1
|
Zhao D, Zhu S, Bai X, Li X, Zhao Z. Mucinous breast cancer organoids: an in vitro research model. Discov Oncol 2025; 16:814. [PMID: 40388071 PMCID: PMC12089555 DOI: 10.1007/s12672-025-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Pure mucinous breast cancer is an uncommon form of cancer characterized by a low metastatic rate and a generally favorable prognosis. However, some patients may experience lymph node metastasis, leading to a worse prognosis. Currently, there is no reliable in vitro model available to effectively address the heterogeneity of pure mucinous breast cancer. METHODS We obtained surgical tumor samples from a 64-year-old Chinese female patient diagnosed with pure mucinous breast cancer to establish patient-derived organoids. Using these organoids, we performed histological staining, drug testing and single-cell RNA-Seq analysis. RESULTS We accomplished the establishment of a patient-derived mucinous breast cancer organoid model from a Chinese female. Hematoxylin and eosin staining, along with immunohistochemistry, revealed histology and protein expression (ER, PR, HER2 and Ki-67) at early passages similar to the original breast cancer tissue. Single-cell RNA sequencing at passage 7 identified 17 cell clusters, which were assigned to three cell types based on marker genes. This showed that most ER-positive luminal cells had been replaced by ER-negative basal-like cells at passage 7. We tested drug sensitivity to five antitumor drugs at passage 5. The organoids showed the highest sensitivity to Epirubicin and the lowest sensitivity to Carboplatin. CONCLUSIONS This is the first reported case of a mucinous breast cancer organoid. Our experimental results indicate that this model exhibits similar characteristics to the original tissue at early passages. Organoids at early passages could be a promising tool for clinical drug screening and further scientific research.
Collapse
Affiliation(s)
- Dongyi Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shida Zhu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xue Bai
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xuelu Li
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Zuowei Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Zhao D, Bai X, Zhu S, Zhao Z, Li X. Organoids as a model system for researching human neuroendocrine tumor of the breast. Cancer Cell Int 2024; 24:433. [PMID: 39731167 PMCID: PMC11681707 DOI: 10.1186/s12935-024-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Neuroendocrine tumors primarily consist of endocrine cells commonly located in neural tissue and the endocrine system. Primary neuroendocrine neoplasms of the breast are highly heterogeneous tumors characterized by a diverse cell population. Their rarity in the breast poses considerable challenges in studying their pathogenesis and developing effective treatments. METHODS The surgical specimen was obtained from a Chinese female patient diagnosed with neuroendocrine tumor of the breast (NETB). We performed tissue histological staining and established NETB patient-derived organoids, which were subsequently used for histological staining, drug screen, and Single-cell RNA sequencing. RESULTS We successfully established NETB patient-derived organoids from a Chinese female patient. Histological staining showed that the morphological characteristics and the expression of molecular biomarkers (ER, PR, HER2, Ki67, Syn, CgA) in the NETB patient-derived organoids resembled those of the original tumor tissue. The NETB patient-derived organoids exhibited varying sensitivities to seven different drugs. Single-cell RNA sequencing revealed significant heterogeneity and diverse molecular functions among these organoids. CONCLUSIONS This was the first instance of establishing an organoid model for NETB. Due to high heterogeneity, this NETB patient-derived organoid provides a robust foundation for clinical research. In the future, it could serve as a reliable tool for disease pathology diagnosis, drug screening, and genetic level studies.
Collapse
Affiliation(s)
- Dongyi Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xue Bai
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shida Zhu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zuowei Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Xuelu Li
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
4
|
Cui Y, Ran R, Da Y, Zhang H, Jiang M, Qi X, Zhang W, Niu L, Zhou Y, Zhou C, Tang X, Wang K, Yan Y, Ren Y, Dong D, Zhou Y, Wang H, Gong J, Hu F, Zhao S, Zhang H, Zhang C, Yang J. The combination of breast cancer PDO and mini-PDX platform for drug screening and individualized treatment. J Cell Mol Med 2024; 28:e18374. [PMID: 38722288 PMCID: PMC11081008 DOI: 10.1111/jcmm.18374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.
Collapse
Affiliation(s)
- Yuxin Cui
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ran Ran
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yanyan Da
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Center for Molecular Diagnosis and Precision MedicineThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Huiwen Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Meng Jiang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Wei Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ligang Niu
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yuhui Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Can Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Xiaojiang Tang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ke Wang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yu Yan
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yu Ren
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Danfeng Dong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yan Zhou
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Hui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Jin Gong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Shidi Zhao
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Huimin Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Center for Molecular Diagnosis and Precision MedicineThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| |
Collapse
|
5
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
6
|
Fan TY, Xu LL, Zhang HF, Peng J, Liu D, Zou WD, Feng WJ, Qin M, Zhang J, Li H, Li YK. Comprehensive Analyses and Experiments Confirmed IGFBP5 as a Prognostic Predictor Based on an Aging-genomic Landscape Analysis of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:760-778. [PMID: 38018207 DOI: 10.2174/0115680096276852231113111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Ting-Yu Fan
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Li-Li Xu
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hong-Feng Zhang
- Department of Laboratory Medicine, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Peng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wen-Jie Feng
- Burn and Plastic Department, Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mei Qin
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
7
|
Cao C, Lu X, Guo X, Zhao H, Gao Y. Patient-derived models: Promising tools for accelerating the clinical translation of breast cancer research findings. Exp Cell Res 2023; 425:113538. [PMID: 36871856 DOI: 10.1016/j.yexcr.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Breast cancer has become the highest incidence of cancer in women. It was extensively and deeply studied by biologists and medical workers worldwide. However, the meaningful results in lab researches cannot be realized in clinical, and a part of new drugs in clinical experiments do not obtain as good results as the preclinical researches. It is urgently that promote a kind of breast cancer research models that can get study results closer to the physiological condition of the human body. Patient-derived models (PDMs) originating from clinical tumor, contain primary elements of tumor and maintain key clinical features of tumor. So they are promising research models to facilitate laboratory researches translate to clinical application, and predict the treatment outcome of patients. In this review, we summarize the establishment of PDMs of breast cancer, reviewed the application of PDMs in clinical translational researches and personalized precision medicine with breast cancer as an example, to improve the understanding of PDMs among researchers and clinician, facilitate them to use PDMs on a large scale of breast cancer researches and promote the clinical translation of laboratory research and new drug development.
Collapse
Affiliation(s)
- Changqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China; State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Xiyan Lu
- Department of Outpatient, The Second Affiliated Hospital of Air Force Medical University, China
| | - Xinyan Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China.
| |
Collapse
|
8
|
Wu Y, Sun S, Huang Y, Xiao M, Zhao X, Lu X, Xia B, Qiao K, Zhang S, Wu Q, Xiong J, Cheng S, Song Y. Correlation analysis between androgen receptor and the clinicopathological features and prognosis of mammary Paget's disease. J Cancer Res Clin Oncol 2023; 149:1175-1184. [PMID: 35364707 DOI: 10.1007/s00432-022-03988-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Little is known about the prognostic value of androgen receptor (AR) status in mammary Paget's disease (MPD). The purpose of this study was to explore AR status and the distribution of molecular subtypes in MPD as well as the relationship between AR expression and clinicopathological factors and to evaluate its prognostic value. METHODS We analyzed 170 MPD patients of varying subtypes. AR expression was verified by immunohistochemical staining, and the correlations between AR expression and clinicopathological characteristics and survival status were analyzed. We further investigated 91 MPD patients with invasive ductal carcinoma (MPD-IDC). RESULTS AR was expressed in 55.3% of overall MPD patients, and 78.2% had the human epidermal growth factor receptor 2 (HER2) overexpression subtype. AR positivity was significantly correlated with BMI (P = 0.037) and pathological N stage (P = 0.023). Multivariate analysis indicated that pathological T stage and pathological N stage were independent prognostic factors for overall survival (OS). The positive AR group was significantly associated with better OS (P = 0.014). Among 91 MPD-IDC patients, AR was expressed in 56.0%, and 80.0% had the HER2 overexpression subtype. AR positivity was significantly correlated with pathological N stage (P = 0.033). Multivariate analysis indicated that AR and pathological T stage were independent prognostic factors for OS. Furthermore, AR positivity was significantly related to better OS (P = 0.005) in MPD-IDC patients as well as in patients with the HER2 overexpression subtype (P = 0.029). CONCLUSION Our results confirmed that AR is a potential biomarker for evaluating the prognosis of patients.
Collapse
Affiliation(s)
- Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xuhai Zhao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Bingshu Xia
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Qiqi Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Jing Xiong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
9
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Abstract
Organoids have complex three-dimensional structures that exhibit functionalities and feature architectures similar to those of in vivo organs and are developed from adult stem cells, embryonic stem cells, and pluripotent stem cells through a self-organization process. Organoids derived from adult epithelial stem cells are the most mature and extensive. In recent years, using organoid culture techniques, researchers have established various adult human tissue-derived epithelial organoids, including intestinal, colon, lung, liver, stomach, breast, and oral mucosal organoids, all of which exhibit strong research and application prospects. Studies have shown that epithelial organoids are mainly applied in drug discovery, personalized drug response testing, disease mechanism research, and regenerative medicine. In this review, we mainly discuss current organoid culture systems and potential applications of this technique with human epithelial tissue.
Collapse
Affiliation(s)
- Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
11
|
Tu J, Luo X, Liu H, Zhang J, He M. Cancer spheroids derived exosomes reveal more molecular features relevant to progressed cancer. Biochem Biophys Rep 2021; 26:101026. [PMID: 34095553 PMCID: PMC8167213 DOI: 10.1016/j.bbrep.2021.101026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/30/2023] Open
Abstract
Cancer cell spheroids have been shown to be more physiologically relevant to native tumor tissue than monolayer 2D culture cells. Due to enhanced intercellular communications among cells in spheroids, spheroid secreted exosomes which account for transcellular transportation should exceed those from 2D cell culture and may display a different expression pattern of miRNA or protein. To test this, we employed a widely used pancreatic cancer cell line, PANC-1, to create 3D spheroids and compared exosomes generated by both 2D cell culture and 3D PANC-1 spheroids. We further measured and compared exosomal miRNA and GPC-1 protein expression with qRT-PCR and enzyme-linked immunosorbent assay, respectively. It showed that PANC-1 cells cultured in 3D spheroids can produce significantly more exosomes than PANC-1 2D cells and exosomal miRNA and GPC-1 expression derived from spheroids show more features relevant to the progression of pancreatic cancer. These findings point to the potential importance of using spheroids as in vitro model to study cancer development and progression.
Collapse
|
12
|
Pan B, Zhao D, Liu Y, Li N, Song C, Li N, Li X, Zhao Z. Breast cancer organoids from malignant pleural effusion-derived tumor cells as an individualized medicine platform. In Vitro Cell Dev Biol Anim 2021; 57:510-518. [PMID: 33950403 DOI: 10.1007/s11626-021-00563-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Malignant pleural effusion (MPE) presents a severe medical condition in patients with advanced breast cancer (BC). We applied organoid culture technology to culture preoperative puncture specimen and corresponding surgical specimen-derived tumor cells from early BC patients and pleural effusion-derived tumor cells from advanced BC patients with MPE to study whether in vitro models could predict therapies of clinical patients. We successfully expanded pleural effusion-derived tumor organoids from 1 advanced triple-negative breast cancer (TNBC) patient with MPE which had been continuously propagated for more than 3 months. The organoids matched the histological characteristics of primary BC and metastatic supraclavicular lymph nodes by H&E staining and retained negative expression of TNBC biomarkers: estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and positive expression of antigen Ki-67. Multiple mutations were detected from this advanced TNBC patient with MPE by high-throughput sequencing of metastatic supraclavicular lymph node and the plasma sample. We performed the 3D drug screening tests combined with the clinical medication situation of this patient. The pleural effusion-derived tumor organoids were sensitive to capecitabine (IC50 1.580 μmol) and everolimus (IC50 4.008 μmol) single-agent treatments. The sensitivity to capecitabine was consistent with the clinical treatment response of this patient for capecitabine and with the sequencing results that reported MTHFR gene polymorphism mutation and TYMS -6bp/-6bp polymorphism mutation indicating effectiveness to fluorouracil. Our results suggested that an effective platform for ex vivo pleural effusion-derived tumor organoids from advanced TNBC patients with MPE could be used to identify treatment options and explore the clinicopathological characteristics of these patients.
Collapse
Affiliation(s)
- Bo Pan
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dongyi Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yaqian Liu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Na Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chen Song
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Li
- Department of Foreign Language, Dalian Medical University, Dalian, 116000, China
| | - Xuelu Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Zuowei Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
13
|
Pan B, Li X, Zhao D, Li N, Wang K, Li M, Zhao Z. Optimizing individualized treatment strategy based on breast cancer organoid model. Clin Transl Med 2021; 11:e380. [PMID: 33931968 PMCID: PMC8012563 DOI: 10.1002/ctm2.380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023] Open
Affiliation(s)
- Bo Pan
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Xuelu Li
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Dongyi Zhao
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Ning Li
- Department of Foreign LanguageDalian Medical UniversityDalianChina
| | - Kainan Wang
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Man Li
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Zuowei Zhao
- Department of Oncology and Department of Breast SurgeryThe Second Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
14
|
Rae C, Amato F, Braconi C. Patient-Derived Organoids as a Model for Cancer Drug Discovery. Int J Mol Sci 2021; 22:ijms22073483. [PMID: 33801782 PMCID: PMC8038043 DOI: 10.3390/ijms22073483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.
Collapse
Affiliation(s)
- Colin Rae
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (C.R.); (F.A.)
| | - Francesco Amato
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (C.R.); (F.A.)
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (C.R.); (F.A.)
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
- Correspondence:
| |
Collapse
|
15
|
Huang YP, Liu K, Wang YX, Yang Y, Xiong L, Zhang ZJ, Wen Y. Application and research progress of organoids in cholangiocarcinoma and gallbladder carcinoma. Am J Cancer Res 2021; 11:31-42. [PMID: 33520358 PMCID: PMC7840717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023] Open
Abstract
Both cholangiocarcinoma (CCA) and gallbladder carcinoma (GBC) are belong to biliary tract carcinomas (BTCs) with a high degree of malignancy and a poor prognosis. Therefore, an in vitro model is urgently needed to increase our understanding of the pathogenesis of BTCs. Tumor organoids are a novel three-dimensional (3D) culture technology that utilizes samples from removed tumors. Therefore, it can maintain the histological features, expression profiles and marker expression of the parental tissues. Recently, with the widespread use of this technique, increasing research is beginning to use organoid to study the cellular metabolism, pathogenesis, chemotherapy resistance, and new therapy methods of BTCs. In this review, we will discuss the advantages and disadvantages of BTC organoids compared with other cell culture techniques. In addition, the construction methods, research directions and current limitations of BTC organoids will be described.
Collapse
Affiliation(s)
- Yun-Peng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Kai Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Yong-Xiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Yang Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University Changsha 410011, Hunan Province, China
| |
Collapse
|