1
|
Garcia CJC, Grisetti L, Tiribelli C, Pascut D. The ncRNA-AURKA Interaction in Hepatocellular Carcinoma: Insights into Oncogenic Pathways, Therapeutic Opportunities, and Future Challenges. Life (Basel) 2024; 14:1430. [PMID: 39598228 PMCID: PMC11595987 DOI: 10.3390/life14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major public health concern and ranks among the leading cancer-related mortalities globally. Due to the frequent late-stage diagnosis of HCC, therapeutic options remain limited. Emerging evidence highlights the critical role of non-coding RNAs (ncRNAs) in the regulation of Aurora kinase A (AURKA), one of the key hub genes involved in several key cancer pathways. Indeed, the dysregulated interaction between ncRNAs and AURKA contributes to tumor development, progression, and therapeutic resistance. This review delves into the interplay between ncRNAs and AURKA and their role in hepatocarcinogenesis. Recent findings underscore the involvement of the ncRNAs and AURKA axis in tumor development and progression. Furthermore, this review also discusses the clinical significance of targeting ncRNA-AURKA axes, offering new perspectives that could lead to innovative therapeutic strategies aimed at improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Clarissa Joy C. Garcia
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Grisetti
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| |
Collapse
|
2
|
Fu Y, Chen B, Gao T, Wang Z. CircSLC25A16 facilitates the development of non-small-cell lung cancer through the miR-335-5p/CISD2 axis. Thorac Cancer 2024; 15:1490-1501. [PMID: 38803052 PMCID: PMC11219286 DOI: 10.1111/1759-7714.15163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a common malignancy with high morbidity and mortality. Circular RNAs are widely involved in NSCLC progression. However, the mechanism of circSLC25A16 in NSCLC has not been reported. METHODS The expressions of circSLC25A16, microRNA-335-5p (miR-335-5p), and CDGSH iron-sulfur domain-containing protein 2 (CISD2) were monitored by quantitative real-time fluorescence polymerase chain reaction. Western blot was also carried out to measure the protein levels of CISD2, hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA). For functional analysis, cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell, and wound healing assays were utilized to examine cell proliferation, apoptosis, and migration. Glucose uptake and lactate production were detected using commercial kits. The relationship between miR-335-5p and circSLC25A16 or CISD2 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. Furthermore, tumor xenograft was established to explore the function of circSLC25A16 in vivo. RESULTS CircSLC25A16 and CISD2 were overexpressed in NSCLC, but miR-335-5p was downregulated. CircSLC25A16 acted as a miR-335-5p sponge, and silencing of circSLC25A16 arrested cell proliferation, migration, and glycolysis, and promoted apoptosis, but these impacts were resumed by miR-335-5p inhibition. CISD2 was a miR-335-5p target, and overexpression of CISD2 abolished the suppressive function of miR-335-5p mimic on the malignant behavior of NSCLC cells. CircSLC25A16 could adsorb miR-335-5p to mediate CISD2 expression. Additionally, silencing circSLC25A16 restrained the growth of NSCLC tumor xenograft in vivo. CONCLUSION CircSLC25A16 facilitated NSCLC progression via the miR-335-5p/CISD2 axis, implying that circSLC25A16 may serve as a novel biomarker for NSCLC treatment.
Collapse
Affiliation(s)
- Yu Fu
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| | - Bin Chen
- Department of PharmacyYiwu Fuyuan Private HospitalYiwu CityChina
| | - Tao Gao
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| | - Zhenglong Wang
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| |
Collapse
|
3
|
Carreca AP, Tinnirello R, Miceli V, Galvano A, Gristina V, Incorvaia L, Pampalone M, Taverna S, Iannolo G. Extracellular Vesicles in Lung Cancer: Implementation in Diagnosis and Therapeutic Perspectives. Cancers (Basel) 2024; 16:1967. [PMID: 38893088 PMCID: PMC11171234 DOI: 10.3390/cancers16111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Lung cancer represents the leading cause of cancer-related mortality worldwide, with around 1.8 million deaths in 2020. For this reason, there is an enormous interest in finding early diagnostic tools and novel therapeutic approaches, one of which is extracellular vesicles (EVs). EVs are nanoscale membranous particles that can carry proteins, lipids, and nucleic acids (DNA and RNA), mediating various biological processes, especially in cell-cell communication. As such, they represent an interesting biomarker for diagnostic analysis that can be performed easily by liquid biopsy. Moreover, their growing dataset shows promising results as drug delivery cargo. The aim of our work is to summarize the recent advances in and possible implications of EVs for early diagnosis and innovative therapies for lung cancer.
Collapse
Affiliation(s)
| | - Rosaria Tinnirello
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (V.M.)
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (V.M.)
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90133 Palermo, Italy; (A.G.); (V.G.); (L.I.)
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90133 Palermo, Italy; (A.G.); (V.G.); (L.I.)
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90133 Palermo, Italy; (A.G.); (V.G.); (L.I.)
| | | | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy;
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (V.M.)
| |
Collapse
|
4
|
Chen L, Lin H, Qin L, Zhang G, Huang D, Chen P, Zhang X. Identification and validation of mutual hub genes in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated usual interstitial pneumonia. Heliyon 2024; 10:e28088. [PMID: 38571583 PMCID: PMC10987927 DOI: 10.1016/j.heliyon.2024.e28088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives The study aims at exploring common hub genes and pathways in idiopathic pulmonary fibrosis (IPF) and rheumatoid arthritis-associated usual interstitial pneumonia (RA-UIP) through integrated bioinformatics analyses. Methods The GSE199152 dataset containing lung tissue samples from IPF and RA-UIP patients was acquired from the Gene Expression Omnibus (GEO) database. The identification of overlapping differentially expressed genes (DEGs) in IPF and RA-UIP was carried out through R language. Protein-protein interaction (PPI) network analysis and module analysis were applied to filter mutual hub genes in the two diseases. Enrichment analyses were also conducted to analyze the possible biological functions and pathways of the overlapped DEGs and hub genes. The diagnostic value of key genes was assessed with R language, and the expressions of these genes in pulmonary cells of IPF and rheumatoid arthritis-associated interstitial lung disease (RA-ILD) patients were analyzed with single cell RNA-sequencing (scRNA-seq) datasets. The expression levels of hub genes were validated in blood samples from patients, specimens of human lung fibroblasts, lung tissue samples from mice, as well as external GEO datasets. Results Four common hub genes (THBS2, TIMP1, POSTN, and CD19) were screened. Enrichment analyses showed that the abnormal expressions of DEGs and hub genes may be connected with the onset of IPF and RA-UIP by regulating the progression of fibrosis. ScRNA-seq analyses illustrated that for both IPF and RA-ILD patients, THBS2, TIMP1, and POSTN were mainly expressed in lung fibroblasts, while CD19 was uniquely high-expressed in B cells. The qRT-PCR and immunohistochemistry (IHC) results verified that the expression levels of hub genes were mostly in accordance with the findings obtained from the bioinformatics analyses. Conclusion Though IPF and RA-UIP are distinct diseases, they may to some extent have mutual pathogenesis in the development of fibrosis. THBS2, TIMP1, POSTN, and CD19 may be the potential biomarkers of IPF and RA-UIP, and intervention on related pathways of these genes could offer new strategies for the precision treatment of IPF and RA-UIP.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Haobo Lin
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Linmang Qin
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Guangfeng Zhang
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Donghui Huang
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Peisheng Chen
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xiao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Rheumatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Wei Z, Liu J, Hui G, Luan X. Circ_0020123 promotes non-small cell lung cancer progression via miR-146a-5p mediated regulation of EIF4G2 expression. Thorac Cancer 2024; 15:44-56. [PMID: 37993106 PMCID: PMC10761619 DOI: 10.1111/1759-7714.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to be involved in the initiation and development of cancers. The aim of this study was to determine the role of a circRNA, circ_0020123, in the development of non-small cell lung cancer (NSCLC). METHODS The expression of circ_0020123, microRNA-146a-5p (miR-146a-5p), and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) mRNA was detected by quantitative real-time PCR (qPCR). Western blot was used to determine the protein levels of cyclin D1, Bax, MMP-9, and EIF4G2. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Flow cytometry assay was applied to determine cell cycle apoptosis. Cell migration and invasion were assessed using transwell assay. The potential relationship between miR-146a-5p and circ_0020123 or EIF4G2 was ascertained by dual-luciferase reporter assay and RIP assay. The role of circ_0020123 in vivo was explored by xenograft assay. RESULTS Circ_0020123 was upregulated in NSCLC, and circ_0020123 knockdown repressed proliferation, migration, and invasion of NSCLC cells. Circ_0020123 targeted miR-146a-5p, and miR-146a-5p inhibitor reversed the effects of circ_0020123 knockdown on NSCLC cells. In addition, miR-146a-5p suppressed cell proliferation, migration, and invasion by targeting EIF4G2. Moreover, the antitumor role of circ_0020123 knockdown was verified in vivo. CONCLUSION Knockdown of circ_0020123 inhibited NSCLC cell progression and tumor growth by targeting the miR-146a-5p/EIF4G2 axis.
Collapse
Affiliation(s)
- Zichun Wei
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Gang Hui
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Xinyu Luan
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
7
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
8
|
Wu B, Wang X, Yu R, Xue X. CircWHSC1 serves as a prognostic biomarker and promotes malignant progression of non-small-cell lung cancer via miR-590-5p/SOX5 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2440-2449. [PMID: 37417879 DOI: 10.1002/tox.23879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Dysregulated circWHSC1 has been shown to play potential roles in diverse cancer types, including ovarian cancer, endometrial cancer and hepatocellular carcinoma (HCC). The objective of this study was to investigate its expression, underlying role and regulatory mechanism in non-small-cell lung cancer (NSCLC). The expression of circWHSC1 was determined by real-time PCR. After knockdown of circWHSC1 expression in NSCLC cells, the proliferation, migration, and invasion were detected using CCK-8, colony formation, and Transwell assays, and the effects of circWHSC1 on NSCLC tumorigenesis in vivo was also investigated. With the help of luciferase reporter and pull-down assays, we further explored the downstream mechanism of circWHSC1 in NSCLC cells. CircWHSC1 was highly expressed in NSCLC tissues and cell lines. The inhibition of circWHSC1 suppressed the malignant properties of NSCLC cells, as evidenced by the reduction of proliferation, migration and invasion. CircWHSC1 sponged miR-590-5p and functioned as an oncogene in NSCLC by increasing sex determining region Y-boxprotein 5 (SOX5) expression. CircWHSC1 may contribute to the oncogenicity of NSCLC via the regulation of miR-590-5p/SOX5 axis, which might be a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Bin Wu
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua district, Shenzhen, China
- Pulmonary and Critical Care Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xisheng Wang
- Medical Research Center, The People's Hospital of Long hua district, Shenzhen, China
| | - Ruilin Yu
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua district, Shenzhen, China
| | - Xingkui Xue
- Medical Research Center, The People's Hospital of Long hua district, Shenzhen, China
| |
Collapse
|
9
|
Tian Q, Guo Y, Liu J, Pang C, Wang Q, Xie Q, Li J. CircDUS2L (circ_0039908) promotes lung adenocarcinoma progression by upregulating PGAM1 by acting as a miR-590-5p molecular sponge. J Biochem Mol Toxicol 2023; 37:e23406. [PMID: 37392398 DOI: 10.1002/jbt.23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2'-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.
Collapse
Affiliation(s)
- Qing Tian
- Department of Thoracic surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Ying Guo
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jinfeng Liu
- Department of Thoracic surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Chao Pang
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Qiang Wang
- Department of Thoracic surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Qi Xie
- Department of Clinical Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jianke Li
- Department of Thoracic surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
10
|
Fang K, Deng Y, Yang P, Zhang Y, Luo D, Wang F, Cai Z, Liu Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol Histopathol 2023; 38:681-693. [PMID: 36382967 DOI: 10.14670/hh-18-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Circ_0079530 has been confirmed to be a novel potential oncogene in non-small cell lung cancer (NSCLC). This study aims to explore the role and mechanism of circ_0079530 in NSCLC progression. METHODS Levels of circ_0079530, microRNA (miR)-584-5p, thrombospondin-2 (THBS2), PCNA, Bax, E-cadherin, and ki67 were detected by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. The proliferation of NSCLC cells was measured using cell counting kit 8 (CCK8) assay, colony formation assay, and EdU staining. Cell apoptosis and motility were respectively detected by flow cytometry and transwell assays. Interaction between miR-584-5p and circ_0079530 or THBS2 was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was used to analyze the role of circ_0079530 in tumor growth in vivo. RESULTS Circ_0079530 was highly expressed in NSCLC tissues and cell lines. Circ_0079530 overexpression facilitated proliferation, migration, and invasion whereas it restrained the apoptosis of NSCLC cells. Circ_0079530 silence showed the opposite effects on the above malignant biological behaviors. Mechanistic analysis showed that circ_0079530 functioned as a sponge of miR-584-5p to relieve the suppressive action of miR-584-5p on its target THBS2. Additionally, circ_0079530 knockdown impeded the growth of xenografts in vivo. CONCLUSION Circ_0079530 promoted NSCLC progression by regulating the miR-584-5p/THBS2 axis, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Kun Fang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yibin Deng
- Department of Pediatric, Sichuan Science City Hospital, Mianyang, PR China
| | - Ping Yang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yurong Zhang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Dan Luo
- Department of Gynaecology and Obstetrics (Science and Education Department), Sichuan Science City Hospital, Mianyang, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Zhilong Cai
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yang Liu
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China.
| |
Collapse
|
11
|
Gong J, Du C, Sun N, Xiao X, Wu H. CircADSS contributes to hepatocellular carcinoma development by regulating miR-431-5p/TOP2A. Clin Exp Pharmacol Physiol 2023; 50:415-424. [PMID: 36786410 DOI: 10.1111/1440-1681.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
CircRNAs participated in regulating hepatocellular carcinoma (HCC), and the regulation function of circRNA adenylosuccinate synthase (circADSS) on HCC development is not clear. RT-qPCR and western blot were performed to detect RNA expression. Cell proliferation was analysed by CCK-8 and EdU assay. Cell cycle distribution was analysed by flow cytometry assay. Cell migration and invasion were measured by transwell assay. Mechanism assays were employed to examine the interaction between miR-431-5p and circADSS, or TOP2A. Xenograft mouse model was constructed for in vivo assay. CircADSS and TOP2A expression were boosted, while miR-431-5p was limited in tumour tissues and cells. CircADSS silencing decreased HCC cell proliferation, cell cycle progression, migration, invasion, as well as EMT. MiR-431-5p inhibitors or ectopic TOP2A expression could restore the effect of circADSS knockdown on HCC progression. There was target relationship between miR-431-5p and circADSS, or TOP2A. Knockdown of circADSS suppressed tumour growth in vivo. CircADSS could regulate HCC cell malignancy by miR-431-5p/TOP2A axis.
Collapse
Affiliation(s)
- Jianzhuang Gong
- Department of Digestive Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chenxu Du
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Nai Sun
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xingguo Xiao
- Department of Digestive Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huili Wu
- Department of Digestive Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Tanshinone IIA (TSIIA) represses the progression of non-small cell lung cancer by the circ_0020123/miR-1299/HMGB3 pathway. Mol Cell Biochem 2022:10.1007/s11010-022-04646-3. [PMID: 36586093 DOI: 10.1007/s11010-022-04646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023]
Abstract
Tanshinone IIA (TSIIA), a multi-pharmaceutical compound, has been demonstrated to have anti-tumor properties. This study explores the potential regulatory mechanism of TSIIA on non-small cell lung cancer (NSCLC) progression. The cytotoxicity of TSIIA was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) and LDH (lactate dehydrogenase) assays. Expression levels of circ_0020123 (hsa_circ_0020123) and microRNA-1299 (miR-1299) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and apoptosis were analyzed by MTT, colony formation, transwell, wound-healing, or flow cytometry assays. The relationship between miR-1299 and circ_0020123 or HMGB3 (high mobility group box 3) was verified by the dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Protein level of HMGB3 was measured by western blotting. The relationship between TSIIA and circ_0020123 was confirmed by xenograft assay. TSIIA reduced xenograft tumor growth in vivo and repressed proliferation, migration, invasion, and facilitated apoptosis of NSCLC cells in vitro. TSIIA reduced circ_0020123 and HMGB3 expression, whereas elevated miR-1299 expression in NSCLC cells. Circ_0020123 knockdown enhanced the repressive influence of TSIIA treatment on the malignancy of NSCLC cells in vitro and in vivo. Circ_0020123 sponged miR-1299 to regulate HMGB3 expression under TSIIA treatment. MiR-1299 inhibitor reversed circ_0020123 knockdown-mediated influence on malignant behaviors of NSCLC cells under TSIIA treatment. HMGB3 elevation offset the suppressive impact of miR-1299 mimic on the malignancy of NSCLC cells under TSIIA treatment. TSIIA curbed NSCLC progression by the circ_0020123/miR-1299/HMGB3 axis, manifesting that the TSIIA/circ_0020123/miR-1299/HMG regulatory network might be a potential treatment strategy for NSCLC.
Collapse
|
13
|
Liu H, Qin S, Zhao Y, Gao L, Zhang C. Construction of the ceRNA network in the progression of acute myocardial infarction. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2022; 12:283-297. [PMID: 36743510 PMCID: PMC9890199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/11/2022] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is a common disease that induced by sudden occlusion of a coronary artery and myocardial necrosis, which causes a great medical burden worldwide. Noncoding RNAs, such as circRNA, lncRNA and miRNA, play crucial roles in the progression of cardiovascular diseases. However, the circRNA-miRNA-mRNA network in the occurrence and development of AMI needs further investigation. In this study, we downloaded three AMI datasets, including circRNA (GSE160717), miRNA (GSE24591), and mRNA (GSE66360) from GEO database. The differentially expressed candidates, and GO and KEGG functions were analyzed by RStudio, and subsequently import to PPI and Cytoscape to obtain the hub genes. By using the starbase target prediction database, we further screen the ceRNA network of circRNA-miRNA-mRNA based on the selected differentially expressed candidates. We found 46 differential expressed mRNAs, 65 miRNAs, and five circRNAs. GO functions and KEGG enrichment of the 46 mRNAs focused on immune response and functions, involving IL-17 signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, and NF-kappaB signaling pathway, which may aggravate the pathologies of AMI. PPI and Cytoscape analysis showed 10 hub genes, including TLR2, IL1B, CCL4, CCL3, CCR5, TREM1, CXCL2, NLRP3, CSF3, and CCL20. By using starbase and circinteractome databases, ceRNA network construction showed that circRNA_023461 and circRNA_400027 regulate several miRNA-mRNA axes in AMI. In summary, this study uncovered the circRNA-miRNA-mRNA network based on three AMI datasets. The differentially expressed genes, including CCL20, CCL4, CSF3, and IL1B, focus on immune functions and pathways. Furthermore, circRNA_023461 and circRNA_400027 regulate several miRNA-mRNA axes, exerting important roles in AMI progression. Our founding provides new insights into AMI and improve the therapeutic strategies for AMI.
Collapse
|
14
|
Han X, Wang F, Yang P, Di B, Xu X, Zhang C, Yao M, Sun Y, Lin Y. A Bioinformatic Approach Based on Systems Biology to Determine the Effects of SARS-CoV-2 Infection in Patients with Hypertrophic Cardiomyopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5337380. [PMID: 36203534 PMCID: PMC9532139 DOI: 10.1155/2022/5337380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide. While COVID-19 generally affects the lungs, it also damages other organs, including those of the cardiovascular system. Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disorder. Studies have shown that HCM patients with COVID-19 have a higher mortality rate; however, the reason for this phenomenon is not yet elucidated. Herein, we conducted transcriptomic analyses to identify shared biomarkers between HCM and COVID-19 to bridge this knowledge gap. Differentially expressed genes (DEGs) were obtained using the Gene Expression Omnibus ribonucleic acid (RNA) sequencing datasets, GSE147507 and GSE89714, to identify shared pathways and potential drug candidates. We discovered 30 DEGs that were common between these two datasets. Using a combination of statistical and biological tools, protein-protein interactions were constructed in response to these findings to support hub genes and modules. We discovered that HCM is linked to COVID-19 progression based on a functional analysis under ontology terms. Based on the DEGs identified from the datasets, a coregulatory network of transcription factors, genes, proteins, and microRNAs was also discovered. Lastly, our research suggests that the potential drugs we identified might be helpful for COVID-19 therapy.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Wang
- Department of Emergency Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Di
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiangdong Xu
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chunya Zhang
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Man Yao
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yaping Sun
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yangyi Lin
- Department of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Wang W, He Y, Wu L, Zhai L, Chen L, Yao L, Yu K, Tang Z. N 6 -methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion. Cancer Med 2022; 12:3731-3743. [PMID: 35879877 PMCID: PMC9939218 DOI: 10.1002/cam4.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly disease, and its post-transcriptional gene regulation mechanism remains unclear. The abundant extracellular matrix (ECM) in PC plays an important role in tumor progression. This study is the first to focus on the role of N6 -methyladenosine (m6 A) RNA methylation, an emerging post-transcriptional regulatory mechanism, in the regulation of the ECM in PC. Here, we found that ADAMTS2, COL12A1, and THBS2 were associated with the prognosis of PC by comprehensive analysis of differentially expressed genes from two independent GEO expression profile datasets and m6 A-related genes in RMVar database (PAAD). GO and KEGG enrichment analysis found that these m6 A-related targets are chiefly functionally concentrated in the ECM region and participate in ECM signal transduction. Correlation analysis revealed that these genes can be regulated by the demethylase FTO. Cell biology function assays showed that knockdown of FTO-inhibited PC cell abilities to migrate and invade in vitro. qRT-PCR and MeRIP experiments showed that after knockdown of FTO, the mRNA levels of ADAMTS2, COL12A1, and THBS2 and their m6 A modification levels were significantly reduced. These results indicate that m6 A RNA demethylation is associated with the regulation of ECM in PC. In conclusion, m6 A RNA demethylase FTO regulates ECM-related genes and promotes PC cell abilities to migrate and invade, our work provides a new perspective on the molecular mechanism of PC progression.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lun Wu
- Department of Hepatobiliary Surgery, Dongfeng HospitalHubei University of MedicineShiyanChina
| | - Lu‐Lu Zhai
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Long‐Jiang Chen
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li‐Chao Yao
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kai‐Huan Yu
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Gang Tang
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
16
|
Asadikalameh Z, Maddah R, Maleknia M, Nassaj ZS, Ali NS, Azizi S, Dastyar F. Bioinformatics analysis of microarray data to identify hub genes, as diagnostic biomarker of
HELLP
syndrome: System biology approach. J Obstet Gynaecol Res 2022; 48:2493-2504. [DOI: 10.1111/jog.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Asadikalameh
- Assistant Professor of Obstetrics and Gynecology, Department of Gynecology and Obstetrics Yasuj University of Medical Sciences Yasuj Iran
| | - Reza Maddah
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology National Institute of Genetic Engineering and Biotechnology Tehran Iran
| | - Mohsen Maleknia
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Student Research Committee Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Zohre S. Nassaj
- Center for Health Related Social and Behavioral Sciences Research Shahroud University of Medical Sciences Shahroud Iran
| | - Neda Seyed Ali
- Shahid AkbarAbadi Clinical Research Development unit (SHACRDU) School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Sepideh Azizi
- Shahid AkbarAbadi Clinical Research Development unit (SHACRDU) School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Fatemeh Dastyar
- Department of Obstetrics and Gynecology, School of Medicine Bushehr University of Medical Sciences Bushehr Iran
| |
Collapse
|
17
|
Curcumenol Targeting YWHAG Inhibits the Pentose Phosphate Pathway and Enhances Antitumor Effects of Cisplatin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3988916. [PMID: 35795276 PMCID: PMC9251105 DOI: 10.1155/2022/3988916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/26/2022]
Abstract
Objective Cervical cancer is a common cancer in women. The drug resistance of chemotherapeutic agents has always been an urgent problem to be solved in clinics. The purpose of this study was to determine the role of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma polypeptide (YWHAG) in cervical cancer and explore the effect of Curcuma on cervical cancer and its possible mechanism. Methods YWHAG expression in cervical cancer was confirmed using The Cancer Genome Atlas (TCGA) database. Then, the effects of YWHAG on the proliferation and invasion of HeLa and C33A cervical cancer cells were detected by the cell counting kit-8 (CCK-8) and transwell assay. The relationship between YWHAG and the pentose phosphorylation pathway was further studied. CCK-8, Edu, and quantitative real-time polymerase chain reaction were used to confirm that Curcuma inhibited the sensitivity of YWHAG to cisplatin chemotherapy and to detect the expression of apoptosis-related proteins. Results YWHAG was highly expressed in cervical cancer and was associated with poor prognosis. The proliferation and invasion abilities of HeLa and C33A cells decreased after YWHAG knockout. The TCGA database of cervical cancer showed a positive correlation between YWHAG and hypoxia-inducible factor-1 subunit alpha (HIF-1α) expression. YWHAG expression increased with HIF-1α overexpression. YWHAG knockdown reduced the protein expression in the pentose phosphorylation pathway. Curcumenol inhibited YWHAG expression. Compared with cisplatin alone, curcumenol combined with cisplatin can reduce cell proliferation and invasion and reduce matrix metalloproteinase (MMP) 2 and MMP9 expression. It can also increase apoptosis, decrease B cell lymphoma 2 (Bcl-2) expression, and increase the expression of Bcl-2 antagonist X, caspase-3, and polyadenosine diphosphate-ribose polymerase. Conclusion YWHAG can interact with HIF-1α to affect the proliferation and invasion of cervical cancer cells. YWHAG knockout can reduce the expression of pentose phosphorylation pathway-related proteins. Curcumenol can enhance cisplatin to inhibit cancer cell proliferation, migration, and invasion and promote tumor cell apoptosis. The combination of drugs may promote the apoptosis of cervical cancer cells through the YWHAG pathway.
Collapse
|
18
|
Zi H, Chen L, Ruan Q. Lidocaine represses the malignant behavior of lung carcinoma cells via the circ_PDZD8/miR-516b-5p/GOLT1A axis. Histol Histopathol 2022; 37:461-474. [PMID: 35060113 DOI: 10.14670/hh-18-423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung carcinoma is the most prevalent malignancy in adults. Lidocaine (Lido) has been confirmed to exert an anti-tumor role in many human cancers. However, the role and underlying mechanism of Lido in lung carcinoma remain poorly understood. Cell proliferation ability, migration, invasion, and apoptosis were measured by Colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assays. Circ_PDZD8, microRNA-516b-5p (miR-516b-5p), and Golgi transport 1A (GOLT1A) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein levels of proliferating cell nuclear antigen (PCNA) and GOLT1A were examined by western blot assay. The binding relationship between miR-516b-5p and circ_PDZD8 or GOLT1A was predicted by circular RNA Interactome or Starbase 3.0 and then verified by a dual-luciferase reporter assay. The biological roles of circ_PDZD8 and Lido on lung carcinoma cell growth were examined by the xenograft tumor model in vivo. Lido suppressed proliferation, migration, invasion, and induced apoptosis in lung carcinoma cells. Circ_PDZD8 and GOLT1A were increased, miR-516b-5p was decreased in lung carcinoma tissues and cell lines. Their expression presented the opposite trend in Lido-triggered lung carcinoma cells. Circ_PDZD8 might overturn the repression of Lido on cell growth ability and metastasis in this tumor. Mechanically, circ_PDZD8 might regulate GOLT1A expression by sponging miR-516b-5p. Circ_PDZD8 weakened the anti-lung carcinoma effect of Lido in vivo. Circ_PDZD8 might mitigate the inhibitory effect of Lido on tumor cell malignancy by modulating the miR-516b-5p/GOLT1A axis, providing a novel insight for lung carcinoma treatment.
Collapse
Affiliation(s)
- Huafen Zi
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Li Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Qian Ruan
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China.
| |
Collapse
|
19
|
Zhang H, Huang T, Yuan S, Long Y, Tan S, Niu G, Zhang P, Yang M. Circ_0020123 plays an oncogenic role in non-small cell lung cancer depending on the regulation of miR-512-3p/CORO1C. Thorac Cancer 2022; 13:1406-1418. [PMID: 35388975 PMCID: PMC9058299 DOI: 10.1111/1759-7714.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is one of the leading causes responsible for cancer‐associated death globally. The aim of this study was to illustrate the function of circular RNA_0020123 (circ_0020123) in NSCLC progression and its associated mechanism. Methods RNA and protein expression was determined by reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR) and western blot assay. Cell proliferation, migration, invasion, angiogenesis, apoptosis and autophagy were analyzed to assess the role of circ_0020123/microRNA‐512‐3p (miR‐512‐3p)/coronin 1C (CORO1C) axis in NSCLC cells. Tumorigenesis in nude mice was analyzed to determine the in vivo role of circ_0020123. The intermolecular target relation was confirmed by dual‐luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Circ_0020123 expression was aberrantly upregulated in NSCLC tissues and cell lines. Circ_0020123 interference markedly restrained cell proliferation, migration, invasion, angiogenesis and autophagy and induced cell apoptosis of NSCLC cells. Circ_0020123 knockdown suppressed xenograft tumor growth in vivo. Circ_0020123 acted as a molecular sponge for miR‐512‐3p. Circ_0020123 silencing‐induced effects in NSCLC cells were largely reversed by the knockdown of miR‐512‐3p. miR‐512‐3p interacted with the 3′ untranslated region (3′UTR) of CORO1C. CORO1C overexpression largely reversed miR‐512‐3p accumulation‐induced influences in NSCLC cells. Circ_0020123 positively regulated CORO1C expression by sponging miR‐512‐3p in NSCLC cells. Conclusion Circ_0020123 aggravated NSCLC progression by binding to miR‐512‐3p to induce CORO1C expression, which provided new potential targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Heng Zhang
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Huang
- The Affiliated Nanhua Hospital, Department of Pain Treatment, Hengyang Medical School, University of South China, Hengyang, China
| | - Shisi Yuan
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuxi Long
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuai Tan
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Guoliang Niu
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Puhua Zhang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiling Yang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
20
|
Yang Z, Wu H, Zhang K, Rao S, Qi S, Liu M, Chen Y, Wang Y. Circ_0007580 knockdown strengthens the radiosensitivity of non-small cell lung cancer via the miR-598-dependent regulation of THBS2. Thorac Cancer 2022; 13:678-689. [PMID: 35044104 PMCID: PMC8888153 DOI: 10.1111/1759-7714.14221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Radioresistance is a common cause of treatment failure in many cancers, including non‐small cell lung cancer (NSCLC). Circular RNA (circRNA) has been shown to be involved in the radiosensitivity of many cancers. However, the role and mechanism of circ_0007580 in the radiosensitivity of NSCLC remain unclear. Methods The expression levels of circ_0007580, miR‐598 and thrombospondin 2 (THBS2) were estimated by quantitative real‐time PCR. The radiosensitivity of cells was measured using colony formation assay. Cell proliferation and apoptosis were assessed by performing cell counting kit 8 assay, colony formation assay, flow cytometry, and by detecting caspase‐3 and caspase‐9 activities. Protein expression was determined using western blot analysis. Results Our data showed that circ_0007580 was highly expressed and miR‐598 was lowly expressed in radioresistant NSCLC tissues. Functional experiments suggested that circ_0007580 silencing could improve the radiosensitivity of cells by suppressing cell proliferation and increasing apoptosis. MiR‐598 was confirmed to be a target of circ_0007580, and its inhibitor could reverse the regulation of circ_0007580 on the radiosensitivity of NSCLC cells. MiR‐598 was found to target THBS2. The suppressive effect of miR‐598 on the radiosensitivity of cells could be reversed by THBS2 overexpression. Additionally, circ_0007580 could sponge miR‐598 to regulate THBS2. In vivo experiments showed that knockdown of circ_0007580 enhanced the radiosensitivity of NSCLC tumors. Conclusions Our results revealed that circ_0007580 might be a target for improving the radiosensitivity of NSCLC, which was mainly achieved by regulating the miR‐598/THBS2 axis.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| | - Hongfang Wu
- Department of Pathology, Department of Basic Medicine, Nanyang Medical College, Nanyang, China
| | - Kai Zhang
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| | - Shilei Rao
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| | - Shuran Qi
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| | - Manxiang Liu
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| | - Ying Chen
- Department of Nursing, Nanyang Medical College, Nanyang, China
| | - Yang Wang
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, China
| |
Collapse
|
21
|
Lv L, Du J, Wang D, Yan Z. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1193-1204. [PMID: 35640631 DOI: 10.1093/jpp/rgac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Long Lv
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Daorong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
22
|
Circular RNA FOXO3 accelerates glycolysis and improves cisplatin sensitivity in lung cancer cells via the miR-543/Foxo3 axis. Oncol Lett 2021; 22:839. [PMID: 34712363 PMCID: PMC8548806 DOI: 10.3892/ol.2021.13100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Our previous study revealed that circular RNA (circRNA)-FOXO3 is highly expressed in lung cancer and inhibits cell proliferation. However, to the best of our knowledge, at present, no study has focused on the specific mechanism of circRNA-FOXO3 in drug resistance. Therefore, the present study aimed to provide novel perspectives on the role of circRNA-FOXO3 in cisplatin (DDP) resistance in NSCLC. A Cell Counting Kit-8 assay was used to determine the viability of cells overexpressed with circRNA-FOXO3 and under DDP treatment. Glycolysis was analyzed by measuring glucose consumption and lactate production. The interaction of circRNA-FOXO3, microRNA 543 (miR-543) and Foxo3 was confirmed using a dual-luciferase reporter assay. It was revealed that circRNA-FOXO3 improved cell sensitivity to DDP and repressed glycolysis in DDP-sensitive and DDP-resistant NSCLC cells. Bioinformatics analysis, luciferase reporter assays, quantitative PCR and RNA pull-down assays were employed to verify the binding of circRNA-FOXO3 to miR-543. Functionally, inhibition of miR-543 could sensitize NSCLC cells to DDP, and overexpression of miR-543 at least partially abolished the circRNA-FOXO3-induced decrease in chemoresistance. Furthermore, it was revealed that Foxo3 was a direct target of miR-543. Notably, the inhibitory action of miR-543 silencing on DDP resistance and glycolysis was reversed by overexpression of Foxo3 in DDP-sensitive and DDP-resistant NSCLC cells. In conclusion, the present study demonstrated that circRNA-FOXO3 promoted DDP sensitivity in NSCLC cells by regulating the miR-543/Foxo3 axis-mediated glycolysis balance. The present findings may provide novel perspectives for the treatment of patients with NSCLC resistant to DDP.
Collapse
|
23
|
Qin C, Lu R, Yuan M, Zhao R, Zhou H, Fan X, Yin B, Yu H, Bian T. Circular RNA 0006349 Augments Glycolysis and Malignance of Non-small Cell Lung Cancer Cells Through the microRNA-98/MKP1 Axis. Front Cell Dev Biol 2021; 9:690307. [PMID: 34604211 PMCID: PMC8484757 DOI: 10.3389/fcell.2021.690307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The involvement of dysregulated circular RNAs (circRNAs) in human diseases has been increasingly recognized. In this study, we focused on the function of a newly screened circRNA, circ_0006349, in the progression of non-small-cell lung cancer (NSCLC) and the molecules of action. Methods: The NSCLC circRNA dataset GSE101684, microRNA (miRNA) dataset GSE29250, and mRNA dataset GSE51852 obtained from the GEO database were used to identify the differentially expressed genes in NSCLC samples. Tumor and normal tissues were collected from 59 patients with NSCLC. The expression of circ_0006349, miR-98, and MAP kinase phosphatase 1 (MKP1) in collected tissue samples and in acquired cells was determined. The binding relationships between miR-98 and circ_0006349/MKP1 were predicted and validated. Altered expression of circ_0006349, miR-98, and MKP1 was introduced in NSCLC cells to examine their roles in cell growth, apoptosis, and glycolysis. Results: Circ_0006349 and MKP1 were upregulated, and miR-98 was poorly expressed in the collected tumor tissues and the acquired NSCLC cell lines. Circ_0006349 was identified as a sponge for miR-98 to elevate MKP1 expression. Silencing of circ_0006349 suppressed proliferation and increased apoptosis of Calu-3 and H1299 cells, and it reduced glycolysis, glucose uptake, and the production of lactate in cells. Upon circ_0006349 knockdown, further downregulation of miR-98 or upregulation of MKP1 restored the malignant behaviors of cells. Conclusion: This research demonstrated that circ_0006349 derepressed MKP1 expression by absorbing miR-98, which augmented the proliferation and glycolysis of NSCLC cells and promoted cancer development.
Collapse
Affiliation(s)
- Chu Qin
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Rongguo Lu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi, China
| | - Minyu Yuan
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Rui Zhao
- Department of Respiratory Medicine, Wuxi No. 8 People's Hospital, Wuxi, China
| | - Huiya Zhou
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Xiaodong Fan
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Bo Yin
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Haoda Yu
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital, Wuxi, China
| |
Collapse
|
24
|
Prognostic and Immunological Role of THBS2 in Colorectal cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1124985. [PMID: 34471634 PMCID: PMC8405306 DOI: 10.1155/2021/1124985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Objective Thrombospondin 2 (THBS2) acts as oncogenic or tumor suppressive gene in diverse cancers. Here we studied the prognostic and immunological role of THBS2 in colorectal cancer (CRC) using bioinformatic analysis. Methods The genetic and protein expression of THBS2 in CRC were explored across several databases, including ONCOMINE, GEPIA2, TIMER 2.0, UALCAN and HPA databases. Correlation between THBS2 expression and clinical features in CRC was assessed using UALCAN tool. Prognostic analysis was performed using GEPIA2 and PrognoScan. Immune infiltration correlation with THBS2 in CRC was investigated with TIMER 2.0 and TISIDB. THBS2 binding and correlated genes were analyzed using String, GEPIA2, and TIMER 2.0. Results THBS2 was significantly higher in CRC across multiple databases. Age and histological subtype were correlated with THBS2 level. High THBS2 expression correlated with short overall and disease-free survival. THBS2 expression was positively correlated with immune infiltrates in CRC. Moreover, extracellular matrix structural constituent and organization, PI3K-Akt pathway, were involved in the functional mechanisms of THBS2. Conclusions THBS2 correlates with poor prognosis and immune infiltration in CRC. THBS2 may act as a prognostic and immunological biomarker for CRC.
Collapse
|
25
|
Wang Y, Tan X, Wu Y, Cao S, Lou Y, Zhang L, Hu F. Hsa_circ_0002062 Promotes the Proliferation of Pulmonary Artery Smooth Muscle Cells by Regulating the Hsa-miR-942-5p/CDK6 Signaling Pathway. Front Genet 2021; 12:673229. [PMID: 34322152 PMCID: PMC8311933 DOI: 10.3389/fgene.2021.673229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Currently, new strategies for the diagnosis and treatment of hypoxia-induced pulmonary hypertension (HPH) are urgently required. The unique features of circRNAs have unveiled a novel perspective for understanding the biological mechanisms underlying HPH and the possibility for innovative strategies for treatment of HPH. CircRNAs function as competing endogenous RNAs (CeRNA) to sequester miRNAs and regulate the expression of target genes. This study aimed to explore the roles of hsa_circ_0002062 on the biological behaviors of pulmonary artery smooth muscle cells (PASMCs) in hypoxic conditions. A number of in vitro assays, such as RNA-binding protein immunoprecipitation (RIP), RNA pull-down, and dual-luciferase assays were performed to evaluate the interrelationship between hsa_circ_0002062, hsa-miR-942-5P, and CDK6. The potential physiological functions of hsa_circ_0002062, hsa-miR-942-5P, and CDK6 in hypoxic PASMCs were investigated through expression modulation. Our experiments demonstrated that hsa_circ_0002062 functions as a ceRNA, acts as a sponge for hsa-miR-942-5P, and consequently activates CDK6, which further promotes pulmonary vascular remodeling. Therefore, we speculate that hsa_circ_0002062 could serve as a candidate diagnostic biomarker and potential therapeutic target for HPH.
Collapse
Affiliation(s)
- Yali Wang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoming Tan
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjiang Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sipei Cao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yueyan Lou
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liyan Zhang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Yue Q, Xu Y, Deng X, Wang S, Qiu J, Qian B, Zhang Y. Circ-PITX1 Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1248/CCND2 Axis. Onco Targets Ther 2021; 14:1807-1819. [PMID: 33727831 PMCID: PMC7955706 DOI: 10.2147/ott.s286820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNA (circRNA) is a key regulator of cancer, and it has been proved to be involved in the regulation of cancer progression including non-small cell lung cancer (NSCLC). Circ-PITX1 was found to be a significantly upregulated circRNA in NSCLC, and its role and potential mechanism in NSCLC progression deserve further investigation. Methods The expression levels of circ-PITX1, microRNA (miR)-1248 and cyclin D2 (CCND2) were examined by quantitative real-time PCR (qRT-PCR). Cell proliferation, apoptosis, cell cycle process, migration and invasion were determined using cell counting kit 8 (CCK8) assay, colony formation assay, flow cytometry, wound healing assay and transwell assay. Xenograft models were built to explore the role of circ-PITX1 in NSCLC tumor growth in vivo. The glycolysis and glutamine metabolism of cells were assessed by detecting the consumptions of glucose and glutamine, cell extracellular acidification rate (ECAR), and the productions of lactate, α-ketoglutaric acid (α-KG) and ATP. The protein levels of hexokinase 2 (HK-2), glutaminase 1 (GLS1) and CCND2 were tested by Western blot (WB) analysis. Dual-luciferase reporter assay and RIP assay were employed to verify the interaction between miR-1248 and circ-PITX1 or CCND2. Results Circ-PITX1 was upregulated in NSCLC and its silencing could inhibit the proliferation, migration, invasion, cell cycle process, glycolysis, glutamine metabolism, and promote the apoptosis of NSCLC cells in vitro, as well as reduced tumor growth in vivo. In the terms of mechanism, we found that circ-PITX1 could act as a sponge of miR-1248, and miR-1248 could target CCND2. In addition, miR-1248 inhibitor reversed the inhibitory effect of circ-PITX1 knockdown on NSCLC progression. Similarly, CCND2 overexpression also reversed the suppressive effect of miR-1248 on NSCLC progression. Moreover, circ-PITX1 positively regulated CCND2 expression by sponging miR-1248. Conclusion Circ-PITX1 served as a sponge of miR-1248 to promote NSCLC progression by upregulating CCND2.
Collapse
Affiliation(s)
- Qianyu Yue
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Yanyan Xu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Xiaoli Deng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Shenglan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Jingman Qiu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Baojiang Qian
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan, People's Republic of China
| |
Collapse
|
28
|
Lu J, Ma X, Lin J, Hou P. Circ_0020123 Increases ZFX Expression to Facilitate Non-Small Cell Lung Cancer Progression by Sponging miR-142-3p. Cancer Manag Res 2021; 13:1687-1698. [PMID: 33633466 PMCID: PMC7901561 DOI: 10.2147/cmar.s295595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNA (circRNA) is involved in the progression of various cancers and has been shown to be an important potential target for cancer therapy. Circ_0020123 has been found to act as oncogene to participate in the malignant progression of non-small cell lung cancer (NSCLC). Therefore, exploring new mechanisms of circ_0020123 regulating NSCLC progression will help us better understand its role in NSCLC. Methods Relative expression levels of circ_0020123, microRNA (miR)-142-3p, and zinc-finger protein X-linked (ZFX) in tissues and cells were determined by quantitative real-time PCR (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were assessed using cell counting kit 8 (CCK8) assay, colony formation assay, flow cytometry and transwell assay. Western blot (WB) analysis was used to detect relative protein level. Besides, the interaction between miR-142-3p and circ_0020123 or ZFX was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Our results showed that circ_0020123 was upregulated in NSCLC, and its knockdown could suppress NSCLC cell proliferation, migration, invasion, and promote apoptosis. Circ_0020123 was found to interact with miR-142-3p. The inhibition effect of circ_0020123 silencing on NSCLC progression could be reversed by miR-142-3p inhibitor. ZFX could be targeted by miR-142-3p. The silencing of ZFX could hinder the progression of NSCLC and abolish the promotion effect of miR-142-3p inhibitor on NSCLC progression. In addition, circ_0020123 silencing inhibited NSCLC tumorigenesis by the miR-142-3p/ZFX axis. Conclusion These findings suggested that circ_0020123 might be a potential therapy target for NSCLC, which could promote NSCLC progression through regulating the miR-142-3p/ZFX axis.
Collapse
Affiliation(s)
- Jiancong Lu
- Department of Respiratory Diseases, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Ximiao Ma
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, People's Republic of China
| | - Junhong Lin
- Department of Respiratory Diseases, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Peifeng Hou
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, 350001, Fujian, People's Republic of China.,Fujian Medical University Stem Cell Research Institute, Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| |
Collapse
|