1
|
Hu J, Wang Z, Xu W. Production-optimized fermentation of antifungal compounds by bacillus velezensis LZN01 and transcriptome analysis. Microb Biotechnol 2024; 17:e70026. [PMID: 39415743 PMCID: PMC11483751 DOI: 10.1111/1751-7915.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fusarium wilt is one of the major constraints on global watermelon production, and Fusarium oxysporum f. sp. niveum (Fon) is the causative agent of Fusarium wilt in watermelon and results in severe yield and quality losses worldwide. The enhancement of antifungal activity from antagonistic bacteria against Fon is highly practical for managing Fusarium wilt in watermelon. The aim of this study was to maximize the antifungal activity of Bacillus velezensis LZN01 by optimizing fermentation conditions and analysing its regulatory mechanism via transcriptome sequencing. The culture and fermentation conditions for strain LZN01 were optimized by single-factor and response surface experiments. The optimum culture conditions for this strain were as follows: the addition of D-fructose at 35 g/L and NH4Cl at 5 g/L in LB medium, pH 7, and incubation at 30°C for 72 h. The fungal inhibition rate for strain LZN01 reached 71.1%. The improvement of inhibition rate for strain LZN01 in optimization fermentation was supported by transcriptomic analysis; a total of 491 genes were upregulated, while 736 genes were downregulated. Transcriptome analysis revealed that some differentially expressed genes involved in carbon and nitrogen metabolism, oxidation-reduction, fatty acid and secondary metabolism; This optimization process could potentially lead to significant alterations in the production levels and types of antimicrobial compounds by the strain. Metabolomics and UPLC/Q-Exactive Orbitrap MS analysis revealed that the production yields of antimicrobial compounds, such as surfactin, fengycin, shikimic acid, and myriocin, increased or were detected in the cell-free supernatant (CFS) after the fermentation optimization process. Our results indicate that fermentation optimization enhances the antifungal activity of the LZN01 strain by influencing the expression of genes responsible for the synthesis of antimicrobial compounds.
Collapse
Affiliation(s)
- Jiale Hu
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| | - Zhigang Wang
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| | - Weihui Xu
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| |
Collapse
|
2
|
Wang H, Yao L, Chen J, Ding Z, Ou X, Zhang C, Zhao J, Han Y. Antifungal Peptide P852 Effectively Controls Fusarium oxysporum, a Wilt-Causing Fungus, by Affecting the Glucose Metabolism and Amino Acid Metabolism as well as Damaging Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19638-19651. [PMID: 38015891 DOI: 10.1021/acs.jafc.3c07953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Fusarium oxysporum causes wilt disease, which causes huge economic losses to a wide range of agricultural cash crops. Antifungal peptide P852 is an effective biocide. However, the mechanism of direct inhibition of pathogenic fungus needs to be explored. The proteomics and transcriptomics results showed that P852 mainly affected intracellular pathways such as glucose metabolism, amino acid metabolism, and oxidoreductase activity in F. oxysporum. P852 disrupts the intracellular oxidative equilibrium in F. oxysporum, and transmission electron microscopy observed mitochondrial swelling, disruption of membrane structure, and leakage of contents. Decreased mitochondrial membrane potential, mitochondrial cytochrome c leakage, and reduced ATP production were also detected. These results suggest that P852 is able to simultaneously inhibit intracellular metabolism and disrupt the mitochondrial function of F. oxysporum, exerting its inhibitory effects in multiple pathways together. The present study provides some insights into the multitargeted mechanism of fungus inhibition of antifungal lipopeptide substances produced by Bacillus spp.
Collapse
Affiliation(s)
- Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Lan Yao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jie Chen
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Zeran Ding
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
- Immunology Research Center, Institute of Medicine, Southwest University, Chongqing 402460, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
3
|
Al-Mutar DMK, Noman M, Alzawar NSA, Qasim HH, Li D, Song F. The Extracellular Lipopeptides and Volatile Organic Compounds of Bacillus subtilis DHA41 Display Broad-Spectrum Antifungal Activity against Soil-Borne Phytopathogenic Fungi. J Fungi (Basel) 2023; 9:797. [PMID: 37623568 PMCID: PMC10455929 DOI: 10.3390/jof9080797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon) is a devastating soil-borne fungus causing Fusarium wilt in watermelon. The present study investigated the biochemical mechanism underlying the antifungal activity exhibited by the antagonistic bacterial strain DHA41, particularly against Fon. Molecular characterization based on the 16S rRNA gene confirmed that DHA41 is a strain of Bacillus subtilis, capable of synthesizing antifungal lipopeptides, such as iturins and fengycins, which was further confirmed by detecting corresponding lipopeptide biosynthesis genes, namely ItuB, ItuD, and FenD. The cell-free culture filtrate and extracellular lipopeptide extract of B. subtilis DHA41 demonstrated significant inhibitory effects on the mycelial growth of Fon, Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. The lipopeptide extract showed emulsification activity and inhibited Fon mycelial growth by 86.4% at 100 µg/mL. Transmission electron microscope observations confirmed that the lipopeptide extract disrupted Fon cellular integrity. Furthermore, B. subtilis DHA41 emitted volatile organic compounds (VOCs) that exhibited antifungal activity against Fon, D. bryoniae, S. sclerotiorum, and F. graminearum. These findings provide evidence that B. subtilis DHA41 possesses broad-spectrum antifungal activity against different fungi pathogens, including Fon, through the production of extracellular lipopeptides and VOCs.
Collapse
Affiliation(s)
- Dhabyan Mutar Kareem Al-Mutar
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Basra Agriculture Directorate, Almudaina 61008, Iraq;
| | - Muhammad Noman
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
5
|
Suppression of Fusarium Wilt in Watermelon by Bacillus amyloliquefaciens DHA55 through Extracellular Production of Antifungal Lipopeptides. J Fungi (Basel) 2023; 9:jof9030336. [PMID: 36983504 PMCID: PMC10053319 DOI: 10.3390/jof9030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum is one of the most devastating fungal diseases affecting watermelon (Citrullus lanatus L.). The present study aimed to identify potent antagonistic bacterial strains with substantial antifungal activity against F. oxysporum f. sp. niveum and to explore their potential for biocontrol of Fusarium wilt in watermelon. Out of 77 isolates from watermelon rhizosphere, six bacterial strains—namely, DHA4, DHA6, DHA10, DHA12, DHA41, and DHA55—exhibited significant antifungal activity against F. oxysporum f. sp. niveum, as well as other phytopathogenic fungi, including Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. These Gram-positive, rod-shaped, antagonistic bacterial strains were able to produce exo-enzymes (e.g., catalase, protease, and cellulase), siderophore, and indole-3-acetic acid and had the ability to solubilize phosphate. In greenhouse experiments, these antagonistic bacterial strains not only promoted plant growth but also suppressed Fusarium wilt in watermelon. Among these strains, DHA55 was the most effective, achieving the highest disease suppression of 74.9%. Strain DHA55 was identified as Bacillus amyloliquefaciens based on physiological, biochemical, and molecular characterization. B. amyloliquefaciens DHA55 produced various antifungal lipopeptides, including iturin, surfactin, and fengycin, that showed significant antifungal activities against F. oxysporum f. sp. niveum. Microscopic observations revealed that B. amyloliquefaciens DHA55 exhibited an inhibitory effect against F. oxysporum f. sp. niveum on the root surface of watermelon plants. These results demonstrate that B. amyloliquefaciens DHA55 can effectively promote plant growth and suppress the development of watermelon Fusarium wilt, providing a promising agent for the biocontrol of Fusarium wilt in watermelon.
Collapse
|
6
|
Luo S, Wang H, Wang Z, Xu W, Tian R, Zhou J. Internalization of myriocin involved in energy and affected expression of genes and proteins in the endocytosis pathway in Fusarium oxysporum f. sp. niveum. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Shiqi Luo
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, PR China
- Department of Biology, Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, Heilongjiang, PR China
| | - Hengxu Wang
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, PR China
- Department of Biology, Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, Heilongjiang, PR China
| | - Zhigang Wang
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, PR China
- Department of Biology, Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, Heilongjiang, PR China
| | - Weihui Xu
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, PR China
- Department of Biology, Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, Heilongjiang, PR China
| | - Renmao Tian
- Department of Food Safety, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Jiaxin Zhou
- Department of Horticulture, College of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, PR China
- Department of Biology, Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, Heilongjiang, PR China
| |
Collapse
|
7
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|