1
|
Singh YR, Thakur A, Fontes CMGA, Goyal A. A novel thermophilic recombinant obligate xylobiohydrolase (AcGH30A) from Acetivibrio clariflavus orchestrates the deconstruction of xylan polysaccharides. Carbohydr Polym 2024; 340:122295. [PMID: 38858006 DOI: 10.1016/j.carbpol.2024.122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
GH30 xylobiohydrolases, an expanding enzyme category, need deeper insights for optimal use. The primary aim of this study was to characterize a new xylobiohydrolase, AcGH30A of GH30 family from Acetivibrio clariflavus. The gene encoding AcGH30A was cloned using pET28a(+) vector and expressed in E. coli BL21(DE3) cells. AcGH30A was purified by immobilized metal-ion affinity chromatography. SDS-PAGE analysis of AcGH30A showed molecular mass of ~58 kDa. AcGH30A showed optimum temperature 80 °C and optimum pH 7.0. AcGH30A was stable (maintaining >80 % of control activity) in pH range, 4-7 and temperature range, 30 °C -70 °C when incubated for 90 min. AcGH30A displayed melting temperature, 72 °C and half-life, 21 days at 4 °C. The enzyme activity of AcGH30A was enhanced by 10 mM Ca2+ and Mg2+ ions by 25 % and 21 %, respectively, whereas 10 mM Co2+, Zn2+, Fe2+, and Cu2+ ions significantly reduced it. AcGH30A showed activity against various xylan polysaccharides displaying highest Vmax, 139 U.mg-1 and KM, 0.71 mg.ml-1 against 4-O-methyl glucuronoxylan under optimum conditions. TLC, HPLC and LC-MS analyses of AcGH30A hydrolyzed products from xylan substrates revealed the release of sole product, xylobiose, confirming it as an obligate xylobiohydrolase. AcGH30A being a highly thermostable enzyme can be potentially utlilized in various biotechnological applications.
Collapse
Affiliation(s)
- Yumnam Robinson Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Abhijeet Thakur
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Carlos M G A Fontes
- NZYTech - Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, 1649-038 Lisbon, Portugal; CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Barcan AS, Barcan RA, Vamanu E. Therapeutic Potential of Fungal Polysaccharides in Gut Microbiota Regulation: Implications for Diabetes, Neurodegeneration, and Oncology. J Fungi (Basel) 2024; 10:394. [PMID: 38921380 PMCID: PMC11204944 DOI: 10.3390/jof10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical and preclinical studies, detailing the results and highlighting the significant influence of these polysaccharides on gut microbiota modulation. It discusses the potential health benefits derived from incorporating these polysaccharides into the diet for managing chronic diseases such as diabetes, neurodegenerative disorders, and cancer. Furthermore, the review emphasizes the interaction between fungal polysaccharides and the gut microbiota, underscoring their role in modulating the gut microbial community. It presents a systematic analysis of the findings, demonstrating the substantial impact of fungal polysaccharides on gut microbiota composition and function, which may contribute to their therapeutic effects in various chronic conditions. We conclude that the modulation of the gut microbiota by these polysaccharides may play a crucial role in mediating their therapeutic effects, offering a promising avenue for further research and potential applications in disease prevention and treatment.
Collapse
Affiliation(s)
- Alexandru Stefan Barcan
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
3
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization. Int J Mol Sci 2023; 24:11997. [PMID: 37569374 PMCID: PMC10418624 DOI: 10.3390/ijms241511997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and β-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a β-xylosidase already characterized from the same fungus.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Laura I. de Eugenio
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Alicia Prieto
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - María Jesús Martínez
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| |
Collapse
|
4
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Van Nguyen T, Viver T, Mortier J, Liu B, Smets I, Bernaerts K, Faust K, Lavigne R, Poughon L, Dussap CG, Springael D. Isolation and characterization of a thermophilic chain elongating bacterium that produces the high commodity chemical n-caproate from polymeric carbohydrates. BIORESOURCE TECHNOLOGY 2023; 367:128170. [PMID: 36283667 DOI: 10.1016/j.biortech.2022.128170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A thermophilic chain elongating bacterium, strain MDTJ8, was isolated from a thermophilic acidogenic anaerobic digestor producing n-caproate from human waste, growing optimally at 50-55 °C and pH 6.5. 16S rRNA gene analysis suggests that MDTJ8 represents a new species/genus within a group currently composed of mesophilic chain elongators of the Oscillospiraceae family. Genome analysis showed that strain MDTJ8 contains homologues of genes encoding for chain elongation and energy conservation but also indicated n-caproate production from carbohydrates including polymeric substances. This was confirmed by culturing experiments in which MDTJ8 converted, at pH 6.5 and 55 °C, mono-, di- and polymeric carbohydrates (starch and hemicellulose) to n-caproate reaching concentrations up to 283 mg/L and accounting for up to 10 % of the measured fermentation products. MDTJ8 is the first axenic organism that thermophilically performs chain elongation, opening doors to understand and intensify thermophilic bioprocesses targeting anaerobic digestion towards the production of the value-added chemical n-caproate.
Collapse
Affiliation(s)
- Tinh Van Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium; Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Tomeu Viver
- Marine Microbiology Group, Mediterranean Institute of Advanced Studies (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain
| | - Jonah Mortier
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Bin Liu
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Ilse Smets
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Kristel Bernaerts
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium
| | - Laurent Poughon
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Claude-Gilles Dussap
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| |
Collapse
|
6
|
A Fungal Versatile GH10 Endoxylanase and Its Glycosynthase Variant: Synthesis of Xylooligosaccharides and Glycosides of Bioactive Phenolic Compounds. Int J Mol Sci 2022; 23:ijms23031383. [PMID: 35163307 PMCID: PMC8836076 DOI: 10.3390/ijms23031383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 β-1,4-endoxylanase (XynSOS), from the ascomycetous fungus Talaromyces amestolkiae, has been heterologously produced in Pichia pastoris, purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5. Substrate specificity and kinetic studies confirmed its versatility and high affinity for beechwood xylan and wheat arabinoxylan. Moreover, rXynSOS was capable of transglycosylating phenolic compounds, although with low efficiencies. For expanding its synthetic capacity, a glycosynthase variant of rXynSOS was developed by directed mutagenesis, replacing its nucleophile catalytic residue E236 by a glycine (rXynSOS-E236G). This novel glycosynthase was able to synthesize β-1,4-xylooligosaccharides (XOS) of different lengths (four, six, eight, and ten xylose units), which are known to be emerging prebiotics. rXynSOS-E236G was also much more active than the native enzyme in the glycosylation of a broad range of phenolic compounds with antioxidant properties. The interesting capabilities of rXynSOS and its glycosynthase variant make them promising tools for biotechnological applications.
Collapse
|
7
|
Culaba AB, Mayol AP, San Juan JLG, Vinoya CL, Concepcion RS, Bandala AA, Vicerra RRP, Ubando AT, Chen WH, Chang JS. Smart sustainable biorefineries for lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126215. [PMID: 34728355 DOI: 10.1016/j.biortech.2021.126215] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass (LCB) is considered as a sustainable feedstock for a biorefinery to generate biofuels and other bio-chemicals. However, commercialization is one of the challenges that limits cost-effective operation of conventional LCB biorefinery. This article highlights some studies on the sustainability of LCB in terms of cost-competitiveness and environmental impact reduction. In addition, the development of computational intelligence methods such as Artificial Intelligence (AI) as a tool to aid the improvement of LCB biorefinery in terms of optimization, prediction, classification, and decision support systems. Lastly, this review examines the possible research gaps on the production and valorization in a smart sustainable biorefinery towards circular economy.
Collapse
Affiliation(s)
- Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines.
| | - Andres Philip Mayol
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Jayne Lois G San Juan
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Industrial and Systems Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Carlo L Vinoya
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; School of Sciences and Engineering, University of Asia and the Pacific, Pearl Dr, Ortigas Center, Pasig, 1605 Metro Manila, Philippines
| | - Ronnie S Concepcion
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Argel A Bandala
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ryan Rhay P Vicerra
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Analysis Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Prieto A, de Eugenio L, Méndez-Líter JA, Nieto-Domínguez M, Murgiondo C, Barriuso J, Bejarano-Muñoz L, Martínez MJ. Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. Int Microbiol 2021; 24:545-558. [PMID: 34417929 DOI: 10.1007/s10123-021-00202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
As the main decomposers and recyclers in nature, fungi secrete complex mixtures of extracellular enzymes for degradation of plant biomass, which is essential for mobilization of the organic carbon fixed by the photosynthesis in vegetal cells. Biotechnology can emulate the closed natural biological cycles, using lignocellulosic biomass as a renewable resource and lignocellulolytic fungal enzymes as catalysts to sustainably produce consumer goods. Cellulose and hemicellulose are the major polysaccharides on Earth, and the main enzymes involved in their hydrolytic depolymerization are cellulases (endoglucanases, cellobiohydrolases, and β-glucosidases) and hemicellulases (mainly endoxylanases and β-xylosidases). This work will focus on the enzymes secreted by the filamentous ascomycete Talaromyces amestolkiae and on some of their biotechnological applications. Their excellent hydrolytic activity was demonstrated by the partial degradation of xylans to prebiotic oligosaccharides by the endoxylanase XynN, or by the saccharification of lignocellulosic wastes to monosaccharides (fermentable to ethanol) either by the whole secretomes or by isolated enzymes used as supplements of commercial cocktails. However, apart from their expected hydrolytic activity, some of the β-glycosidases produced by this strain catalyze the transfer of a sugar molecule to specific aglycons by transglycosylation. As the synthesis of customized glycoconjugates is a major goal for biocatalysis, mutant variants of the β-xyloxidase BxTW1 and the ß-glucosidases BGL-1 and BGL-2 were obtained by directed mutagenesis, substantially improving the regioselective production yields of bioactive glycosides since they showed reduced or null hydrolytic activity.
Collapse
Affiliation(s)
- Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Juan A Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Carlos Murgiondo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| |
Collapse
|
9
|
Azzouz Z, Bettache A, Boucherba N, Prieto A, Martinez MJ, Benallaoua S, de Eugenio LI. Optimization of β-1,4-Endoxylanase Production by an Aspergillus niger Strain Growing on Wheat Straw and Application in Xylooligosaccharides Production. Molecules 2021; 26:molecules26092527. [PMID: 33926080 PMCID: PMC8123676 DOI: 10.3390/molecules26092527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Plant biomass constitutes the main source of renewable carbon on the planet. Its valorization has traditionally been focused on the use of cellulose, although hemicellulose is the second most abundant group of polysaccharides on Earth. The main enzymes involved in plant biomass degradation are glycosyl hydrolases, and filamentous fungi are good producers of these enzymes. In this study, a new strain of Aspergillus niger was used for hemicellulase production under solid-state fermentation using wheat straw as single-carbon source. Physicochemical parameters for the production of an endoxylanase were optimized by using a One-Factor-at-a-Time (OFAT) approach and response surface methodology (RSM). Maximum xylanase yield after RSM optimization was increased 3-fold, and 1.41- fold purification was achieved after ultrafiltration and ion-exchange chromatography, with about 6.2% yield. The highest activity of the purified xylanase was observed at 50 °C and pH 6. The enzyme displayed high thermal and pH stability, with more than 90% residual activity between pH 3.0–9.0 and between 30–40 °C, after 24 h of incubation, with half-lives of 30 min at 50 and 60 °C. The enzyme was mostly active against wheat arabinoxylan, and its kinetic parameters were analyzed (Km = 26.06 mg·mL−1 and Vmax = 5.647 U·mg−1). Wheat straw xylan hydrolysis with the purified β-1,4 endoxylanase showed that it was able to release xylooligosaccharides, making it suitable for different applications in food technology.
Collapse
Affiliation(s)
- Zahra Azzouz
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; (Z.A.); (A.B.); (N.B.)
| | - Azzeddine Bettache
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; (Z.A.); (A.B.); (N.B.)
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; (Z.A.); (A.B.); (N.B.)
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.P.); (M.J.M.)
| | - Maria Jesus Martinez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.P.); (M.J.M.)
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; (Z.A.); (A.B.); (N.B.)
- Correspondence: (S.B.); (L.I.d.E.)
| | - Laura Isabel de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.P.); (M.J.M.)
- Correspondence: (S.B.); (L.I.d.E.)
| |
Collapse
|