1
|
Ölçücü G, Wollenhaupt B, Kohlheyer D, Jaeger KE, Krauss U. Magnetic protein aggregates generated by supramolecular assembly of ferritin cages - a modular strategy for the immobilization of enzymes. Front Bioeng Biotechnol 2024; 12:1478198. [PMID: 39512655 PMCID: PMC11541948 DOI: 10.3389/fbioe.2024.1478198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Efficient and cost-effective immobilization methods are crucial for advancing the utilization of enzymes in industrial biocatalysis. To this end, in vivo immobilization methods relying on the completely biological production of immobilizates represent an interesting alternative to conventional carrier-based immobilization methods. This study aimed to introduce a novel immobilization strategy using in vivo-produced magnetic protein aggregates (MPAs). Methods MPA production was achieved by expressing gene fusions of the yellow fluorescent protein variant citrine and ferritin variants, including a magnetically enhanced Escherichia coli ferritin mutant. Cellular production of the gene fusions allows supramolecular assembly of the fusion proteins in vivo, driven by citrine-dependent dimerization of ferritin cages. Magnetic properties were confirmed using neodymium magnets. A bait/prey strategy was used to attach alcohol dehydrogenase (ADH) to the MPAs, creating catalytically active MPAs (CatMPAs). These CatMPAs were purified via magnetic columns or centrifugation. Results The fusion of the mutant E. coli ferritin to citrine yielded fluorescent, insoluble protein aggregates, which are released upon cell lysis and coalesce into MPAs. MPAs display magnetic properties, as verified by their attraction to neodymium magnets. We further show that these fully in vivo-produced protein aggregates can be magnetically purified without ex vivo iron loading. Using a bait/prey strategy, MPAs were functionalized by attaching alcohol dehydrogenase post-translationally, creating catalytically active magnetic protein aggregates (CatMPAs). These CatMPAs were easily purified from crude extracts via centrifugation or magnetic columns and showed enhanced stability. Discussion This study presents a modular strategy for the in vivo production of MPAs as scaffold for enzyme immobilization. The approach eliminates the need for traditional, expensive carriers and simplifies the purification process by leveraging the insoluble nature and the magnetic properties of the aggregates, opening up the potential for novel, streamlined applications in biocatalysis.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bastian Wollenhaupt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Krauss
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Satarzadeh N, Amirheidari B, Shakibaie M, Forootanfar H. Medium optimization to improve growth and iron uptake by Bacillus tequilensis ASFS1 using fractional factorial designs. Sci Rep 2024; 14:20141. [PMID: 39209944 PMCID: PMC11362450 DOI: 10.1038/s41598-024-70896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue. In the current study, a prediction model is suggested by the fractional factorial designs. The present study aims to optimize culture media components for improved growth and iron uptake of this strain. The result of optimization for iron uptake by the strain ASFS1 is to increase the production of magnetic nanoparticles by this strain for biomedical applications in the future. In the present study, design of experiment method was used to probe the effects of some key medium components (yeast extract, tryptone, FeSO4, Na2-EDTA, and FeCl3) on Fe content in biomass and dried biomass of strain ASFS1. A 25-1 fractional factorial design showed that Na2-EDTA, FeCl3, yeast extract-tryptone interaction, and FeSO4-Na2-EDTA interaction were the most parameters on Fe content in biomass within the experimented levels (p < 0.05), while yeast extract, FeCl3, and yeast extract-tryptone interaction were the most significant factors within the experimented levels (p < 0.05) to effect on dried biomass of strain ASFS1. The optimum culture media components for the magnetic nanoparticles production by strain ASFS1 was reported to be 7.95 g L-1 of yeast extract, 5 g L-1 of tryptone, 75 μg mL-1 of FeSO4, 192.3 μg mL-1 of Na2-EDTA and 150 μg mL-1 of FeCl3 which was theoretically able to produce Fe content in biomass (158 μg mL-1) and dried biomass (2.59 mg mL-1) based on the obtained for medium optimization. Using these culture media components an experimental maximum Fe content in biomass (139 ± 13 μg mL-1) and dried biomass (2.2 ± 0.2 mg mL-1) was obtained, confirming the efficiency of the used method.
Collapse
Affiliation(s)
- Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Chades T, Le Fèvre R, Chebbi I, Blondeau K, Guyot F, Alphandéry E. Set-up of a pharmaceutical cell bank of Magnetospirillum gryphiswaldense MSR1 magnetotactic bacteria producing highly pure magnetosomes. Microb Cell Fact 2024; 23:70. [PMID: 38419080 PMCID: PMC10903015 DOI: 10.1186/s12934-024-02313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
We report the successful fabrication of a pharmaceutical cellular bank (PCB) containing magnetotactic bacteria (MTB), which belong to the Magnetospirillum gryphiswaldense MSR1 species. To produce such PCB, we amplified MTB in a minimal growth medium essentially devoid of other heavy metals than iron and of CMR (Carcinogenic, mutagenic and reprotoxic) products. The PCB enabled to acclimate MTB to such minimal growth conditions and then to produce highly pure magnetosomes composed of more than 99.9% of iron. The qualification of the bank as a PCB relies first on a preserved identity of the MTB compared with the original strain, second on genetic bacterial stability observed over 100 generations or under cryo-preservation for 16 months, third on a high level of purity highlighted by an absence of contaminating microorganisms in the PCB. Furthermore, the PCB was prepared under high-cell load conditions (9.108 cells/mL), allowing large-scale bacterial amplification and magnetosome production. In the future, the PCB could therefore be considered for commercial as well as research orientated applications in nanomedicine. We describe for the first-time conditions for setting-up an effective pharmaceutical cellular bank preserving over time the ability of certain specific cells, i.e. Magnetospirillum gryphiswaldense MSR1 MTB, to produce nano-minerals, i.e. magnetosomes, within a pharmaceutical setting.
Collapse
Affiliation(s)
- Théo Chades
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France
- Institut de biologie intégrative de la cellule, UMR 9198, Université Paris Saclay, 1 Av. de la Terrasse, 91198, Gif sur Yvette, France
| | | | - Imène Chebbi
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France
| | - Karine Blondeau
- Institut de biologie intégrative de la cellule, UMR 9198, Université Paris Saclay, 1 Av. de la Terrasse, 91198, Gif sur Yvette, France
| | - François Guyot
- Institut de minéralogie de physique des matériaux et de cosmochimie UMR 7590, Sorbonne Université, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005, Paris, France
| | - Edouard Alphandéry
- Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.
- Institut de minéralogie de physique des matériaux et de cosmochimie UMR 7590, Sorbonne Université, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
5
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
6
|
Bielas R, Kubiak T, Molcan M, Dobosz B, Rajnak M, Józefczak A. Biocompatible Hydrogel-Based Liquid Marbles with Magnetosomes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:99. [PMID: 38203953 PMCID: PMC10779466 DOI: 10.3390/ma17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Liquid marbles are widely known for their potential biomedical applications, especially due to their versatility and ease of preparation. In the present work, we prepared liquid marbles with various cores composed of water, agar-based hydrogels, magnetic fluids, or non-aqueous substances. As a coating material, we used biocompatible particles of plant origin, such as turmeric grains and Lycopodium pollen. Additionally, we provided marbles with magnetic properties by incorporating either magnetosomes or iron oxide nanoparticles as a powder or by injecting another magnetic fluid. Structures obtained in this way were stable and susceptible to manipulation by an external magnetic field. The properties of the magnetic components of our marbles were verified using electron paramagnetic resonance (EPR) spectroscopy and vibrating sample magnetometry (VSM). Our approach to encapsulation of active substances such as antibiotics within a protective hydrogel core opens up new perspectives for the delivery of hydrophobic payloads to the inherently hydrophilic biological environment. Additionally, hydrogel marbles enriched with magnetic materials showed promise as biocompatible heating agents under alternating magnetic fields. A significant innovation of our research was also the fabrication of composite structures in which the gel-like core was surrounded without mixing by a magnetic fluid covered on the outside by the particle shell. Our liquid marbles, especially those with a hydrogel core and magnetic content, due to the ease of preparation and favorable properties, have great potential for biomedical use. The fact that we were able to simultaneously produce, functionalize (by filling with predefined cargo), and manipulate (by means of an external magnetic field) several marbles also seems to be important from an application point of view.
Collapse
Affiliation(s)
- Rafał Bielas
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Tomasz Kubiak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
| | - Bernadeta Dobosz
- Institute of Physics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Michal Rajnak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
| | - Arkadiusz Józefczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| |
Collapse
|
7
|
Cosmidis J. Will tomorrow's mineral materials be grown? Microb Biotechnol 2023; 16:1713-1722. [PMID: 37522764 PMCID: PMC10443349 DOI: 10.1111/1751-7915.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Biomineralization, the capacity to form minerals, has evolved in a great diversity of bacterial lineages as an adaptation to different environmental conditions and biological functions. Microbial biominerals often display original properties (morphology, composition, structure, association with organics) that significantly differ from those of abiotically formed counterparts, altogether defining the 'mineral phenotype'. In principle, it should be possible to take advantage of microbial biomineralization processes to design and biomanufacture advanced mineral materials for a range of technological applications. In practice, this has rarely been done so far and only for a very limited number of biomineral types. This is mainly due to our poor understanding of the underlying molecular mechanisms controlling microbial biomineralization pathways, preventing us from developing bioengineering strategies aiming at improving biomineral properties for different applications. Another important challenge is the difficulty to upscale microbial biomineralization from the lab to industrial production. Addressing these challenges will require combining expertise from environmental microbiologists and geomicrobiologists, who have historically been working at the forefront of research on microbe-mineral interactions, alongside bioengineers and material scientists. Such interdisciplinary efforts may in the future allow the emergence of a mineral biomanufacturing industry, a critical tool towards the development more sustainable and circular bioeconomies.
Collapse
Affiliation(s)
- Julie Cosmidis
- Department of Earth SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Menghini S, Vizovisek M, Enders J, Schuerle S. Magnetospirillum magneticum triggers apoptotic pathways in human breast cancer cells. Cancer Metab 2023; 11:12. [PMID: 37559137 PMCID: PMC10410830 DOI: 10.1186/s40170-023-00313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
The use of bacteria in cancer immunotherapy has the potential to bypass many shortcomings of conventional treatments. The ability of anaerobic bacteria to preferentially accumulate and replicate in hypoxic regions of solid tumors, as a consequence of bacterial metabolic needs, is particularly advantageous and key to boosting their immunostimulatory therapeutic actions in situ. While several of these bacterial traits are well-studied, little is known about their competition for nutrients and its effect on cancer cells which could serve as another potent and innate antineoplastic action. Here, we explored the consequences of the iron-scavenging abilities of a particular species of bacteria, Magnetospirillum magneticum, which has been studied as a potential new class of bacteria for magnetically targeted bacterial cancer therapy. We investigated their influence in hypoxic regions of solid tumors by studying the consequential metabolic effects exerted on cancer cells. To do so, we established an in vitro co-culture system consisting of the bacterial strain AMB-1 incubated under hypoxic conditions with human breast cancer cells MDA-MB-231. We first quantified the number of viable cells after incubation with magnetotactic bacteria demonstrating a lower rate of cellular proliferation that correlated with increasing bacteria-to-cancer cells ratio. Further experiments showed increasing populations of apoptotic cells when cancer cells were incubated with AMB-1 over a period of 24 h. Analysis of the metabolic effects induced by bacteria suggest an increase in the activation of executioner caspases as well as changes in levels of apoptosis-related proteins. Finally, the level of several human apoptosis-related proteins was investigated, confirming a bacteria-dependent triggering of apoptotic pathways in breast cancer cells. Overall, our findings support that magnetotactic bacteria could act as self-replicating iron-chelating agents and indicate that they interfere with proliferation and lead to increased apoptosis of cancer cells. This bacterial feature could serve as an additional antineoplastic mechanism to reinforce current bacterial cancer therapies.
Collapse
Affiliation(s)
- Stefano Menghini
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Matej Vizovisek
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Jonathas Enders
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Simone Schuerle
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, CH-8092, Zurich, Switzerland.
| |
Collapse
|
9
|
Wu S, Tian J, Xue X, Tang Z, Huang Z, Hammock BD, Morisseau C, Li QX, Xu T. Development of a Genetically Encoded Magnetic Platform in Magnetospirillum gryphiswaldense MSR-1 for Downstream Processing of Protein Expression System. RESEARCH SQUARE 2023:rs.3.rs-2630343. [PMID: 36993437 PMCID: PMC10055543 DOI: 10.21203/rs.3.rs-2630343/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Protein downstream processing remains a challenge in protein production, especially in low yields of products, in spite of ensuring effective disruption of cell and separation of target proteins. It is complicated, expensive and time-consuming. Here, we report a novel nano-bio-purification system for producing recombinant proteins of interest with automatic purification from engineered bacteria. Results This system employed a complete genetic engineering downstream processing platform for proteins at low expression levels, referred to as a genetically encoded magnetic platform (GEMP). GEMP consists of four elements as follows. (1) A truncated phage lambda lysis cassette (RRz/Rz1) is controllable for lysis of Magnetospirillum gryphiswaldense MSR-1 (host cell). (2) A surface-expressed nuclease (NucA) is to reduce viscosity of homogenate by hydrolyzing long chain nucleic acids. (3) A bacteriogenic magnetic nanoparticle, known as magnetosome, allows an easy separation system in a magnetic field. (4) An intein realizes abscission of products (nanobodies against tetrabromobisphenol A) from magnetosome. Conclusions In this work, removal of most impurities greatly simplified the subsequent purification procedure. The system also facilitated the bioproduction of nanomaterials. The developed platform can substantially simplify industrial protein production and reduce its cost.
Collapse
Affiliation(s)
- Sha Wu
- China Agricultural University
| | | | | | | | | | | | | | | | - Ting Xu
- China Agricultural University
| |
Collapse
|
10
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
11
|
Biomanufacturing Biotinylated Magnetic Nanomaterial via Construction and Fermentation of Genetically Engineered Magnetotactic Bacteria. Bioengineering (Basel) 2022; 9:bioengineering9080356. [PMID: 36004881 PMCID: PMC9404834 DOI: 10.3390/bioengineering9080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Biosynthesis provides a critical way to deal with global sustainability issues and has recently drawn increased attention. However, modifying biosynthesized magnetic nanoparticles by extraction is challenging, limiting its applications. Magnetotactic bacteria (MTB) synthesize single-domain magnetite nanocrystals in their organelles, magnetosomes (BMPs), which are excellent biomaterials that can be biologically modified by genetic engineering. Therefore, this study successfully constructed in vivo biotinylated BMPs in the MTB Magnetospirillum gryphiswaldense by fusing biotin carboxyl carrier protein (BCCP) with membrane protein MamF of BMPs. The engineered strain (MSR−∆F−BF) grew well and synthesized small-sized (20 ± 4.5 nm) BMPs and were cultured in a 42 L fermenter; the yield (dry weight) of cells and BMPs reached 8.14 g/L and 134.44 mg/L, respectively, approximately three-fold more than previously reported engineered strains and BMPs. The genetically engineered BMPs (BMP−∆F−BF) were successfully linked with streptavidin or streptavidin-labelled horseradish peroxidase and displayed better storage stability compared with chemically constructed biotinylated BMPs. This study systematically demonstrated the biosynthesis of engineered magnetic nanoparticles, including its construction, characterization, and production and detection based on MTB. Our findings provide insights into biomanufacturing multiple functional magnetic nanomaterials.
Collapse
|
12
|
Hatami Giklou Jajan L, Hosseini SN, Abolhassani M, Ghorbani M. Progress in affinity ligand-functionalized bacterial magnetosome nanoparticles for bio-immunomagnetic separation of HBsAg protein. PLoS One 2022; 17:e0267206. [PMID: 35877673 PMCID: PMC9312401 DOI: 10.1371/journal.pone.0267206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Efficient Bio-immunomagnetic separation (BIMS) of recombinant hepatitis B surface antigen (rHBsAg) with high binding capacity was studied using affinity ligand immobilized bacterial magnetosome nanoparticles (Magnetospirillum gryphiswaldense strain MSR-1 bacteria) as an immunomagnetic sorbent. Our results showed immunomagnetic adsorption, acted by affinity interactions with the immobilized monoclonal antibody, offered higher antigen adsorption and desorption capacities as compared with the commercially available immunoaffinity sorbents. Four different ligand densities of the Hep-1 monoclonal antibody were examined during covalent immobilization on Pyridyl Disulfide-functionalized magnetosome nanoparticles for HBsAg immunomagnetic separation. The average of adsorption capacity was measured as 3 mg/ml in optimized immunomagnetic sorbent (1.056 mg rHBsAg/ml immunomagneticsorbent/5.5 mg of total purified protein) and 5mg/ml in immunoaffinity sorbent (0.876 mg rHBsAg/ml immunosorbent/5.5 mg total purified protein during 8 runs. Immunomagnetic sorbent demonstrated ligand leakage levels below 3 ng Mab/Ag rHBsAg during 12 consecutive cycles of immunomagnetic separation (IMS). The results suggest that an immunomagnetic sorbent with a lower ligand density (LD = 3 mg Mab/ml matrix) could be the best substitute for the immunosorbent used in affinity purification of r-HBsAg there are significant differences in the ligand density (98.59% (p-value = 0.0182)), adsorption capacity (97.051% (p-value = 0.01834)), desorption capacity (96.06% (p-value = 0.036)) and recovery (98.97% (p-value = 0.0231)). This study indicates that the immunosorbent approach reduces the cost of purification of Hep-1 protein up to 50% as compared with 5 mg Mab/ml immunoaffinity sorbent, which is currently used in large-scale production. As well, these results demonstrate that bacterial magnetosome nanoparticles (BMs) represent a promising alternative product for the economical and efficient immobilization of proteins and the immunomagnetic separation of Biomolecules, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Leila Hatami Giklou Jajan
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Seyed Nezamedin Hosseini
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Mohsen Abolhassani
- Pasteur Institute of Iran, Dept. of Immunology, Hybridoma Lab, Tehran, Iran
- * E-mail: (MG); (MA)
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Department of Research and Development, Production and Research Complex, Karaj, Iran
- * E-mail: (MG); (MA)
| |
Collapse
|
13
|
Zhao D, Yang J, Zhang G, Lu D, Zhang S, Wang W, Yan L. Potential and whole-genome sequence-based mechanism of elongated-prismatic magnetite magnetosome formation in Acidithiobacillus ferrooxidans BYM. World J Microbiol Biotechnol 2022; 38:121. [DOI: 10.1007/s11274-022-03308-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 01/15/2023]
|
14
|
Prywer J. The fascinating world of biogenic crystals. Science 2022; 376:240-241. [PMID: 35420943 DOI: 10.1126/science.abo2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The diverse properties of these crystals may lead to a variety of applications.
Collapse
Affiliation(s)
- Jolanta Prywer
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Łódź, Poland
| |
Collapse
|
15
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
16
|
Correa T, Presciliano R, Abreu F. Why Does Not Nanotechnology Go Green? Bioprocess Simulation and Economics for Bacterial-Origin Magnetite Nanoparticles. Front Microbiol 2021; 12:718232. [PMID: 34489907 PMCID: PMC8418543 DOI: 10.3389/fmicb.2021.718232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Nanotechnological developments, including fabrication and use of magnetic nanomaterials, are growing at a fast pace. Magnetic nanoparticles are exciting tools for use in healthcare, biological sensors, and environmental remediation. Due to better control over final-product characteristics and cleaner production, biogenic nanomagnets are preferable over synthetic ones for technological use. In this sense, the technical requirements and economic factors for setting up industrial production of magnetotactic bacteria (MTB)-derived nanomagnets were studied in the present work. Magnetite fabrication costs in a single-stage fed-batch and a semicontinuous process were US$ 10,372 and US$ 11,169 per kilogram, respectively. Depending on the variations of the production process, the minimum selling price for biogenic nanomagnets ranged between US$ 21 and US$ 120 per gram. Because these prices are consistently below commercial values for synthetic nanoparticles, we suggest that microbial production is competitive and constitutes an attractive alternative for a greener manufacturing of magnetic nanoparticles nanotools with versatile applicability.
Collapse
Affiliation(s)
- Tarcisio Correa
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogério Presciliano
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|