1
|
Kang S, Guo Z, Zhao F, Song L, Lu L, Wang C, Liu Z, Zhao J. Lanzhou Lily polysaccharide fragment protects human umbilical vein endothelial cells from radiation-induced DNA double-strand breaks. Hum Exp Toxicol 2022; 41:9603271221140110. [DOI: 10.1177/09603271221140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Radiotherapy is widely used in the treatment of tumors. However, while killing tumor cells, radiation may also cause damage to the surrounding normal tissues. Therefore, it is very important to find safe and effective radiation protection agents. Purpose To investgate the radiation protection effect of Lanzhou Lily polysaccharide fragments (LLP). Methods: The crude polysaccharides of Lanzhou Lily were extracted from the dried bulb powder of Lilium lilium by ultrasonic-assisted hot water method, and then five different fragments were separated from the polysaccharides by DEAE-52-cellulose column. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, neutral comet and immunofluorescent staining were used to investigate the effect of LPe fragment on Human Umbilical Vein Endothelial Cells (HUVEC) survival and the possible radioprotective mechanism. Results The LPe fragment (composing of mannose and glucose, with a ratio of 5.5:2.9, and the average molecular weight is 8629.8 Da), significantly promoted the proliferation of HUVECs and protected cells from X-ray-induced double-strand breaks (DSBs) in DNA, in which pretreatment with the LPe fragment at 100 μg/mL showed the most pronounced protection. In addition, the occurrence of X-ray-induced γH2AX foci was significantly reduced by treatment with the LPe fragment at 50, 100, and 200 μg/mL. Furthermore, caffeine or wortmannin in combination with the LPe fragment at 25 μg/mL significantly reduced the number of X-ray-induced γH2AX foci, indicating phosphoinositide-3 kinases (PI3K) is involved in H2AX phosphorylation in HUVECs. Conclusion These results indicate the LPe fragment has a protective effect against radiation-induced DSBs and may be used as a natural antioxidant agent.
Collapse
Affiliation(s)
- S Kang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - Z Guo
- Medical College of Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - F Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
| | - L Song
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - L Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - C Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Z Liu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - J Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Zhu K, Ge J, He Y, Li P, Jiang X, Wang J, Mo Y, Huang W, Gong Z, Zeng Z, Xiong W, Yu J. Bioinformatics Analysis of the Signaling Pathways and Genes of Gossypol Induce Death of Nasopharyngeal Carcinoma Cells. DNA Cell Biol 2021; 40:1052-1063. [PMID: 34191589 DOI: 10.1089/dna.2020.6348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gossypol has been reported to exhibit antitumor effects against several human cancers. However, the anticancer effects of gossypol on nasopharyngeal carcinoma (NPC) have not been investigated. Against this backdrop, the present study was designed to evaluate the anticancer effects of gossypol against NPC cells and to identify the signaling pathways involved through bioinformatic analysis. Gossypol-inhibited death of NPC cells is concentration-dependent. To explore the underlying mechanism for gossypol's antitumor effect, microarray of gossypol-treated and -untreated NPC cells was performed. A total of 836 differentially expressing genes (DEGs) were identified in gossypol-treated NPC cells, of which 461 genes were upregulated and 375 genes were downregulated. The cellular components, molecular functions, biological processes, and signal pathways, in which the DEGs were involved, were identified by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The Gene Set Enrichment Analysis (GSEA) predicted upstream transcription factors (TF) ETS2 and E2F1 that regulate DEGs. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify a class of modules and genes related to DNA repair and cell cycle. TNFRSF10B, a receptor for death in NPC cells, was knocked down. The results suggested that the ability of NPC cells to resist gossypol killing was enhanced. In addition, to further investigate the possible molecular mechanisms, we constructed a transcriptional regulatory network of TNFRSF10B containing 109 miRNAs and 47 TFs. Taken together, our results demonstrated that gossypol triggered antitumor effects against NPC cells, indicating its applicability for the management of NPC.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Junshang Ge
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianjie Jiang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jie Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongzhen Mo
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Weilun Huang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
3
|
Caylioglu D, Meyer RJ, Hellmold D, Kubelt C, Synowitz M, Held-Feindt J. Effects of the Anti-Tumorigenic Agent AT101 on Human Glioblastoma Cells in the Microenvironmental Glioma Stem Cell Niche. Int J Mol Sci 2021; 22:ijms22073606. [PMID: 33808494 PMCID: PMC8037174 DOI: 10.3390/ijms22073606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.
Collapse
|
4
|
Mehner M, Kubelt C, Adamski V, Schmitt C, Synowitz M, Held-Feindt J. Combined treatment of AT101 and demethoxycurcumin yields an enhanced anti-proliferative effect in human primary glioblastoma cells. J Cancer Res Clin Oncol 2020; 146:117-126. [PMID: 31844979 DOI: 10.1007/s00432-019-03107-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a poorly curable disease due to its profound chemoresistance. Despite recent advances in surgery, radiotherapy and chemotherapy, the efficient treatment of GBMs is still a clinical challenge. Beside others, AT101, the R-(-) enantiomer of gossypol, and demethoxycurcumin (DMC), a curcumin-related demethoxy compound derived from Curcuma longa, were considered as possible alternative drugs for GBM therapy. METHODS Using different human primary GBM cell cultures in a long-term stimulation in vitro model, the cytotoxic and anti-proliferative effects of single and combined treatment with 5 µM AT101 and 5 µM or 10 µM DMC were investigated. Furthermore, western blots on pAkt and pp44/42 as well as JC-1 staining and real-time RT-PCR were performed to understand the influence of the treatment at the molecular and gene level. RESULTS Due to enhanced anti-proliferative effects, we showed that combined therapy with both drugs was superior to a single treatment with AT101 or DMC. Here, by determination of the combination index, a synergism of the combined drugs was detectable. Phosphorylation and thereby activation of the kinases p44/42 and Akt, which are involved in proliferation and survival processes, were inhibited, the mitochondrial membrane potential of the GBM cells was altered, and genes involved in dormancy-associated processes were regulated by the combined treatment strategy. CONCLUSION Combined treatment with different drugs might be an option to efficiently overcome chemoresistance of GBM cells in a long-term treatment strategy.
Collapse
Affiliation(s)
- Moiken Mehner
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | - Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | - Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | | | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany.
| |
Collapse
|
5
|
Qiao W, Huang Y, Bian Z, Sun X, Wang X, Gao Q, Peng Y, Meng L. Lipopolysaccharide-induced DNA damage response activates nuclear factor κB signalling pathway via GATA4 in dental pulp cells. Int Endod J 2019; 52:1704-1715. [PMID: 31260564 DOI: 10.1111/iej.13180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022]
Abstract
AIM To investigate the role of GATA-binding protein 4 (GATA4) in the inflammatory response induced by DNA double-strand breaks (DSBs) in human dental pulp cells (hDPCs). METHODOLOGY Lipopolysaccharide (LPS) was used for stimulating inflammation in dental pulp tissue in vivo and hDPCs in vitro. Expression levels of GATA4 and γ-H2A.X (a marker for DSBs) were detected at different stages of pulpitis in a rat model and human pulp tissues by immunohistochemistry. Real-time quantitative polymerase chain reaction and Western blot were performed to assess expression of GATA4 and γ-H2A.X and the activation of nuclear factor κB (NF-κB) in hDPCs stimulated by LPS. The comet assay was used for detecting the extent of DSBs in hDPCs. Immunocytochemistry and Western blot were utilized to evaluate expression of γ-H2A.X and GATA4 and activation of NF-κB in hDPCs pre-treated with inhibitors of DNA damage response or transfected with GATA4 small interfering RNA before the treatment of LPS. Data were analysed statistically using one-way anova or Kruskal-Wallis tests. RESULTS The expression of GATA4 and activation of DNA damage response and NF-κB in inflamed pulp tissue and LPS-treated hDPCs were identified. Significantly decreased expression of GATA4 and significantly decreased inflammatory processes in hDPCs were demonstrated via suppression of DNA damage response (P < 0.05). In GATA4-knockdown cells, the expression of γ-H2A.X did not change, but nuclear translocation of p65 was significantly suppressed (P < 0.05) upon induction by LPS. CONCLUSIONS Lipopolysaccharide-induced DSBs activated the NF-κB signalling pathway in hDPCs, and GATA4 acts as a positive moderator of the progress. The involvement of GATA4 in this pathology may serve as a therapeutic target in pulpitis.
Collapse
Affiliation(s)
- W Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Q Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zhao J, Guo Z, Pei S, Song L, Wang C, Ma J, Jin L, Ma Y, He R, Zhong J, Ma Y, Zhang H. pATM and γH2AX are effective radiation biomarkers in assessing the radiosensitivity of 12C 6+ in human tumor cells. Cancer Cell Int 2017; 17:49. [PMID: 28450809 PMCID: PMC5405484 DOI: 10.1186/s12935-017-0419-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background Tumour radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. The aim of the current study was to evaluate the potential value of phosphorylated H2AX (γH2AX) and ATM (pATM) in assessing 12C6+ radiosensitivity of tumour cells. Methods Human cervical carcinoma HeLa cells, hepatoma HepG2 cells, and mucoepidermoid carcinoma MEC-1 cells were irradiated with different doses of 12C6+. The survival fraction was assayed with clonogenic survival method and the foci of γH2AX and pATM was visualized using immunocytochemical methods. Flow cytometry was used to assay γH2AX, pATM and the cell cycle. Results The survival fraction decreased immediately in dose-dependent manner, but in turn, significantly increased during 24 h after 12C6+ irradiation. Both γH2AX and pATM foci accumulated linearly with doses and with a maximum induction at 0.5 h for γH2AX and 0.5 or 4 h for pATM, respectively, and a fraction foci kept for 24 h. The expression of γH2AX and pATM was in relation to cell cycle. The G0/G1 phase cells had the highest expression of γH2AX after 0.5 h irradiation and then decreased to a lower level at 24 h after irradiation. An obvious increase of pATM in G2/M phase was shown after 24 h of 2 and 4 Gy irradiation. The significant G2/M phase arrest was shown. There was a close relationship between the clonogenic survival and γH2AX and pATM expression both in timing and dose in response to 12C6+. Conclusions The rate of γH2AX and pATM formation and loss may be an important factor in the response of cells to 12C6+. pATM and γH2AX are effective radiation biomarkers in assessing the radiosensitivity of 12C6+ in human tumor cells.
Collapse
Affiliation(s)
- Jin Zhao
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Shuyan Pei
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Lei Song
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Chenjing Wang
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Jianxiu Ma
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Long Jin
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Yanqing Ma
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Renke He
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Jianbin Zhong
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Ying Ma
- Medical College of Northwest Minzu University, Lanzhou, 730030 People's Republic of China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730030 People's Republic of China
| |
Collapse
|