini Koukkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; University Research Center of Ioannina, Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
4
|
Liang X, Wan D, Tan L, Liu H. Dynamic changes of endophytic bacteria in the bark and leaves of medicinal plant Eucommia ulmoides in different seasons. Microbiol Res 2024; 280:127567. [PMID: 38103467 DOI: 10.1016/j.micres.2023.127567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The bark and leaves of the Eucommia ulmoides Oliv. (E. ulmoides) have good medicinal value. Studies show endophytes play important roles in host medicinal plant secondary metabolite synthesis, with season being a key influencing factor. Therefore, we used 16 S rRNA to detect endophytic bacteria (EB) in E. ulmoides bark and leaves collected in winter, spring, summer, and autumn, and analyzed the contents of major active components respectively. The results showed that the species diversity and richness of EB of the E. ulmoides bark were higher than those of leaves in all seasons except fall. Among them, the higher species diversity and richness were found in the E. ulmoides bark in winter and spring. EB community structure differed significantly between medicinal tissues and seasons. Concurrently, the bark and leaves of E. ulmoides showed abundant characteristic EB across seasons. For active components, geniposidic acid showed a significant positive correlation with EB diversity and richness, while the opposite was true for aucubin. Additionally, some dominant EB exhibited close correlations with the accumulation of active components. Delftia, enriched in autumn, correlated significantly positively with aucubin. Notably, the impact of the same EB genera on active components differed across medicinal tissues. For example, Sphingomonas, enriched in summer, correlated significantly positively with pinoresinol diglucoside (PDG) in the bark, but with aucubin in the leaves. In summary, EB of E. ulmoides was demonstrated high seasonal dynamics and tissue specificity, with seasonal characteristic EB like Delftia and Sphingomonas correlating with the accumulation of active components in medicinal tissues.
Collapse
Affiliation(s)
- Xuejuan Liang
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Dan Wan
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Lei Tan
- Cili Meteorological Bureau, Zhangjiajie 410013, China
| | - Hao Liu
- Institute of Traditional Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
5
|
Li H, Dai W, Zhang X, Lu J, Song F, Li H. Chemical components of Fu brick tea and its potential preventive effects on metabolic syndrome. Food Sci Nutr 2024; 12:35-47. [PMID: 38268870 PMCID: PMC10804099 DOI: 10.1002/fsn3.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
As living standards advance, an escalating emphasis is placed on health, particularly in relation to prevalent chronic metabolic disorders. It is necessary to explore safe and effective functional foods or drugs. Fu brick tea (FBT) is a kind of dark tea fermented by fungi. The extracts are rich in compounds that can effectively relieve metabolic diseases such as hyperglycemia and hyperlipidemia, protect the liver, improve human immunity, enhance antioxidant activity, and regulate intestinal flora. This paper summarizes the biological activities and mechanisms of the extracts, polysaccharides, and small molecular compounds of FBT, which provides a certain theoretical basis for the rational, systematic, comprehensive development and utilization of the FBT resources. It is expected to develop and apply these active substances in health care products and natural medicines and provide more beneficial and diversified FBT products for human beings.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Wei Dai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Xinjun Zhang
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Jie Lu
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Hua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
6
|
Kong J, Huang C, Xiong Y, Li B, Kong W, Liu W, Tan Z, Peng D, Duan Y, Zhu X. Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1870-1877. [PMID: 37462318 DOI: 10.1021/acs.jnatprod.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.
Collapse
Affiliation(s)
- Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Baihuan Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wangyang Liu
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Zhouke Tan
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
7
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
8
|
Long X, Lu Y, Guo H, Tang Y. Recent Advances in Solid Residues Resource Utilization in Traditional Chinese Medicine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xu Long
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Ying‐Lei Lu
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Hui Guo
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yu‐Ping Tang
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| |
Collapse
|
9
|
Song X, Lu C, Luo J, Gong X, Guo D, Ma Y. Matured compost amendment improves compost nutrient content by changing the bacterial community during the composting of Chinese herb residues. Front Microbiol 2023; 14:1146546. [PMID: 37007496 PMCID: PMC10060987 DOI: 10.3389/fmicb.2023.1146546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Composting is a sustainable strategy to deal with organic waste. Our research aimed to study the influence of an amendment of 10% matured compost (MC) during Chinese herb residue (CHR) compost. Here, a 60-day CHR compost was performed, and MC application was able to reduce the nitrogen loss and enhance the humic acid accumulation during the composting as compared with the non-inoculated control (NC), by 25 and 19%, respectively. Furthermore, the matured compost amendment improved the diversity of the bacterial community, increased the complexity of the co-occurrence network, and changed the keystone and module hub bacteria during composting. The increased abundance levels of Thermopolyspora, Thermobispora, and Thermosporomyces, which were significantly higher in MC than in NC, may contribute to the degradation of cellulose and the formation of humic acid. Overall, this study extends our understanding of the effects of matured compost reflux on compost quality and the bacterial community.
Collapse
Affiliation(s)
- Xiuchao Song
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chao Lu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Luo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing, China
| | - Xin Gong
- Jiangsu Key Laboratory for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dejie Guo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Ma
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing, China
- *Correspondence: Yan Ma,
| |
Collapse
|
10
|
Luo J, Yang R, Ma F, Jiang W, Han C. Recycling utilization of Chinese medicine herbal residues resources: systematic evaluation on industrializable treatment modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32153-32167. [PMID: 36719578 DOI: 10.1007/s11356-023-25614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Traditional Chinese medicine (TCM) is an indispensable part of the world health and medical system and plays an important role in treatment, prevention, and health care. These TCM produce a large amount of Chinese medicine herbal residues (CHMRs) during the application process, most of which are the residues after the decoction or extraction of botanical medicines. These CMHRs contain a large number of unused components, which can be used in medical, breeding, planting, materials, and other industries. Considering the practical application requirements, this paper mainly introduces the low-cost treatment methods of CHMRs, including the extraction of active ingredients, cultivation of edible fungi, and manufacture of feed. These methods not only have low upfront investment, but also have some income in the future. Furthermore, other methods are briefly introduced. In conclusion, this paper can provide a reference for people who need to deal with CMHRs and contribute to the sustainable development of TCM.
Collapse
Affiliation(s)
- Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.
| |
Collapse
|
11
|
Zhou Y, Manu MK, Li D, Johnravindar D, Selvam A, Varjani S, Wong J. Effect of Chinese medicinal herbal residues compost on tomato and Chinese cabbage plants: Assessment on phytopathogenic effect and nutrients uptake. ENVIRONMENTAL RESEARCH 2023; 216:114747. [PMID: 36372151 DOI: 10.1016/j.envres.2022.114747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are known for their antipathogenic properties due to the presence of bioactive compounds. Hence, CMHRs could be used as a potential resource to produce biofertilizer with antipathogenic properties for agricultural applications. In this study, a novel approach was used by utilizing the waste-derived biofertilizer, i.e., CMHRs compost (CMHRC) as a nutrient supplier as well as an organic bioagent against Alternaria solani (A. solani) and Fusarium oxysporum (F. oxysporum) on tomato (Lycopersicon esculentum) and Chinese cabbage (Brassica rapa subsp. Chinensis) plants. The experiments were conducted under greenhouse conditions using locally collected acidic soil wherein 2%, 5% and 10% CMHRC (dry weight) along with 5% food waste compost were used as treatments. In addition, only soil and soil with phytopathogens were used as control treatments. The results suggested that amending the compost into acidic soil significantly increased the pH to a neutral level along with enhanced uptake of nutrients. Among all the treatments, 5% CMHRs compost addition increased the tomato plant biomass production to 4.9 g/pot (dry weight) compared to 2.2 g/pot in control. A similar trend was observed in Chinese cabbage plants and the improved plant biomass production could be attributed to the combined effect of strong nutrient absorption ability by healthy roots and enhanced nutrient supply. At 5% CMHRC application rate, the nitrogen uptake by tomato and Chinese cabbage plants increased by 78% and 62%, respectively, whereas phosphorous uptake increased by 75% and 25%, respectively. The reduction in A. solani by 48% and F. oxysporum by 54% in the post-harvested soil of 5% CMHRC treatment against the control demonstrated the anti-phytopathogenic efficiency of CMHRC compost. Hence, the present study illustrates the beneficiary aspects of utilizing CMHRs to produce biofertilizer with anti-phytopathogenic properties which can be safely used for tomato and Chinese cabbage plant growth.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; Food Science Unit, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Ammaiyappan Selvam
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; Department of Plant Science, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627 012, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| | - Jonathan Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
12
|
Two New Anthraquinones from the Cigar Tobacco-Derived Fungus Aspergillus versicolor and Their Bioactivities. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Chen BY, Hsueh CC, Tsai PW, Lin YH, Tsai PS, Lien TK, Yang CW, Jiang LD. Deciphering biotransformation of anthraquinone electron shuttles in Rheum palmatum L. for value-added production. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Wang Y, Chen Y, Zhang J, Zhang C. Overexpression of llm1 Affects the Synthesis of Secondary Metabolites of Aspergillus cristatus. Microorganisms 2022; 10:microorganisms10091707. [PMID: 36144309 PMCID: PMC9502445 DOI: 10.3390/microorganisms10091707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Putative methyltransferases are thought to be involved in the regulation of secondary metabolites in filamentous fungi. Here, we report the effects of overexpression of a predicted LaeA-like methyltransferase gene llm1 on the synthesis of secondary metabolites in Aspergillus cristatus. Our results revealed that overexpression of the gene llm1 in A. cristatus significantly hindered the production of conidia and enhanced sexual development, and reduced oxidative tolerance to hydrogen peroxide. Compared with the wild-type, the metabolic profile of the overexpression transformant was distinct, and the contents of multiple secondary metabolites were markedly increased, mainly including terpenoids and flavonoids, such as (S)-olEuropeic acid, gibberellin A62, gibberellin A95, ovalitenone, PD 98059, and 1-isomangostin. A total of 600 significantly differentially expressed genes (DEGs) were identified utilizing transcriptome sequencing, and the DEGs were predominantly enriched in transmembrane transport and secondary metabolism-related biological processes. In summary, the strategy of overexpressing global secondary metabolite regulators successfully activated the expression of secondary metabolite gene clusters, and the numerous secondary metabolites were greatly strengthened in A. cristatus. This study provides new insights into the in-depth exploitation and utilization of novel secondary metabolites of A. cristatus.
Collapse
|
15
|
Guo X, Chen F, Liu J, Shao Y, Wang X, Zhou Y. Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea. J Fungi (Basel) 2022; 8:193. [PMID: 35205947 PMCID: PMC8874483 DOI: 10.3390/jof8020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eurotium cristatum as the dominant fungi species of Fuzhuan brick tea in China, can produce multitudinous secondary metabolites (SMs) with various bioactivities. Polyketides are a very important class of SMs found in E. cristatum and have gained extensive attention in recent years due to their remarkable diversity of structures and multiple functions. Therefore, it is necessary to explore the polyketides produced by E. cristatum at the genomic level to enhance its application value. In this paper, 12 polyketide synthase (PKS) genes were found in the whole genome of E. cristatum E1 isolated from Fuzhuan brick tea. In addition, the qRT-PCR results further demonstrated that these genes were expressed. Moreover, metabolic analysis demonstrated E. cristatum E1 can produce a variety of polyketides, including citreorosein, emodin, physcion, isoaspergin, dihydroauroglaucin, iso-dihydroauroglaucin, aspergin, flavoglaucin and auroglaucin. Furthermore, based on genomic analysis, the putative secondary metabolites clusters for emodin and flavoglaucin were proposed. The results reported here will lay a good basis for systematically mining SMs resources of E. cristatum and broadening its application fields.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| |
Collapse
|
16
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
17
|
Hu Z, Liu S, Xu Z, Liu S. Sequencing and phylogenetic analysis of mitochondrial genome of Aspergillus cristatus. Mitochondrial DNA B Resour 2020; 5:2615-2616. [PMID: 33457881 PMCID: PMC7782343 DOI: 10.1080/23802359.2020.1782279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aspergillus cristatus are the dominantly present microorganisms in dark tea. The whole mitochondrial genome sequence of A. cristatus was sequenced and reported in this study. The mitochondrial genome in A. cristatushas a full length of 77,649 bp, which is reported to be the longest among the mitochondrial genomes of Aspergillus species. The basesincluding A (34.14%), T (37.64%), C (15.61%) and G (12.61%) are found in their genome. A total of 42 genes (15 protein-coding genes, lrRNA/srRNA and 25 tRNAs) are encoded by the mitochondrial genome of this fungus. Phylogenetic analysis showed a closest relationship betweenA. pseudoglaucusand the taxonomic status of A. cristatus.
Collapse
Affiliation(s)
- Zhiyuan Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China.,School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Suchun Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhenggang Xu
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Shiquan Liu
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| |
Collapse
|
18
|
Yang J, Huang Y, Xu H, Gu D, Xu F, Tang J, Fang C, Yang Y. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chem 2020; 313:126138. [DOI: 10.1016/j.foodchem.2019.126138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/01/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
|