1
|
Fen-Xu, Jiang LH, Chen-Fu, Feng WW, Zhou CJ. CRD-BP as a Tumor Marker of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:169-176. [PMID: 37990428 DOI: 10.2174/0118715206256546231108095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
The National Cancer Center published a comparative report on cancer data between China and the United States in the Chinese Medical Journal, which shows that colorectal cancer (CRC) ranks second in China and fourth in the United States. It is worth noting that since 2000, the case fatality rate of CRC in China has skyrocketed, while the United States has gradually declined. Finding tumor markers with high sensitivity and specificity is our primary goal to reduce the case fatality rate of CRC. Studies have shown that CRD-BP (Insulin-like growth factor 2 mRNA-binding protein 1) can affect a variety of signaling pathways, such as Wnt.nuclear factor KB (NF-κB), and Hedgehog, and has good biological effects as a therapeutic target for CRC. CRD-BP is expected to become a tumor marker with high sensitivity and specificity of CRC. This paper reviews the research on CRD-BP as a tumor marker of CRC.
Collapse
Affiliation(s)
- Fen-Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Liang-Hong Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Chen-Fu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Wei-Wei Feng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Chang-Jiang Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| |
Collapse
|
2
|
Xiong Z, Wang M, You S, Chen X, Lin J, Wu J, Shi X. Transcription Regulation of Tceal7 by the Triple Complex of Mef2c, Creb1 and Myod. BIOLOGY 2022; 11:biology11030446. [PMID: 35336819 PMCID: PMC8945367 DOI: 10.3390/biology11030446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We have previously reported a striated muscle-specific gene during embryogenesis, Tceal7. Our studies have characterized the 0.7 kb promoter of the Tceal7 gene, which harbors important E-box motifs driving the LacZ reporter in the myogenic lineage. However, the underlying mechanism regulating the dynamic expression of Tceal7 during skeletal muscle regeneration is still elusive. In the present work, we have defined a cluster of Mef2#3–CRE#3–E#4 motifs through bioinformatic analysis and transcription assays. Our studies suggested that the triple complex of Mef2c, Creb1 and Myod binds to the Mef2#3–CRE#3–E#4 cluster region, therefore driving the dynamic expression of Tceal7 during skeletal muscle regeneration. The novel mechanism may throw new light on understanding transcription regulation in skeletal muscle myogenesis. Abstract Tceal7 has been identified as a direct, downstream target gene of MRF in the skeletal muscle. The overexpression of Tceal7 represses myogenic proliferation and promotes cell differentiation. Previous studies have defined the 0.7 kb upstream fragment of the Tceal7 gene. In the present study, we have further determined two clusters of transcription factor-binding motifs in the 0.7 kb promoter: CRE#2–E#1–CRE#1 in the proximal region and Mef2#3–CRE#3–E#4 in the distal region. Utilizing transcription assays, we have also shown that the reporter containing the Mef2#3–CRE#3–E#4 motifs is synergistically transactivated by Mef2c and Creb1. Further studies have mapped out the protein–protein interaction between Mef2c and Creb1. In summary, our present studies support the notion that the triple complex of Mef2c, Creb1 and Myod interacts with the Mef2#3–CRE#3–E#4 motifs in the distal region of the Tceal7 promoter, thereby driving Tceal7 expression during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Mengni Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Shanshan You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaoyan Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jianhua Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaozhong Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
- Correspondence: ; Tel.: +86-20-39380620
| |
Collapse
|
3
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Lukomska A, Kim J, Rheaume BA, Xing J, Hoyt A, Lecky E, Steidl T, Trakhtenberg EF. Developmentally upregulated transcriptional elongation factor a like 3 suppresses axon regeneration after optic nerve injury. Neurosci Lett 2021; 765:136260. [PMID: 34560191 PMCID: PMC8572158 DOI: 10.1016/j.neulet.2021.136260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/24/2022]
Abstract
Projection neurons of the mammalian central nervous system (CNS) do not spontaneously regenerate axons which have been damaged by an injury or disease, often leaving patients with permanent disabilities that affect motor, cognitive, or sensory functions. Although several molecular targets which promote some extent of axon regeneration in animal models have been identified, the resulting recovery is very limited, and the molecular mechanisms underlying the axonal regenerative failure in the CNS are still poorly understood. One of the most studied targets for axon regeneration in the CNS is the mTOR pathway. A number of developmentally regulated genes also have been found to play a role in CNS axon regeneration. Here, we found that Transcriptional Elongation Factor A Like 3 (Tceal3), belonging to the Bex/Tceal transcriptional regulator family, which also modulates the mTOR pathway, is developmentally upregulated in retinal ganglion cell (RGCs) projection CNS neurons, and suppresses their capacity to regenerate axons after injury.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Juhwan Kim
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Alexela Hoyt
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Emmalyn Lecky
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Tyler Steidl
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|