1
|
Yernazarova A, Shaimerdenova U, Akimbekov N, Kaiyrmanova G, Shaken M, Izmailova A. Exploring the use of microbial enhanced oil recovery in Kazakhstan: a review. Front Microbiol 2024; 15:1394838. [PMID: 39176284 PMCID: PMC11340538 DOI: 10.3389/fmicb.2024.1394838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Microbial enhanced oil recovery (MEOR) is a promising method for improving oil recovery from challenging reservoirs such as those found in Kazakhstan. MEOR relies on the activities of microorganisms to modify the properties of the reservoir, such as reducing the oil viscosity, increasing the reservoir permeability, and generating by-products that mobilize the oil. Implementing MEOR in Kazakhstan could lead to significant economic benefits for the country by increasing oil production and royalties from fossil fuel exports. Oil production in Kazakhstan has seen fluctuations in recent years, with 2018 recording a production level of 1.814 million barrels per day. Among regions, Atyrau region contributed the most to oil production with 23.4 million tons of oil. Following Atyrau, the Mangystau region produced 8.2 million tons, and Aktobe produced 2.4 million tons. Overall, the use of MEOR in Kazakhstan's oil fields could offer a promising solution for enhanced oil recovery, while minimizing environmental impact and cost. While specific data on the current use of MEOR in field conditions in Kazakhstan might be limited, the fact that studies are underway suggests a growing interest in applying this technology in the country's oil fields. It is exciting to think about the potential benefits these studies could bring to Kazakhstan's oil industry once their findings are implemented in field operations. These studies have significant implications for Kazakhstan's oil production in the future.
Collapse
Affiliation(s)
- Aliya Yernazarova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ulzhan Shaimerdenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nuraly Akimbekov
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan
| | - Gulzhan Kaiyrmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | |
Collapse
|
2
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
3
|
Shaimerdenova U, Kaiyrmanova G, Lewandowska W, Bartoszewicz M, Swiecicka I, Yernazarova A. Biosurfactant and biopolymer producing microorganisms from West Kazakhstan oilfield. Sci Rep 2024; 14:2294. [PMID: 38280982 PMCID: PMC10821952 DOI: 10.1038/s41598-024-52906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
Microbiological enhanced oil recovery (MEOR) uses indigenous or exogenous microorganisms and nutrients to enhance oil production through synthesis of metabolites reducing oil viscosity and surface tension. In order to find bacteria suitable for MEOR, we studied 26 isolates from wells in the Akingen oilfield in West Kazakhstan. Six of them were selected for further analysis based on their ability to reduce surface tension to less than 40 mN/m, with the A9 isolate exhibiting tension reduction values of 32.76 ± 0.3 mN/m. Based on the morphological features, biochemical activities, and the 16S rRNA gene, the isolates were classified to the Bacillus subtilis group. In the phylogenetic analysis the isolates grouped into two main clusters. Genes encoding the surfactin synthetase subunits were found in A2, A8, A9, A12, PW2, only the PW2 strain had lchAA encoding lichenysin, while sacB encoding levan was noted in A2, A8, A9, and A12. The expression of srfAB, srfAC, and sacB tested with qPCR varied among strains. Nevertheless, whereas temperature moderately affects the expression level, with the highest level recorded at 40 °C, salinity significantly impacts the expression of the genes encoding biosurfactants. B. subtilis strains isolated in the study, especially A9, are promising for microbial-enhanced oil recovery.
Collapse
Affiliation(s)
- Ulzhan Shaimerdenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan
| | - Gulzhan Kaiyrmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan
| | - Wioleta Lewandowska
- Doctoral School of Exact and Natural Sciences, University of Białystok, 1K Konstanty Ciołkowski Str, 15-245, Białystok, Poland
| | - Marek Bartoszewicz
- Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
| | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
- Laboratory of Applied Microbiology, Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
| | - Aliya Yernazarova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan.
| |
Collapse
|
4
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Jing YF, Wei HX, Liu FF, Liu YF, Zhou L, Liu JF, Yang SZ, Zhang HZ, Mu BZ. Genetic engineering of the branched-chain fatty acid biosynthesis pathway to enhance surfactin production from Bacillus subtilis. Biotechnol Appl Biochem 2023; 70:238-248. [PMID: 35419893 DOI: 10.1002/bab.2346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
Surfactin, which is composed of a β-hydroxy fatty acid chain and a peptide ring, has drawn considerable attention due to its potential applications in the biomedicine, bioremediation, and petroleum industries. However, the low yield of surfactin from wild strains still restricts its industrial applications. In this study, eight genes relevant to the fatty acid biosynthesis pathway were targeted to enhance surfactin production, and high surfactin-yielding strains with potential industrial applications were obtained. When ldeHA and acc were co-overexpressed, the surfactin yield of recombinant strains TDS8 and TPS8 increased to 1.55- and 1.19-fold of their parental strains, respectively, again proving that the conversion of acetyl-coenzyme A (CoA) to malonyl-CoA is the rate-limiting step in fatty acid biosynthesis. Furthermore, changes in surfactin isoforms of recombinant strain TPS8 suggest that the fatty acid precursor synthesis pathway can be modified to improve the proportion of different isoforms. In addition, the deletion of lpdV, which is responsible for the conversion of α-ketoacyl-CoA precursors, resulted in a sharp decrease in surfactin production, further demonstrating the importance of branched-chain fatty acid biosynthesis in surfactin production. This work will facilitate the design and construction of more efficiently engineered strains for surfactin production and further extend industrial applications.
Collapse
Affiliation(s)
- Ya-Fei Jing
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao-Xun Wei
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Fang-Fang Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hui-Zhan Zhang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
6
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
7
|
Gudiña EJ, Teixeira JA. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 2022; 60:108013. [PMID: 35752271 DOI: 10.1016/j.biotechadv.2022.108013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|