1
|
Huang M, Wang J, Zhou H, Lv Z, Li T, Liu M, Lv Y, Wu A, Xia J, Xu H, Chen W, Liu P. (-) - Epicatechin regulates LOC107986454 by targeting the miR-143-3p/EZH2 axis to enhance the radiosensitivity of non-small cell lung cancer. Am J Med Sci 2024; 368:503-517. [PMID: 38944201 DOI: 10.1016/j.amjms.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.
Collapse
Affiliation(s)
- Meifang Huang
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Junfeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Huahua Zhou
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Zengbo Lv
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Tianqian Li
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Meiyan Liu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Yaqing Lv
- Department of Clinical Pharmacy, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Anao Wu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Jie Xia
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Hongying Xu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Weiwen Chen
- Department of Endocrinology, Qujing Second People's Hospital of Yunnan Province, Qujing, Yunnan, 655000, China.
| | - Peiwan Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China.
| |
Collapse
|
2
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
3
|
MicroRNA-148a Controls Epidermal and Hair Follicle Stem/Progenitor Cells by Modulating the Activities of ROCK1 and ELF5. J Invest Dermatol 2023; 143:480-491.e5. [PMID: 36116511 DOI: 10.1016/j.jid.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
Abstract
Skin and hair development is regulated by complex programs of gene activation and silencing and microRNA-dependent modulation of gene expression to maintain normal skin and hair follicle development, homeostasis, and cycling. In this study, we show that miR-148a, through its gene targets, plays an important role in regulating skin homeostasis and hair follicle cycling. RNA and protein analysis of miR-148a and its gene targets were analyzed using a combination of in vitro and in vivo experiments. We show that the expression of miR-148a markedly increases during telogen (bulge and hair germ stem cell compartments). Administration of antisense miR-148a inhibitor into mouse skin during the telogen phases of the postnatal hair cycle results in accelerated anagen development and altered stem cell activity in the skin. We also show that miR-148a can regulate colony-forming abilities of hair follicle bulge stem cells as well as control keratinocyte proliferation/differentiation processes. RNA and protein analysis revealed that miR-148a may control these processes by regulating the expression of Rock1 and Elf5 in vitro and in vivo. These data provide an important foundation for further analyses of miR-148a as a crucial regulator of these genes target in the skin and hair follicles and its importance in maintaining stem/progenitor cell functions during normal tissue homeostasis and regeneration.
Collapse
|
4
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
5
|
Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in Spare Nerve Injury-induced neuropathic pain. Cell Death Dis 2022; 8:272. [PMID: 35624111 PMCID: PMC9142504 DOI: 10.1038/s41420-022-01060-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition for patients, affecting nearly 2.5 million people globally. Multiple side effects of SCI have resulted in a terrible life experience for SCI patients, of which neuropathic pain has attracted the most scientific interest. Even though many efforts have been made to attenuate or eliminate neuropathic pain induced by SCI, the outcomes for patients are still poor. Therefore, identifying novel diagnosis or therapeutic targets of SCI-induced neuropathic pain is urgently needed. Recently, multiple functions of long non-coding RNA (lncRNA) have been elucidated, including those in SCI-induced neuropathic pain. In this study, lncRNA small nucleolar RNA host gene 12 (SNHG12) was found to be upregulated in the dorsal root ganglion (DRGs) of rats with spare nerve injury (SNI). By constructing SCI rat models, we found that lncRNA SNHG12 expression was increased in the DRGs, and mainly distributed in the cytoplasm of PC12 cells. Paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and enzyme linked immunosorbent assay (ELISA) results indicated that lncRNA SNHG12 knockdown attenuated SNI-induced neuropathic pain, and decreased the expression levels of interleukin (IL)−1β, IL-6, and tumour necrosis factor α (TNF-α) in the DRGs. Bioinformatics analysis, RNA pull-down, chromatin immunoprecipitation (ChIP), and luciferase reporter gene assays showed that lncRNA SNHG12 regulates the RAD23 homologue B, nucleotide excision repair protein (RAD23B) expression, through targeting micro RNA (miR)−494-3p. Furthermore, the study indicated that Kruppel-Like Factor 2 (KLF2) could regulate lncRNA SNHG12 expression in PC12 cells. This study identified a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in SNI-induced neuropathic pain, which might provide a new insight for developing novel diagnosis, or therapeutic targets of SCI-induced neuropathic pain in the future.
Collapse
|
6
|
Zhang H, Fang C, Feng Z, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front Oncol 2022; 12:896840. [PMID: 35692795 PMCID: PMC9178109 DOI: 10.3389/fonc.2022.896840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is one of the three majors gynecological malignancies, which seriously threatens women’s health and life. Radiotherapy (RT) is one of the most common treatments for cervical cancer, which can reduce local recurrence and prolong survival in patients with cervical cancer. However, the resistance of cancer cells to Radiotherapy are the main cause of treatment failure in patients with cervical cancer. Long non-coding RNAs (LncRNAs) are a group of non-protein-coding RNAs with a length of more than 200 nucleotides, which play an important role in regulating the biological behavior of cervical cancer. Recent studies have shown that LncRNAs play a key role in regulating the sensitivity of radiotherapy for cervical cancer. In this review, we summarize the structure and function of LncRNAs and the molecular mechanism of radiosensitivity in cervical cancer, list the LncRNAs associated with radiosensitivity in cervical cancer, analyze their potential mechanisms, and discuss the potential clinical application of these LncRNAs in regulating radiosensitivity in cervical cancer.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Zhiyu Feng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|
7
|
Feng JF, Wang J, Xie G, Wang YD, Li XH, Yang WY, Yang YW, Zhang B. KMT2B promotes the growth of renal cell carcinoma via upregulation of SNHG12 expression and promotion of CEP55 transcription. Cancer Cell Int 2022; 22:197. [PMID: 35597996 PMCID: PMC9123657 DOI: 10.1186/s12935-022-02607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aims to clarify the mechanistic action of long non-coding RNA (lncRNA) SNHG12 in the development of renal cell carcinoma (RCC), which may be associated with promoter methylation modification by KMT2B and the regulation of the E2F1/CEP55 axis. Methods TCGA and GEO databases were used to predict the involvement of SNHG12 in RCC. Knockdown of SNHG12/E2F1/CEP55 was performed. Next, SNHG12 expression and other mRNAs were quantified by RT-qPCR. Subsequently, CCK-8 was used to detect cell proliferation. Wound healing assay and Transwell assay were used to detect cell migration and invasion, respectively. The in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs) was explored by matrigel-based capillary-like tube formation assay. ChIP assay was used to detect H3K4me3 in SNHG12 promoter region. The binding of E2F1 to CEP55 promoter region was analyzed with ChIP and dual luciferase reporter assays. RIP assay was used to detect the binding of SNHG12 to E2F1. Finally, the effect of SNHG12 on the tumor formation and angiogenesis of RCC was assessed in nude mouse xenograft model. Results SNHG12 was highly expressed in RCC tissues and cells, and it was related to the poor prognosis of RCC patients. SNHG12 knockdown significantly inhibited RCC cell proliferation, migration, and invasion and HUVEC angiogenesis. KMT2B up-regulated SNHG12 expression through modifying H3K4me3 in its promoter region. In addition, SNHG12 promoted CEP55 expression by recruiting the transcription factor E2F1. Knockdown of SNHG12 blocked E2F1 recruitment and down-regulated the expression of CEP55, thereby inhibiting tumor formation and angiogenesis in nude mice. Conclusion The evidence provided by our study highlighted the involvement of KMT2B in up-regulation of lncRNA as well as the transcription of CEP55, resulting in the promotion of angiogenesis and growth of RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02607-w.
Collapse
Affiliation(s)
- Jia-Fu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China. .,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Gang Xie
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Yao-Dong Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Urology Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Xiao-Han Li
- Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Wen-Yu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yu-Wei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| |
Collapse
|
8
|
Si C, Zhang W, Han Q, Zhu B, Zhan C. LncRNA SNHG12/miR-494-3p/CBX3 axis in diffuse large B-cell lymphoma. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wu W, Zhang S, He J. The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review. Front Pharmacol 2022; 13:879704. [PMID: 35600868 PMCID: PMC9117703 DOI: 10.3389/fphar.2022.879704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: Radioresistance remains a significant challenge in tumor therapy. This systematic review aims to demonstrate the role of long non-coding RNA (lncRNA) in cancer radioresistance/radiosensitivity. Material and methods: The electronic databases Pubmed, Embase, and Google Scholar were searched from January 2000 to December 2021 to identify studies addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of which required both in vivo and in vitro experiments. Results: Among the 87 studies identified, lncRNAs were implicated in tumor radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA (miRNA) by means of a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins, affecting the cell cycle and autophagy to contribute to tumor radioresistance. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Conclusion: lncRNAs are important regulators involved in tumor radioresistance\sensitivity. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance in different ways. Future research should focus more on comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance to help us identify corresponding novel biomarkers and develop new lncRNA-based methods to improve radioresistance.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Wenhan Wu,
| | - Shijian Zhang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Abedi Kichi Z, Soltani M, Rezaei M, Shirvani-Farsani Z, Rojhannezhad M. The Emerging role of EMT-related lncRNAs in therapy resistance and their application as biomarkers. Curr Med Chem 2022; 29:4574-4601. [PMID: 35352644 DOI: 10.2174/0929867329666220329203032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/09/2022]
Abstract
Cancer is the world's second largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-to-mesenchymal transition (EMT), and metastasis are all pressing issues in cancer therapy today. Increasing evidence showed that drug-resistant and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent researches have demonstrated lncRNAs (long noncoding RNAs) are noncoding transcripts, which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic biomarker for cancer. Although, there are still many challenges to investigate lncRNAs for clinical applications.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Mona Soltani
- Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
11
|
Wang Z, Xiong H, Zuo Y, Hu S, Zhu C, Min A. PSMC2 knockdown inhibits the progression of oral squamous cell carcinoma by promoting apoptosis via PI3K/Akt pathway. Cell Cycle 2022; 21:477-488. [PMID: 34979867 PMCID: PMC8942557 DOI: 10.1080/15384101.2021.2021722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteasome 26S subunit, ATPase 2 (PSMC2) is a recently identified gene which is potentially associated with human carcinogenesis. However, the effects of PSMC2 on oral squamous cell carcinoma (OSCC) is still unclear. Here, we investigated PSMC2 expression in OSCC tissues and explored its effects on the biological behaviors of OSCC cells. PSMC2 expression was evaluated by immunohistochemistry in a tissue microarray containing 60 OSCC tissues and 9 normal tissues. PSMC2 was knocked down through lentivirus infection in OSCC cell lines. MTT, colony formation, flow cytometry, transwell, and scratch assays were performed to detect effects of PSMC2 knockdown on phenotypes of OSCC cells. Human apoptosis antibody array was used to screen potential downstream of PSMC2 in OSCC. Finally, the effects of PSMC2 knockdown on tumor growth were assessed in a tumor xenograft model using BALB/c nude mice. PSMC2 expression was significantly upregulated in OSCC tissues compared with normal tissues and correlated with poor prognosis. PSMC2 knockdown significantly suppressed cell proliferation, migration, but promoted apoptosis of OSCC cells. Additionally, we confirmed that PSMC2 knockdown can increase the expression of pro-apoptotic proteins. Furthermore, we found that PSMC2 knockdown downregulated expression of p100, p-Akt, CDK6, and upregulated of MAPK9. Xenograft experiments revealed that PSMC2 knockdown can suppress OSCC tumor growth and promote apoptosis. This study demonstrated that PSMC2 plays a critical role in OSCC progression through affecting pro-apoptotic protein expression and apoptosis pathways. It indicated that targeting PSMC2 might be a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yijie Zuo
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shujun Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zhu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China,Institute of Oral Precancerous Lesions, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,CONTACT Anjie Min Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha410005, China
| |
Collapse
|
12
|
Zheng Y, Su L, Tan J, Dong F. Actinidia chinensis Planch Root extract suppresses the growth and metastasis of hypopharyngeal carcinoma by inhibiting E2F Transcription Factor 1-mediated MNX1 antisense RNA 1. Bioengineered 2022; 13:4911-4922. [PMID: 35152841 PMCID: PMC8973797 DOI: 10.1080/21655979.2022.2037226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence has shown that traditional Chinese medicines and their bioactive components exert an anti-tumor effect, representing a novel treatment strategy. Actinidia chinensis Planch Root extracts (acRoots) have been reported to repress cancer cell proliferation and metastasis. The effect of acRoots on hypopharyngeal carcinoma progression was explored in this study. Firstly, data from MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation assays showed that incubation with accRoots reduced cell proliferation of hypopharyngeal carcinoma cells. Moreover, acRoots promoted the cell apoptosis of hypopharyngeal carcinoma. Secondly, cell migration and invasion of hypopharyngeal carcinoma cells were suppressed by acRoots. Thirdly, E2F1 (E2F Transcription Factor 1) and lncRNA MNX1-AS1 (MNX1 antisense RNA 1) were up-regulated in hypopharyngeal carcinoma tissues, and reduced in hypopharyngeal carcinoma cells post acRoots incubation. Overexpression of E2F1 attenuated acRoots-induced decrease in MNX1-AS1 in hypopharyngeal carcinoma cells. Lastly, administration with acRoots retarded in vivo hypopharyngeal carcinoma growth through down-regulation of E2F1-mediated MNX1-AS1. In conclusion, acRoots exerted tumor-suppressive role in hypopharyngeal carcinoma through inhibition of E2F1-mediated MNX1-AS1.
Collapse
Affiliation(s)
- Yi Zheng
- Medical College, Soochow University, Suzhou, China
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lizhong Su
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jun Tan
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feilin Dong
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Yang H, Hou H, Zhao H, Yu T, Hu Y, Hu Y, Guo J. HK2 Is a Crucial Downstream Regulator of miR-148a for the Maintenance of Sphere-Forming Property and Cisplatin Resistance in Cervical Cancer Cells. Front Oncol 2021; 11:794015. [PMID: 34858863 PMCID: PMC8631922 DOI: 10.3389/fonc.2021.794015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
The acquisition of cancer stem-like properties is believed to be responsible for cancer metastasis and therapeutic resistance in cervical cancer (CC). CC tissues display a high expression level of hexokinase 2 (HK2), which is critical for the proliferation and migration of CC cells. However, little is known about the functional role of HK2 in the maintenance of cancer stem cell-like ability and cisplatin resistance of CC cells. Here, we showed that the expression of HK2 is significantly elevated in CC tissues, and high HK2 expression correlates with poor prognosis. HK2 overexpression (or knockdown) can promote (or inhibit) the sphere-forming ability and cisplatin resistance in CC cells. In addition, HK2-overexpressing CC cells show enhanced expression of cancer stem cell-associated genes (including SOX2 and OCT4) and drug resistance-related gene MDR1. The expression of HK2 is mediated by miR-145, miR-148a, and miR-497 in CC cells. Overexpression of miR-148a is sufficient to reduce sphere formation and cisplatin resistance in CC cells. Our results elucidate a novel mechanism through which miR-148a regulates CC stem cell-like properties and chemoresistance by interfering with the oncogene HK2, providing the first evidence that dysregulation of the miR-148a/HK2 signaling plays a critical role in the maintenance of sphere formation and cisplatin resistance of CC cells. Our findings may guide future studies on therapeutic strategies that reverse cisplatin resistance by targeting this pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hui Hou
- Department of Pediatric Hematology and Oncology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Haiping Zhao
- Department of Abdominal Tumor Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Tianwei Yu
- Department of Transfusion Medicine, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yuchong Hu
- Department of Gynaecology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Yue Hu
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junmei Guo
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
14
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. SNHG12 regulates biological behaviors of ox-LDL-induced HA-VSMCs through upregulation of SPRY2 and NUB1. Atherosclerosis 2021; 340:1-11. [PMID: 34847450 DOI: 10.1016/j.atherosclerosis.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human vascular smooth muscle cells (HA-VSMCs) are an important cell type involved in atherosclerosis. Low density lipoprotein (LDL) is a lipoprotein particle that carries cholesterol into peripheral tissue cells, and oxidized modified LDL (ox-LDL) is a well-known inducer of the atherosclerosis-related phenotype switch in VSMCs, leading to the occurrence of atherosclerosis. Accumulating studies have revealed that long non-coding RNAs (lncRNAs) mediate the effect of ox-LDL on the atherosclerosis-related biological activities of HA-VSMCs, including proliferation, migration, and apoptosis. However, the mechanism of small nucleolar RNA host gene 12 (SNHG12) in ox-LDL-induced phenotype switch of VSMCs remains unclear. Thus, this research dug in whether SNHG12 mediated the influence of ox-LDL on HA-VSMCs and the potential mechanism. METHODS Fundamental experiments and functional assays were performed to measure the function of SNHG12 on HA-VSMCs. Then, mechanism assays and rescue assays were performed to study the regulatory mechanism of SNHG12 in HA-VSMCs. RESULTS SNHG12 reversed the influence of ox-LDL treatment in enhancing cell proliferative and migratory abilities and weakening apoptotic ability in HA-VSMCs. SNHG12 was a competitive endogenous RNA (ceRNA) competing with sprouty RTK signaling antagonist 2 (SPRY2) to bind to miR-1301-3p, thus up-regulating SPRY2 expression in ox-LDL-treated HA-VSMCs. Besides, SNHG12 recruited serine and arginine rich splicing factor 1 (SRSF1) to stabilize negative regulator of ubiquitin like proteins 1 (NUB1) expression. CONCLUSIONS This study illustrated that SNHG12 inhibited cell proliferation, migration and facilitated cell apoptosis in ox-LDL-induced HA-VSMCs by up-regulating SPRY2 and NUB1.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Fanhao Ye
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Shiwei Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Rui Zhou
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China.
| |
Collapse
|
15
|
Liu Y, Wen C, Zhang Y, Liu Z, He Q, Cui M, Peng H, Wang Y, Zhang X, Li X, Wang Q. Aberrant expression of SNHG12 contributes to N, N-dimethylformamide-induced hepatic apoptosis both in short-term and long-term DMF exposure. Toxicol Res (Camb) 2021; 10:1022-1033. [PMID: 34733487 DOI: 10.1093/toxres/tfab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
N, N-Dimethylformamide (DMF) can cause liver damage in occupationally exposed workers, but the molecular mechanism of DMF-induced liver damage has not been fully elucidated. Researches have proved that lncRNA plays a major function in chemical-induced liver toxicity and can be used as a biomarker and therapeutic target for liver injury. In order to verify that lncRNA also participates in DMF-induced liver damage, we treated HL-7702 cells with 75 or 150 mM DMF, and obtained lncRNA expression profiles through high-throughput sequencing. Among the differentially expressed lncRNAs, lncRNA SNHG12 was proved to be significantly downregulated in DMF-treated HL-7702 cells and participate in DMF-mediated apoptosis, even under long-term low-dose DMF exposure (5-10 mM, 8 weeks). In addition, according to bioinformatics analysis, miR-218-5p is expected to be a potential target of SNHG12, which was verified by the dual luciferase reporter assay in HEK293FT cells. MiR-218-5p mimic can induce apoptosis in HL-7702 cells. Among the predicted targets of miR-218-5p, protein kinase C epsilon (PRKCE) was reported to be involved in apoptosis, and was indeed downregulated by miR-218-5p mimic in our study. Further experiments showed that changes of the expression of SNHG12 can affect the expression of PRKCE. In the epidemiological study of occupational population, we also found that SNHG12 was downregulated in the serum exosomes of workers exposed to DMF. These results indicated that SNHG12 can mediate DMF-induced apoptosis of HL-7702 cells through miR-218-5p/PRKCE pathway.
Collapse
Affiliation(s)
- Ye Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Cuiju Wen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yangchun Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qianmei He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghao Peng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuqing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xueying Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xudong Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
miRNA-148a Enhances the Treatment Response of Patients with Rectal Cancer to Chemoradiation and Promotes Apoptosis by Directly Targeting c-Met. Biomedicines 2021; 9:biomedicines9101371. [PMID: 34680492 PMCID: PMC8533359 DOI: 10.3390/biomedicines9101371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with locally advanced rectal cancer (LARC) who achieve a pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NACRT) have an excellent prognosis, but only approximately 30% of patients achieve pCR. Therefore, identifying predictors of pCR is imperative. We employed a microRNA (miRNA) microarray to compare the miRNA profiles of patients with LARC who achieved pCR (pCR group, n = 5) with those who did not (non-pCR group, n = 5). The validation set confirmed that miRNA-148a was overexpressed in the pCR group (n = 11) compared with the non-pCR group (n = 40). Cell proliferation and clonogenic assays revealed that miRNA-148a overexpression radio-sensitized cancer cells and inhibited cellular proliferation, before and after irradiation (p < 0.01). Apoptosis assays demonstrated that miRNA-148a enhanced apoptosis before and after irradiation. Reporter assays revealed that c-Met was the direct target gene of miRNA-148a. An in vivo study indicated that miRNA-148a enhanced the irradiation-induced suppression of xenograft tumor growth (p < 0.01). miRNA-148a may be a biomarker of pCR following NACRT and can promote apoptosis and inhibit proliferation in CRC cells by directly targeting c-Met in vitro and enhancing tumor response to irradiation in vivo.
Collapse
|
17
|
Yang HG, Wang TP, Hu SA, Hu CZ, Jiang CH, He Q. Long Non-coding RNA SNHG12, a New Therapeutic Target, Regulates miR-199a-5p/Klotho to Promote the Growth and Metastasis of Intrahepatic Cholangiocarcinoma Cells. Front Med (Lausanne) 2021; 8:680378. [PMID: 34239888 PMCID: PMC8257934 DOI: 10.3389/fmed.2021.680378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/20/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Small nucleolar RNA host gene 12 (SNHG12) is a newly identified long non-coding RNA (lncRNA) whose involvements have been explored in several cancers. Our study aimed to explore the functions of SNHG12 on intrahepatic cholangiocarcinoma (ICC) progression and its interaction with miR-199a-5p and Klotho. Methods: RT-PCR was performed to examine the expressions of SNHG12, miR-199a-5p and Klotho in ICC cells. Cell counting kit-8 (CCK-8), colony formation assays and transwell assays were applied to analyze the proliferation, migration and invasion of ICC cells. Luciferase assays, RIP assays and RNA pull-down assays were carried out to demonstrate the direct binding relationships among SNHG12, miR-199a-5p and Klotho. The xenograft nude models were applied to test the effects of SNHG12 on ICC tumor growth. Results: The expression of SNHG12 and Klotho was distinctly increased in ICC cells, while miR-199a-5p expressions were decreased. Functionally, the silence of SNHG12 inhibited the proliferation and metastasis of ICC cells, while miR-199a-5p overexpression exhibited an opposite result. Mechanistically, Knockdown of SNHG12 significantly suppressed the expressions of miR-199a-5p by sponging it, and then increased Klotho expression. The final in vivo experiments suggested that the silence of SNHG12 distinctly inhibited tumor growth. Conclusion: Our findings indicated that SNHG12 inhibited cell proliferation and metastasis process of ICC cells through modulating the miR-199a-5p/Klotho axis and it is expected to become a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Hong-Guo Yang
- Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tian-Peng Wang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Sheng-An Hu
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chao-Zhou Hu
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Cheng-Hang Jiang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiang He
- Department of General Surgery, Zhejiang Provincial People's Hospital, Haining Hospital, Haining, China
| |
Collapse
|