1
|
Zhang T, Yuan B, Yu S. The Application of microRNAs in Papillary Thyroid Cancer: A Bibliometric and Visualized Analysis. Int J Gen Med 2024; 17:4681-4699. [PMID: 39429957 PMCID: PMC11490214 DOI: 10.2147/ijgm.s487239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Thyroid cancer is the most common malignant endocrine tumor, with papillary thyroid carcinoma (PTC) being the most prevalent type, accounting for 85% of thyroid cancer cases. Here, we conducted a bibliometric analysis of the literature in the field of microRNAs in PTC research to demonstrate current trends and research hotspots, and present a visual map of past and emerging trends. Methods We searched the Web of Scientific Core Collection (WoSCC) database for publications from 1999 to 2023 centered on this field. Next, we employed visualization tools such as VOSviewer, CiteSpace, and Microsoft Excel 2019 to present co-occurrence and co-citation analyses, trends, hotspots, and visual representations of contributions from authors, institutions, journals, and countries/regions. Results The bibliometric analysis encompassed the period from 1999 to 2023, with 994 papers from 54 countries/regions. The country with the most publications and highest total citations was the People's Republic of China, but the United States held the highest average citation rate. Among the top ten productive institutions, the Ohio State University (Ohio State Univ) was the most prominent contributor to this field. The JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM (J Clin Endocrinol Metab) ranked first in terms of citation counts and average citations among the top ten productive journals. In terms of keywords, "circular RNAs", "promotes", and "progression" have become prominent research areas. Conclusion This study elucidates current trends, hotspots, and emerging frontiers in miRNA research within PTC, and provides new insights and guidance for future identification of new PTC biomarkers and clinical trials.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Clinical Laboratory, the Second People’s Hospital of Huaihua City, Huaihua, Hunan, People’s Republic of China
| | - Bo Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Guangdong, Shenzhen, People’s Republic of China
| | - Shaofu Yu
- Department of Clinical Pharmacy, the Second People’s Hospital of Huaihua, Huaihua, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Liu Y, Li H, Pang Y, Li Y, Li S. MiR-202-3p Targets Calm1 and Suppresses Inflammation in a Mouse Model of Acute Respiratory Distress Syndrome. Cell Biochem Biophys 2024; 82:1135-1143. [PMID: 38635101 DOI: 10.1007/s12013-024-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is regarded as a type of respiratory failure. Emerging evidence has demonstrated the significant roles of microRNAs in various disorders. Nevertheless, the role of miR-202-3p in ARDS is unclear. Forty male C57BL/6 mice treated with phosphate buffer saline/lipopolysaccharide (PBS/LPS) and administrated with NC/miR-202-3p agomir were divided into four groups. A reverse transcription-quantitative polymerase chain reaction was used to evaluate the level of miR-202-3p, its target genes, and proinflammatory factors. Hematoxylin‑eosin was utilized for histological observation of the lung tissues. The Wet/Dry ratio, myeloperoxidase activity, and total protein concentration in bronchoalveolar lavage fluid were assessed to determine pulmonary edema. Western blotting was used for quantifying protein levels of proinflammatory factors, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins. Calmodulin 1 (Calm1) protein expression in murine lung tissues was evaluated by immunohistochemistry. The binding relation between miR-202-3p and Calm1 was assessed by luciferase reporter assay. The results showed that miR-202-3p was lowly expressed in the lung tissues of ARDS mice. Overexpressed miR-202-3p relieved LPS-induced edema, reduced proinflammatory factors, and inactivated NF-κB/NLRP3 signaling in murine lung tissues. Calm1 was targeted by miR-202-3p and displayed a high level of LPS-induced ARDS. In conclusion, miR-202-3p targets Calm1 and suppresses inflammation in LPS-induced ARDS, thereby inhibiting the pathogenesis of ARDS in a mouse model.
Collapse
Affiliation(s)
- Ya Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Hu H, Quan G, Yang F, Du S, Ding S, Lun Y, Chen Q. MicroRNA-96-5p is negatively regulating GPC3 in the metastasis of papillary thyroid cancer. SAGE Open Med 2023; 11:20503121231205710. [PMID: 37915840 PMCID: PMC10617255 DOI: 10.1177/20503121231205710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Backgrounds Papillary thyroid cancer is the most common pathological type of thyroid cancer. miR-96-5p, a member of the miR-183 family, constitute a polycistronic miRNA cluster. In breast cancer, miR-96-5p promotes cell invasion, migration, and proliferation in vitro by inhibiting PTPN9. Moreover, miR-96-5p was reported to function as an oncogene in many cancers. However, whether miR-96-5p is involved in the development of papillary thyroid cancers and its potential mechanism is still unknown. The present study aims to explore the relationship between miR-96-5p and GPC3 expression in the development of papillary thyroid cancers. Methods Transcriptomic sequencing was carried out using six pairs of papillary thyroid cancer and adjacent normal tissues. Quantitative real-time polymerase chain reaction (PCR) experiments were performed to examine the expression of genes. Results In total, there were 1588 up-regulated and 1803 down-regulated differentially expressed genes between papillary thyroid cancer and normal tissues. Gene ontology and Kyoto encyclopedia of genes and genomes analysis revealed that extracellular matrix structure and proteoglycans were mainly involved in papillary thyroid cancer. Among the cluster of proteoglycans, GPC3 was significantly down-regulated in papillary thyroid cancer and is a target of miR-96. Conclusion miR-96-5p participates in the development of papillary thyroid cancer by regulating the expression of GPC3. Thus, targeting miR-96-5p may be a potential therapeutic approach for preventing and treating papillary thyroid cancer.
Collapse
Affiliation(s)
- Haibei Hu
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Medical Microecology, Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Guangqian Quan
- Department of Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Feng Yang
- Department of General Surgery, The Third People’s Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Shan Du
- Department of Pathology, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Siqin Ding
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yongzhi Lun
- Key Laboratory of Medical Microecology, Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Qiang Chen
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Wang X, Liu F, Cui Z, Li Z, Lv Y. Carboxypeptidase A6 suppresses the proliferation and invasion of colorectal cancer cells and is negatively regulated by miR-96–3p. Arch Biochem Biophys 2023; 740:109595. [PMID: 37011707 DOI: 10.1016/j.abb.2023.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor, and this study aims to explore the role and the regulatory mechanism of carboxypeptidase A6 (CPA6) in CRC cells. METHODS Specific shRNA targeting CPA6 mRNA was transfected into NCM460 and HT29 cells to down-regulate CPA expression, and expression plasmid was transfected into HCT116 cells to exogenously overexpress CPA6. The dual luciferase assay was used to detect the direct binding of miR-96-3p to CPA6 3'UTR. Phosphorylation and activation of Akt were detected using Western blot. Cells were treated with miR-96-3p mimics, Akt inhibitor (MK-2206) or agonist (SC79) for rescue experiments. The cell functions were evaluated using CCK-8, clone formation, transwell, and Western blot assays. Xenograft tumor assay was also used to analyze the effect of altered CPA6 expression on tumor growth. RESULTS Knockdown of CPA6 promoted the proliferation, clone formation, migration, and invasion of NCM460 and HT29 cells in vitro, and the tumor growth of nude mouse xenograft tumor in vivo. Moreover, over-expression of CPA6 significantly inhibited the malignant proliferation and invasion of HCT116 cells in vitro, and the tumor growth of xenograft tumor in vivo. Furthermore, miR-96-3p could directly regulate CPA6 expression by targeting its 3'UTR, and miR-96-3p mimics rescued the inhibitory effects of CPA6 overexpression on the malignant proliferation and invasion of CRC cells. Finally, CPA6 knockdown enhanced Akt/mTOR phosphorylation and activation, while CPA6 overexpression inhibited Akt/mTOR activation. The regulatory effect of CPA6 on Akt/mTOR signaling was naturally regulated by miR-96-3p. Akt inhibitor or agonist rescued the effects of CPA6 knockdown or overexpression on proliferation and EMT of colon cancer cells. CONCLUSION CPA6 has a significant tumor suppressive effect on CRC by inhibiting the activation of Akt/mTOR signaling, and miR-96-3p negatively regulates the expression of CPA6.
Collapse
|
5
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
6
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Rahimi HR, Mojarrad M, Moghbeli M. MicroRNA-96: A therapeutic and diagnostic tumor marker. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:3-13. [PMID: 35656454 DOI: 10.22038/ijbms.2021.59604.13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
Cancer has been always considered as one of the main human health challenges worldwide. One of the main causes of cancer-related mortality is late diagnosis in the advanced stages of the disease, which reduces the therapeutic efficiency. Therefore, novel non-invasive diagnostic methods are required for the early detection of tumors and improving the quality of life and survival in cancer patients. MicroRNAs (miRNAs) have pivotal roles in various cellular processes such as cell proliferation, motility, and neoplastic transformation. Since circulating miRNAs have high stability in body fluids, they can be suggested as efficient noninvasive tumor markers. MiR-96 belongs to the miR-183-96-182 cluster that regulates cell migration and tumor progression as an oncogene or tumor suppressor by targeting various genes in solid tumors. In the present review, we have summarized all of the studies that assessed the role of miR-96 during tumor progression. This review clarifies the molecular mechanisms and target genes recruited by miR-96 to regulate tumor progression and metastasis. It was observed that miR-96 mainly affects tumorigenesis by targeting the structural proteins and FOXO transcription factors.
Collapse
Affiliation(s)
- Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Epigenetic Silencing of SOX15 Is Controlled by miRNAs rather than Methylation in Papillary Thyroid Cancer. DISEASE MARKERS 2021; 2021:1588220. [PMID: 34603557 PMCID: PMC8486500 DOI: 10.1155/2021/1588220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Methods In this study, qRT-PCR was used to investigate the expression levels of the SOX15 gene and of miR-182, miR-183, miR-375, and miR-96 in thyroid tumors and adjacent noncancerous tissues. We also investigated the methylation status of the SOX15 promoter by methylation-specific PCR in tumors and adjacent noncancerous tissues. Results We observed a statistically significant downregulation of SOX15 expression in tumors compared to noncancerous tissue samples. The methylation levels of tumors and matched noncancerous tissues were similar, but miR-182, miR-183, and miR-375 expression levels were elevated in tumor tissues compared to noncancerous tissue samples. Conclusions Our results indicate that SOX15 gene expression is associated with the pathogenesis of papillary thyroid carcinoma (PTC), and the epigenetic control of the SOX15 gene is regulated by miRNAs rather than by promoter methylation.
Collapse
|
9
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
10
|
Zhou B, Ge Y, Shao Q, Yang L, Chen X, Jiang G. Long noncoding RNA LINC00284 facilitates cell proliferation in papillary thyroid cancer via impairing miR-3127-5p targeted E2F7 suppression. Cell Death Discov 2021; 7:156. [PMID: 34226533 PMCID: PMC8257569 DOI: 10.1038/s41420-021-00551-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has suggested that long noncoding RNAs (lncRNAs) exert crucial modulation roles in the biological behaviors of multiple malignancies. Nonetheless, the specific function of lncRNA LINC00284 in papillary thyroid cancer (PTC) remains not fully understood. The objective of this research was to explore the influence of LINC00284 in PTC and elucidate its potential mechanism. The Cancer Genome Atlas (TCGA), gene expression omnibus (GEO) datasets were used to analyze LINC00284 expression differences in thyroid cancer and normal samples, followed by the verification of qRT-PCR in our own PTC and adjacent non-tumor tissues. The impacts of LINC00284 on PTC cell growth were detected in vitro via CCK-8, colony formation, EdU assays, and in vivo via a xenograft tumor model. Bioinformatics analyses and biological experiments were conducted to illuminate the molecular mechanism. We found that LINC00284 expression was remarkably increased in PTC tissues and its overexpression was closely correlated with larger tumor size. In addition, silencing LINC00284 could effectively attenuate PTC cell proliferation, induce apoptosis and G1 arrest in vitro, as well as suppress tumorigenesis in mouse xenografts. Mechanistic investigations showed that LINC00284 acted as a competing endogenous RNA (ceRNA) for miR-3127-5p, thus resulting in the disinhibition of its endogenous target E2F7. In short, our findings indicated that LINC00284–miR-3127-5p–E2F7 axis exerted oncogenic properties in PTC and may offer a new promising target for the diagnosis and therapy of PTC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.,Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, 214000, Jiangsu Province, China
| | - Yugang Ge
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, 214000, Jiangsu Province, China
| | - Qing Shao
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, 214000, Jiangsu Province, China
| | - Liyi Yang
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, 214000, Jiangsu Province, China
| | - Xin Chen
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, 214000, Jiangsu Province, China
| | - Guoqin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
11
|
Fan Y, Fei M, Li Y, Gao Z, Zhu Y, Dai G, Wu D. miR-196a-2 Promotes Malignant Progression of Thyroid Carcinoma by Targeting NRXN1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4856820. [PMID: 34158819 PMCID: PMC8187078 DOI: 10.1155/2021/4856820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
Thyroid cancer (TC) is the most common endocrine malignant disease with a rising morbidity year by year. Accumulating studies have shown that microRNAs (miRNAs) play a regulatory role in the progression of various tumors, but the molecular regulatory mechanism of miR-196a-2 in TC is still unknown. qRT-PCR was employed to measure the expression of miR-196a-2 and NRXN1 mRNA in TC cells, while western blot was used to detect the protein expression of NRXN1. CCK-8, colony formation and flow cytometry assays were used to measure cell proliferation and apoptosis of TC cells. Dual-luciferase reporter gene assay was used to predict and verify the targeted binding relationship between miR-196a-2 and NRXN1. Our study results manifested that miR-196a-2 was dramatically overexpressed in cells of TC, while NRXN1 was lowly expressed. miR-196a-2 could promote cell proliferation and inhibit cell apoptosis of TC. Additionally, miR-196a-2 could also target and inhibit the expression of NRXN1. Silencing NRXN1 could reverse the inhibitory effect of miR-196a-2 downregulation on cell proliferation of TC, as well as the promoting effect on cell apoptosis. In a conclusion, we found that miR-196a-2 could promote cell proliferation and inhibit cell apoptosis of TC by targeting NRXN1. Therefore, miR-196a-2/NRXN1 is potential to be a molecular therapeutic target for TC.
Collapse
Affiliation(s)
- Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - MingJian Fei
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - Yan Li
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - Zhenzhen Gao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - Yuzhang Zhu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - Guiping Dai
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| | - Dongjuan Wu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, China
| |
Collapse
|
12
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
13
|
MicroRNA in Papillary Thyroid Carcinoma: A Systematic Review from 2018 to June 2020. Cancers (Basel) 2020; 12:cancers12113118. [PMID: 33113852 PMCID: PMC7694051 DOI: 10.3390/cancers12113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common form of endocrine cancer - papillary thyroid carcinoma, has an increasing incidence. Although this disease usually has an indolent behavior, there are cases when it can evolve more aggressively. It has been known for some time that it is possible to use microRNAs for the diagnosis, prognosis and even treatment monitoring of papillary thyroid cancer. The purpose of this study is to summarize the latest information provided by publications regarding the involvement of microRNAs in papillary thyroid cancer, underling the new clinical perspectives offered by these publications. Abstract The involvement of micro-ribonucleic acid (microRNAs) in metabolic pathways such as regulation, signal transduction, cell maintenance, and differentiation make them possible biomarkers and therapeutic targets. The purpose of this review is to summarize the information published in the last two and a half years about the involvement of microRNAs in papillary thyroid carcinoma (PTC). Another goal is to understand the perspective offered by the new findings. Main microRNA features such as origin, regulation, targeted genes, and metabolic pathways will be presented in this paper. We interrogated the PubMed database using several keywords: “microRNA” + “thyroid” + “papillary” + “carcinoma”. After applying search filters and inclusion criteria, a selection of 137 articles published between January 2018–June 2020 was made. Data regarding microRNA, metabolic pathways, gene/protein, and study utility were selected and included in the table and later discussed regarding the matter at hand. We found that most microRNAs regularly expressed in the normal thyroid gland are downregulated in PTC, indicating an important tumor-suppressor action by those microRNAs. Moreover, we showed that one gene can be targeted by several microRNAs and have nominally described these interactions. We have revealed which microRNAs can target several genes at once.
Collapse
|
14
|
Huang Y, Zhang J, Li H, Peng H, Gu M, Wang H. miR-96 regulates liver tumor-initiating cells expansion by targeting TP53INP1 and predicts Sorafenib resistance. J Cancer 2020; 11:6545-6555. [PMID: 33046975 PMCID: PMC7545665 DOI: 10.7150/jca.48333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
Liver tumor-initiating cells (T-ICs) contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. In the present study, our finding shows that miR-96 is upregulated in liver T-ICs. Functional studies revealed that forced miR-96 promotes liver T-ICs self-renewal and tumorigenesis. Conversely, knockdown miR-96 inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, miR-96 downregulates TP53INP1 via its mRNA 3'UTR in liver T-ICs. Furthermore, the miR-96 expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient cohorts and patient-derived xenografts (PDXs) further demonstrate that the miR-96 may predict sorafenib benefits in HCC patients. Our findings revealed the crucial role of the miR-96 in liver T-ICs expansion and sorafenib response, rendering miR-96 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Yonggang Huang
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Jin Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - HengYu Li
- Department of General surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Maolin Gu
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Hengjie Wang
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| |
Collapse
|
15
|
Qin WY, Feng SC, Sun YQ, Jiang GQ. MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling. J Gene Med 2020; 22:e3188. [PMID: 32196830 DOI: 10.1002/jgm.3188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer deaths in women worldwide. The purpose of the current study was to investigate the potential role of miR-96-5p in breast cancer. METHODS Breast cancer tissues and matched para-cancerous tissues were collected. The expression of microRNA-96-5p (miR-96-5p) and arginine kinase 3 (AK3) was detected by quantitative real-time PCR (qRT-PCR). The correlation between miR-96-5p and AK3 was calculated by Pearson's Chi-square test. Moreover, mimics or inhibitors of miR-96-5p were applied to explore whether miR-96-5p influences the migration capacity in Transwell and wound healing assays. Bioinformatics analysis was performed to identify the target genes of miR-96-5p through the TargetScan, miRDB and miRanda databases. A luciferase reporter assay was performed to verify AK3 as a downstream target gene of miR-96-5p. RESULTS The expression of miR-96-5p was significantly increased in breast cancer tissue and breast cancer cell lines compared with para-cancerous tissue and a breast cell line, respectively. The expression of miR-96-5p negatively correlated with AK3 gene expression. AK3 was demonstrated to be a direct mRNA target of miR-96-5p. AK3 was positively associated with the overall survival of breast cancer patients. Kaplan-Meier curve and log rank test analyses revealed that decreased AK3 levels were significantly associated with reduced overall survival. miR-96-5p was shown to promote the migration of breast cancer cells through the MEK/ERK signaling pathway. CONCLUSION Our results identify a role for miR-96-5p in promoting breast cancer cell migration through activation of MEK/ERK signaling by targeting AK3.
Collapse
Affiliation(s)
- Wei-Yan Qin
- Department of Surgery, The Second Affiliated Hospital of Soochow University, China.,Department of General Surgery, The First People's Hospital of Nantong, China
| | - Shi-Chun Feng
- Department of General Surgery, The First People's Hospital of Nantong, China
| | - Yong-Qiang Sun
- Department of General Surgery, The First People's Hospital of Nantong, China
| | - Guo-Qin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, China
| |
Collapse
|