1
|
Küppers O, Ahmad M, Haffner-Luntzer M, Scharffetter-Kochanek K, Ignatius A, Fischer V. Inflammatory priming of human mesenchymal stem cells induces osteogenic differentiation via the early response gene IER3. FASEB J 2024; 38:e70076. [PMID: 39373973 DOI: 10.1096/fj.202401344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Collapse
Affiliation(s)
- Oliver Küppers
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
2
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Wang N, Tan X, Cao S, Liu M. Predictive value of immediate early response 5 like (IER5L) in the prognosis and immune checkpoint blockade therapy of non-small cell lung cancer patients. Pathol Res Pract 2024; 256:155270. [PMID: 38552564 DOI: 10.1016/j.prp.2024.155270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a malignancy with high mortality. Immediate early response 5 like (IER5L) has been found to associate with worse prognosis in colorectal cancer patients. However, its role in the prognosis prediction of NSCLC has remained largely unknown. METHODS The IER5L expression in NSCLC and normal tissues was analyzed in two public cohorts: TCGA-LUAD-LUSC and GSE159857. Additionally, functional enrichment, survival analysis, CIBERSORT and tumor mutation burden (TMB) were investigated between low- and high-IER5L level groups. The in vitro IER5L mRNA and protein levels were determined using RT-qPCR and western blot, respectively. RESULTS The data from TCGA-LUAD-LUSC and GSE159857 cohorts showed a high IER5L mRNA expression in NSCLC tissue samples compared to normal controls. The increased expression of IER5L in NSCLC cells were also validated by RT-qPCR and western blot analysis. Additionally, NSCLC patients with high-IER5L level had significantly worse prognosis and IER5L could be used as an independent prognostic factor for NSCLC patients. Meanwhile, patients in the high-IER5L group had higher TMB level. IER5L expression was negatively correlated with the proportion of Monocytes and T cells CD4 memory resting, and was positively related to the proportion of Tregs and M0 macrophages in tumor tissues. Besides, transcription factors TFAP4 and ZNF692 may bind to the promoter region of IER5L, and then modulate IER5L gene transcription, thereby affecting IER5L gene expression. Furthermore, GSEA results showed that IER5L gene was closely related to MAPK, PI3K-Akt, NF-kappaB signaling pathways in NSCLC. CONCLUSION Collectively, high IER5L expression may be a promising unfavorable prognostic biomarker and therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Nana Wang
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China
| | - Xiaofeng Tan
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China
| | - Shuming Cao
- Department of Hand Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Meirong Liu
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China.
| |
Collapse
|
4
|
Tsutsumi C, Ohuchida K, Katayama N, Yamada Y, Nakamura S, Okuda S, Otsubo Y, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Nagai E, Morisaki T, Oda Y, Nakamura M. Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer 2024; 27:248-262. [PMID: 38217732 DOI: 10.1007/s10120-023-01456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by an immunosuppressive and treatment-resistant tumor immune microenvironment (TIME). Here, we investigated the roles of different immunosuppressive cell types in the development of the GC TIME. METHODS Single-cell RNA sequencing (scRNA-seq) and multiplex immunostaining of samples from untreated or immune checkpoint inhibitor (ICI)-resistant GC patients were used to examine the correlation between certain immunosuppressive cells and the prognosis of GC patients. RESULTS The results of the scRNA-seq analysis revealed that tumor-infiltrating monocytic myeloid-derived suppressor cells (TI-M-MDSCs) expressed higher levels of genes with immunosuppressive functions than other immunosuppressive cell types. Additionally, M-MDSCs in GC tissues expressed significantly higher levels of these markers than adjacent normal tissues. The M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues. Among the immunosuppressive cell types assessed, the M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues; moreover, their presence was most strongly associated with a poor prognosis. Immediate early response 3 (IER3), which we identified as a differentially expressed gene between M-MDSCs of GC and adjacent normal tissues, was an independent poor prognostic factor in GC patients (P = 0.0003). IER3+ M-MDSCs expressed higher levels of genes with immunosuppressive functions than IER3- M-MDSCs and were abundant in treatment-resistant GC patients. CONCLUSIONS The present study suggests that TI-M-MDSCs, especially IER3+ ones, may play a predominant role in the development of the immunosuppressive and ICI-resistant GC TIME.
Collapse
Affiliation(s)
- Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiki Otsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eishi Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Chen Y, Huang Z, Chen S, Tan L, He L, Yuan D, Zheng L, Zhong JH, Li A, Zhang H, Tan H, Xu L. Immediate early response 3 gene promotes aggressive progression and autophagy of AML by negatively regulating AKT/mTOR. Transl Oncol 2023; 35:101711. [PMID: 37327583 DOI: 10.1016/j.tranon.2023.101711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Immediate early response 3 (IER3) plays a vital role in many tumors. This study aims to explore the function and mechanism of IER3 in Acute myeloid leukemia (AML). METHODS The expression of IER3 in AML was performed by bioinformatics analysis. CCK-8 proliferation assay, flow cytometry cycle assay, clone formation assay, and tumorigenic ability were used to investigate the effect of IER3 on AML cells. Unbiased label-free quantitative proteomics and label-free quantitative phosphoproteomics analysis were performed. The regulatory relationship between SATB1(Special AT-rich sequence binding protein 1) and IER3 was investigated by Real time-PCR, Western blot, Chromatin immunoprecipitation (CHIP), and PCR. RESULTS The result indicated that the prognosis of the high IER3 expression group was significantly worse than that of the low expression group. CCK-8 assay showed that IER3 enhanced the proliferation ability. Cell cycle analysis showed IER3 could promote HL60 cells to enter the S phase of DNA synthesis from the quiescent phase. IER3 could stimulate HEL cells to enter mitosis. Clone-formation experiments suggested that IER3 enhanced clonogenic ability.IER3 promoted the tumorigenesis of AML. Further experimental investigation revealed that IER3 promoted autophagy and induced the occurrence and development of AML by negatively regulating the phosphorylation activation of AKT/mTOR pathway. SATB1 was found to bind to the promoter region of IER3 gene and negatively regulate its transcription. CONCLUSION IER3 could promote the development of AML and induce autophagy of AML cells by negatively regulating the phosphorylation and activation of AKT/mTOR. By the way, SATB1 may negatively target regulates IER3 transcription.
Collapse
Affiliation(s)
- Yimin Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Shuyi Chen
- Department of Hematology, First People's Hospital of Foshan, 81 Linnan North Road, Chancheng, Foshan, Guangdong 528000, China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Lang He
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Danyun Yuan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Lixia Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Jing Hua Zhong
- The First Clinical Academy, Guangzhou Medical University, Guangzhou, 510230, China; Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical, University, Guangzhou, 510230, China
| | - Anqiao Li
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Heng Zhang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Huo Tan
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China; Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical, University, Guangzhou, 510230, China
| |
Collapse
|
6
|
Yang Y, Ma B, Han L, Xu W, Du X, Wei W, Liao T, Ji Q, Qu N, Wang Y. Integrated single-cell and bulk RNA sequencing analyses reveal a prognostic signature of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Front Genet 2022; 13:1028469. [PMID: 36568368 PMCID: PMC9775281 DOI: 10.3389/fgene.2022.1028469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives: To identify a prognosis-related subtype of cancer-associated fibroblasts (CAFs) in head and neck squamous cell carcinoma (HNSCC) and comprehend its contributions to molecular characteristics, immune characteristics, and their potential benefits in immunotherapy and chemotherapy for HNSCC. Materials and Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis of CAFs from the samples of HNSCC patients derived from Gene Expression Omnibus (GEO), to identify the prognosis-related subtype of CAFs. CAFs were clustered into five subtypes, and a prognosis-related subtype was identified. Univariate and multivariate cox regression analyses were performed on the cohort selected from The Cancer Genome Atlas (TCGA) to determine signature construction, which was validated in GSE65858 and GSE42743. A prognostic signature based on 4 genes was constructed, which were derived from prognosis-related CAFs. The molecular characteristics, immune characteristics as well as the predicted chemosensitivity and immunotherapeutic response in the signature-defined subgroups were analyzed subsequently. Results: The patients with higher CAF scores correlated with poor survival outcomes. Additionally, a high CAF score correlated with lower infiltration levels of many immune cells including M1 macrophages, CD8+ T cells, follicular T helper cells, monocytes, and naïve B cells. High CAF score also demonstrated different enrichment pathways, mutation genes and copy number variated genes. Furthermore, patients with high CAF scores showed lower sensitivity for chemotherapy and immunotherapy than those with low CAF scores. Conclusion: The results of our study indicate the potential of the CAF signature as a biomarker for the prognosis of HNSCC patients. Furthermore, the signature could be a prospective therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Litao Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxue Du
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qinghai Ji, ; Ning Qu, ; Yu Wang,
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qinghai Ji, ; Ning Qu, ; Yu Wang,
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qinghai Ji, ; Ning Qu, ; Yu Wang,
| |
Collapse
|
7
|
Park YM, Lim J, Koh YW, Kim S, Choi EC. Long-term outcomes of early stage oral tongue cancer: Main cause of treatment failure and second primary malignancy. Laryngoscope Investig Otolaryngol 2022; 7:1830-1836. [PMID: 36544917 PMCID: PMC9764773 DOI: 10.1002/lio2.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objective We attempted to investigate the long-term outcomes, prognostic factors, treatment failures, second primary malignancies, and salvage therapies in early (pT1-2N0) oral tongue squamous cell carcinoma (OTSCC). Methods We retrospectively analyzed the medical records of 295 early stage OTSCC patients. Results Two hundred ninety-five patients were enrolled. The average follow-up period was 64.5 months (range, 1-190 months). Five-year recurrence-free survival rate was 84.8% and disease-specific survival rate was 91.2%. On multivariate analysis, only the depth of invasion (DOI) exhibited significant correlations with the disease recurrence. Patient's age and DOI demonstrated a significant association with survival. A total of 53 recurrence and 35 death events occurred, with the main cause of treatment failure being regional or local recurrence. In recurrent cases, the success rate of salvage treatment was 42% at 5 years. During the follow-up period, second primary malignancy occurred in 13 patients, and 8 (61.5%) of those patients were successfully treated. Conclusions In pT1-2N0 OTSCC, regional or local recurrence is the main recurrence pattern, whereas age and DOI >5 mm are significant prognostic factors related to recurrence and survival. Since several patients experienced second primary malignancies in the head and neck, careful and thorough surveillance may be required to detect second primary lesions. Level of Evidence 4.
Collapse
Affiliation(s)
- Young M. Park
- Department of OtorhinolaryngologyYonsei University College of Medicine, Gangnam Severance HospitalSeoulSouth Korea
| | - Jae‐Yol Lim
- Department of OtorhinolaryngologyYonsei University College of Medicine, Gangnam Severance HospitalSeoulSouth Korea
| | - Yoon W. Koh
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| | - Se‐Heon Kim
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| | - Eun C. Choi
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
8
|
Tandon A, Sandhya K, Singh NN, Kumar A. Prognostic Relevance of Lymphatic Vessel Density in Squamous Cell Carcinomas of the Oral Cavity: A Systematic Review and Meta-Analysis. Head Neck Pathol 2022; 16:1185-1194. [PMID: 35904748 PMCID: PMC9729525 DOI: 10.1007/s12105-022-01474-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC), a major debilitating illness demands focus in recent times due to a constant upsurge in cases and poor prognostic implications. An urgent mandate upon finding evidence of relevant prognostic markers is the need of the hour. This systematic review and meta-analysis, therefore, elect an objective assessment of Lymphatic Vessel Density (LVD) as a pertinent parameter governing OSCC prognosis. METHODS The study protocol was registered at the International Prospective Register Of Systematic Reviews (PROSPERO). Databases were searched using the MeSH keywords for all study types following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The exposure under consideration was the evaluation of LVD in patients of OSCC. The outcome was measured as pooled Hazard/Odd's/Risk ratios in survived versus non-survived OSCC population. The risk of bias assessment was performed using the QUIPS tool. Heterogeneity was assessed by Chi-square and I2 statistics whereas publication bias was investigated using Egger's test of significance. All the statistical analysis was conducted using STATA version 13.0. RESULTS The initial search of 226 records were screened and filtered through the inclusion and exclusion criteria to achieve an outcome of 15 studies for qualitative synthesis out of which seven studies were eligible for meta-analysis. Pooled Hazard of enhanced Lymphatic Vessel Density was not found to be statistically significant (HR = 1.98, p = 0.553); contrary to the pooled Odd's/Risk for patient survival which was statistically significant (RR = 1.33, p = 0.046). The I2 test of heterogeneity was also significant (58.8%, p = 0.046). CONCLUSIONS This meta-analysis helps to generate pathfinding evidence for a noteworthy role of Lymphatic Vessel Density evaluation in suggesting OSCC prognosis.
Collapse
Affiliation(s)
- Ankita Tandon
- Department of Oral Pathology, Microbiology, and Forensic Odontology, Dental Institute, RIMS, Ranchi, India
| | | | - Narendra Nath Singh
- Department of Oral Pathology, Microbiology, and Forensic Odontology, Dental Institute, RIMS, Ranchi, India
| | - Amit Kumar
- Department of Lab Medicine, RIMS, Ranchi, India
| |
Collapse
|
9
|
Yuan W, Tan T, Liu Y, Du Y, Zhang S, Wang J. The Relationship between VEGF-C, TAM, and Lymph Node Metastasis in Oral Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9910049. [PMID: 35800004 PMCID: PMC9256394 DOI: 10.1155/2022/9910049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the relationship between vascular endothelial growth factor-C (VEGF-C) and tumor-associated macrophages in oral cancer (TAMs) with lymph node metastasis. Method From January 2018 to January 2022, 155 cases of oral cancer tissues and 165 cases of normal mucosal tissues were collected from oral surgical resection tissues or biopsy specimens in Hebei Eye Hospital. Oral cancer tissues were observed. The control group had normal mucosal tissues. The clinical and immune parameters were observed and the treatment of oral cancer is also briefly discussed. Results The number of TAMs and the expression of VEGF-C in oral cancer tissues were significantly higher than those in normal tissues (P < 0.05). The lymphatic vessel density, the number of TAMs, and the expression of VEGF-C in the metastatic group were higher than in nonmetastatic group, and the lymphatic vessel density, the number of TAMs, and the expression of VEGF-C in the paracancerous tissues were higher than central tumor tissue in the metastatic group (P < 0.05). Univariate analysis showed that the number of TAMs was related to the histological stage and the pathological type of oral cancer (P > 0.05). The expression of VEGF-C was associated with the histological stage of oral cancer (P < 0.05). Compared with the immune function after different treatments, the contents of CD4+ in both groups was higher than before, and the combined treatment group was increased more than single treatment group (P < 0.05). The contents of CD3+ and CD8+ in the two groups were lower than before, and the combined treatment group was decreased higher than combined treatment group (P < 0.05). Conclusions The number of TAMs and the expression of VEGF-C in oral cancer tissues are higher than normal tissues. The number of TAMs and the expression of VEGF-C are higher in patients with lymph node metastasis. TAMs and VEGF-C may play an important role in lymph node metastasis of oral cancer. Integrated traditional Chinese and Western medicine can improve the immune function of patients with oral cancer and may improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Wei Yuan
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Tao Tan
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Ying Liu
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Yingjie Du
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Shengjuan Zhang
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Junrong Wang
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| |
Collapse
|
10
|
He FY, Chen G, He RQ, Huang ZG, Li JD, Wu WZ, Chen JT, Tang YL, Li DM, Pan SL, Feng ZB, Dang YW. Expression of IER3 in hepatocellular carcinoma: clinicopathology, prognosis, and potential regulatory pathways. PeerJ 2022; 10:e12944. [PMID: 35291486 PMCID: PMC8918148 DOI: 10.7717/peerj.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immediate early response 3 (IER3) is correlated to the prognosis of several cancers, but the precise mechanisms underlying the regulation by IER3 of the occurrence and development of hepatocellular carcinoma (HCC) remain unknown. Methods The expression level of IER3 was examined by using in-house immunohistochemistry (IHC), public gene chip, and public RNA-sequencing (RNA-seq). The standardized mean difference (SMD) was calculated to compare the expression levels of IER3 between HCC patients and controls. The summary receiver operating characteristics (sROC) was plotted to comprehensively understand the discriminatory capability of IER3 between HCC and non-HCC group. The Kaplan-Meier curves and the combined hazard ratios (HRs) were used to determine the prognostic value of IER3 in HCC. Moreover, differentially expressed genes (DEGs) and co-expression genes (CEGs) were used to explored the molecular mechanisms of IER3 underlying HCC. hTFtarget was used to predict the transcription factors (TFs) of IER3. The binding site of TFs and the IER3 promoter region was forecasted using the JASPAR website. The relevant ChIP-seq data were used to determine whether TF peaks were present in the IER3 transcription initiation. Results A significantly increased expression of IER3 protein was found in HCC tissue relative to non-HCC tissue as detected by IHC (p < 0.001). Compared to 1,263 cases of non-HCC tissues, IER3 in 1483 cases of HCC tissues was upregulated (SMD = 0.42, 95% confidence interval [CI] [0.09-0.76]). The sROC showed that IER3 had a certain ability at differentiating HCC tissues (area under the curve (AUC) = 0.65, 95% CI [0.61-0.69]). Comprehensive analysis of the effect of IER3 on the prognosis of patients with HCC demonstrated that higher IER3 expression was associated with poor prognosis in HCC (HRs = 1.30, 95% CI [1.03-1.64]). Pathway enrichment analysis revealed that IER3-related genes were mostly enriched in the PI3K-Akt signaling pathway, cancer-related signaling pathways, the p53 signaling pathway, and other signaling pathways. Regulatory factor X5 (RFX5) was identified as a possible regulator of IER3-related TF. Conclusion IER3 may be a potential prognostic marker for HCC. The molecular mechanisms of IER3 in HCC warrant further study.
Collapse
Affiliation(s)
- Fei-Yan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei-Zi Wu
- Department of Pathology, People’s Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Tian Chen
- Department of Pathology, People’s Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu-Lu Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
11
|
Luo Q, Yu Y, Lan X. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Brief Bioinform 2022; 23:bbab547. [PMID: 34962260 PMCID: PMC8769917 DOI: 10.1093/bib/bbab547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.
Collapse
Affiliation(s)
- Qinhuan Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yongzhen Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine,and the Tsinghua-Peking Center for Life science, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Ke S, Zhang X, Xiang X, Lu Y, An H. IER3 (IEX-1) dysregulation serves as a potential prognostic factor in acute myeloid leukemia patients. Int J Lab Hematol 2021; 44:342-348. [PMID: 34729939 PMCID: PMC9298238 DOI: 10.1111/ijlh.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Introduction Immediate early response 3 (IER3) has association with hematological malignancies’ risk and prognosis, such as myelodysplastic syndrome, while its relation to acute myeloid leukemia (AML) is not clear. This study aimed to explore the correlation of IER3 with AML risk, clinical characteristics, complete remission (CR), event‐free survival (EFS), and overall survival (OS). Methods A total of 93 de novo AML patients were included in this study. In addition, 30 patients with non‐hyperplasia hematologic malignancies requiring bone marrow testing (as disease controls) and 30 health donors (as health controls) were also recruited. Bone morrow samples of AML patients (before treatment), disease controls (before treatment), and health controls (at donation) were collected. IER3 in bone marrow mononuclear cells was detected by reverse transcription‐quantitative polymerase chain reaction. Results IER3 was increased in AML patients compared with disease controls and health donors (both P < .001), and receiver operating characteristic (ROC) curve showed that IER3 had certain capability of distinguishing AML patients from disease controls (area under curve (AUC): 0.735, 95% confidence interval (CI): 0.650‐0.820), and health donors (AUC: 0.789, 95% CI: 0.712‐0.866). Meanwhile, IER3 was correlated with FLT3‐ITD mutation (P = .030) and poor NCCN risk stratification (P = .031) in AML patients. Moreover, IER3 had negative association with CR in AML patients (P = .022), and showed certain potential in discriminating CR patients from non‐CR patients (AUC: 0.655, 95% CI: 0.533‐0.777). Besides, IER3 was negatively associated with EFS (P = .033), but not OS (P = .083) in AML patients. Conclusion IER3 dysregulation serves as a potential prognostic factor in AML patients.
Collapse
Affiliation(s)
- Shandong Ke
- Department of Hematology, Huangshi Central Hospital of EDong Medial Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Xin Zhang
- Department of Hematology, Huangshi Central Hospital of EDong Medial Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Xiuzhi Xiang
- Emergency Department, Huangshi Central Hospital of EDong Medial Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yalan Lu
- Department of Hematology, Huangshi Central Hospital of EDong Medial Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Hongyu An
- Department of Hematology, Huangshi Central Hospital of EDong Medial Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
13
|
Abstract
OBJECTIVE The objective of this study was to evaluate the clinical outcomes in a cohort of patients with early-stage oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS We conducted a retrospective analysis of patients with pT1-T2N0 (American Joint Committee on Cancer [AJCC] seventh edition) OTSCC treated from 2000 to 2018. Two-year actuarial rates of local regional control, cancer-specific survival, and overall survival were calculated for the entire cohort and patients with/without adjuvant radiation. RESULTS Ninety-six patients met the criteria with a median follow-up of 4 years; 14 had adjuvant radiation, while 82 had surgery alone. Two-year local regional control was 82.7% (75.4% to 90.8%) for the entire cohort, 84.9% (77.8% to 93.2%) for surgery only, and 70.7% (50.2% to 99.6%) for patients with adjuvant radiation. Two-year progression-free survival was 82.7% (75.3% to 90.8%). Of the 20 patients with recurrence, 11 (55%) were successfully salvaged. CONCLUSION Local regional recurrence remains modest in early-stage OTSCC, but salvage is possible with high survival rates. LEVEL OF EVIDENCE Level III-retrospective cohort study.
Collapse
|
14
|
Prognostic value of lymphatic vessel density in oral squamous cell carcinoma. Life Sci 2020; 265:118746. [PMID: 33181177 DOI: 10.1016/j.lfs.2020.118746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
AIMS Lymphatic vessel density (LVD) for the evaluation of tumor metastasis and prognosis remains controversial. The aim of this study was to elucidate the association between tumor cells and lymphatic vessels, and evaluate LVD in oral squamous cell carcinoma (OSCC). MAIN METHODS 128 OSCC cases were used to determine the expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and vascular endothelial growth factor C (VEGF-C). Mann-Whitney or Kruskal-Wallis tests were employed to analyze the association between clinicopathological data and intratumoral LVD (ILVD), peritumoral LVD (PLVD), and VEGF-C; comparisons between ILVD and PLVD were made with t-test. Correlations between LVD and VEGF-C were analyzed by Spearman's correlation coefficient. Disease-specific survival curves were obtained with Kaplan-Meier method and compared using the log-rank test. Cox multiple regression was used to clarify the independent effect of clinicopathological data on clinical outcome. KEY FINDINGS Tumor tissues were positively stained with LYVE-1 and VEGF-C. Both tumor metastasis and recurrence were associated with ILVD. A significant association between ILVD and VEGF-C expression was observed (P < 0.05). A significant association between high ILVD and poor disease-specific survival was observed (P < 0.05). SIGNIFICANCE This study showed that ILVD was significantly associated with increased lymphatic metastasis, tumor recurrence, and reduced disease-specific survival in patients with OSCC. ILVD could be an indicator to predict the prognosis of OSCC.
Collapse
|