1
|
Caballero Cerbon DA, Widmann J, Weuster-Botz D. Metabolic control analysis enabled the improvement of the L-cysteine production process with Escherichia coli. Appl Microbiol Biotechnol 2024; 108:108. [PMID: 38212968 PMCID: PMC10784400 DOI: 10.1007/s00253-023-12928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 01/13/2024]
Abstract
L-cysteine is an amino acid with relevance to the pharmaceutical, food, feed, and cosmetic industry. The environmental and societal impact of its chemical production has led to the development of more sustainable fermentative L-cysteine production processes with engineered E. coli based on glucose and thiosulfate as sulphur source. Still, most of the published processes show low yields. For the identification of further metabolic engineering targets, engineered E. coli cells were withdrawn from a fed-batch production process, followed by in vivo metabolic control analysis (MCA) based on the data of short-term perturbation experiments, metabolomics (LC-MS), and thermodynamic flux analysis (TFA). In vivo MCA indicated that the activities of the L-cysteine synthases of the cells withdrawn from the production process might be limiting, and we hypothesised that the L-cysteine precursor O-acetylserine (OAS) might be exported from the cells faster than it took to transform OAS into L-cysteine. By increasing the expression of the L-cysteine synthases, either sulfocysteine synthase or L-cysteine synthase, which transform OAS into L-cysteine, an improvement of up to 70% in specific L-cysteine productivity and up to 47% in the final L-cysteine concentration was achieved in standardised fed-batch processes thereby increasing the yield on glucose by more than 85 to 9.2% (w/w). KEY POINTS: • Metabolic control analysis was applied to analyse L-cysteine production with E. coli • OAS export was faster than its transformation to L-cysteine • Overexpression of L-cysteine synthases improved L-cysteine productivity and yield.
Collapse
Affiliation(s)
- Daniel Alejandro Caballero Cerbon
- Chair of Biochemical Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Jeremias Widmann
- Chair of Biochemical Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
2
|
Takata T, Inoue S, Kunii K, Masauji T, Miyazawa K. Slot Blot- and Electrospray Ionization-Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine. Int J Mol Sci 2024; 25:9632. [PMID: 39273579 PMCID: PMC11395049 DOI: 10.3390/ijms25179632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
3
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Caballero Cerbon DA, Gebhard L, Dokuyucu R, Ertl T, Härtl S, Mazhar A, Weuster-Botz D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules 2024; 29:486. [PMID: 38257399 PMCID: PMC10821248 DOI: 10.3390/molecules29020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
L-cysteine is a proteogenic amino acid with many applications in the pharmaceutical, food, animal feed, and cosmetic industries. Due to safety and environmental issues in extracting L-cysteine from animal hair and feathers, the fermentative production of L-cysteine offers an attractive alternative using renewable feedstocks. Strategies to improve microbial production hosts like Pantoea ananatis, Corynebacterium glutamicum, Pseudomonas sp., and Escherichia coli are summarized. Concerning the metabolic engineering strategies, the overexpression of feedback inhibition-insensitive L-serine O-acetyltransferase and weakening the degradation of L-cysteine through the removal of L-cysteine desulfhydrases are crucial adjustments. The overexpression of L-cysteine exporters is vital to overcome the toxicity caused by intracellular accumulating L-cysteine. In addition, we compiled the process engineering aspects for the bioproduction of L-cysteine. Utilizing the energy-efficient sulfur assimilation pathway via thiosulfate, fermenting cheap carbon sources, designing scalable, fed-batch processes with individual feedings of carbon and sulfur sources, and implementing efficient purification techniques are essential for the fermentative production of L-cysteine on an industrial scale.
Collapse
Affiliation(s)
- Daniel Alejandro Caballero Cerbon
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| | - Leon Gebhard
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany
| | - Ruveyda Dokuyucu
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Theresa Ertl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Sophia Härtl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Ayesha Mazhar
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| |
Collapse
|
5
|
Panda S, Zhou JFJ, Feigis M, Harrison E, Ma X, Fung Kin Yuen V, Mahadevan R, Zhou K. Engineering Escherichia coli to produce aromatic chemicals from ethylene glycol. Metab Eng 2023; 79:38-48. [PMID: 37392985 DOI: 10.1016/j.ymben.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.
Collapse
Affiliation(s)
- Smaranika Panda
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jie Fu J Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Michelle Feigis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Vincent Fung Kin Yuen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore; Cluster of Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore.
| |
Collapse
|