1
|
He J, Xie P, An XQ, Guo DF, Bi B, Wu G, Yu WF, Ren ZK, Zuo L. LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF. Curr Med Sci 2024; 44:971-986. [PMID: 39145838 DOI: 10.1007/s11596-024-2917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases. However, their roles and molecular mechanisms in major depressive disorder (MDD) remain largely unknown. This study aimed to identify lncRNAs and miRNAs involved in the development of MDD and elucidate their molecular mechanisms. METHODS Transcriptome and bioinformatic analyses were performed to identify miRNAs and lncRNAs related to MDD. C57 mice were subjected to chronic unpredictable mild stress (CUMS) to establish a depression model. Lentiviruses containing either lncRNA NPTN-IT1-201 or miR-142-5p were microinjected into the hippocampal region of these mice. Behavioral tests including the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST) were conducted to evaluate depressive-like behaviors. RESULTS The results revealed that overexpression of lncRNA NPTN-IT1-201 or inhibition of miR-142-5p significantly ameliorated depressive-like behaviors in CUMS-treated mice. Dual-luciferase reporter assays confirmed interactions between miR-142-5p with both brain-derived neurotrophic factor (BDNF) and NPTN-IT1-201. ELISA analysis revealed significant alterations in relevant biomarkers in the blood samples of MDD patients compared to healthy controls. Histological analyses, including HE and Nissl staining, showed marked structural changes in brain tissues following CUMS treatment, which were partially reversed by lncRNA NPTN-IT1-201 overexpression or miR-142-5p inhibition. Immunofluorescence imaging demonstrated significant differences in the levels of BAX, Bcl2, p65, Iba1 among different treatment groups. TUNEL assays confirmed reduced apoptosis in brain tissues following these interventions. Western blotting showed the significant differences in BDNF, BAX, and Bcl2 protein levels among different treatment groups. CONCLUSION NPTN-IT1-201 regulates inflammation and apoptosis in MDD by targeting BDNF via miR-142-5p, making it a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Jun He
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, China
| | - Peng Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiao-Qiong An
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Dong-Fen Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Zhen-Kui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Li Zuo
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Jin YM, Huang AR, Yu MQ, Ye WD, Hu XG, Wang HM, Xu ZW, Liang DS. Protective Effects of NaHS/miR-133a-3p on Lipopolysaccharide-Induced Cardiomyocytes Injury. J Toxicol 2023; 2023:2566754. [PMID: 38106638 PMCID: PMC10723929 DOI: 10.1155/2023/2566754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Objective The aim of this study was to investigate the effects of sodium hydrosulfide (NaHS) on Lipopolysaccharide (LPS)-induced cardiomyocyte injury in H9c2 cells. Methods H9c2 cardiomyocytes cultivated with medium containing 10 μg/mL LPS were used to recapitulate the phenotypes of those in sepsis. Two sequential experiments were performed. The first contained a control group, a LPS group, and a LPS + NaHS group, with the aim to assure the protective effects of NaHS on LPS-treated cardiomyocytes. The second experiment added a fourth group, the LPS + NaHS + miR-133a-3p inhibition group, with the aim to preliminarily explore whether miR-133-3p exerts a protective function downstream of NaHS. The adenosine triphosphate (ATP) kit was used to detect ATP content; real-time quantitative polynucleotide chain reaction (qPCR) was used to measure the levels of mammalian targets of rapamycin (mTOR), AMP-dependent protein kinase (AMPK), and miR-133a-3p, and Western blot (WB) was used to detect protein levels of mTOR, AMPK, myosin-like Bcl2 interacting protein (Beclin-1), microtubule-associated protein 1 light chain 3 (LC3I/II), and P62 (sequestosome-1, sqstm-1/P62). Results Compared with the control group, the expressions of miR-133a-3p (P < 0.001), P62 (P < 0.001), and the content of ATP (P < 0.001) decreased, while the expressions of Beclin-1 (P = 0.023) and LC3I/II (P = 0.048) increased in the LPS group. Compared with the LPS group, the expressions of miR-133a-3p (P < 0.001), P62 (P < 0.001), and the content of ATP (P < 0.001) in the NaHS + LPS group increased, while the expressions of Beclin-1 (P = 0.023) and LC3I/II (P = 0.022) decreased. Compared with the NaHS + LPS group, the expression levels of miR-133a-3p (P < 0.001), P62 (P = 0.001), and the content of ATP (P < 0.001) in the LPS + NaHS + miR-133a-3p inhibition group were downregulated, and the expression levels of Beclin-1 (P = 0.012) and LC3I/II (P = 0.010) were upregulated. The difference was statistically significant. There was no significant difference in the expression of AMPK and mTOR between groups. Conclusion Our research demonstrated that NaHS relieved LPS-induced myocardial injury in H9c2 by promoting the expression of miR-133a-3p, inhibiting autophagy in cardiomyocytes, and restoring cellular ATP levels.
Collapse
Affiliation(s)
- Yi-Mei Jin
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ai-Rong Huang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mei-qian Yu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wan-Ding Ye
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao-guang Hu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hua-min Wang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-wei Xu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dong-shi Liang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
3
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
4
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
5
|
Wu C, Hou X, Li S, Luo S. Long noncoding RNA ZEB1-AS1 attenuates ferroptosis of gastric cancer cells through modulating miR-429/BGN axis. J Biochem Mol Toxicol 2023; 37:e23381. [PMID: 37128782 DOI: 10.1002/jbt.23381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.
Collapse
Affiliation(s)
- Chen Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xinfang Hou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuai Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suxia Luo
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Askari A, Behzad Moghadam K, Hussen BM, Taheri M, Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023; 245:154486. [PMID: 37120907 DOI: 10.1016/j.prp.2023.154486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
ZEB1 Antisense RNA 1 (ZEB1-AS1) is a type of RNA characterized as long non-coding RNA (lncRNA). This lncRNA has important regulatory roles on its related gene, Zinc Finger E-Box Binding Homeobox 1 (ZEB1). In addition, role of ZEB1-AS1 has been approved in diverse malignancies such as colorectal cancer, breast cancer, glioma, hepatocellular carcinoma and gastric cancer. ZEB1-AS1 serves as a sponge for a number of microRNAs, namely miR-577, miR-335-5p, miR-101, miR-505-3p, miR-455-3p, miR-205, miR-23a, miR-365a-3p, miR-302b, miR-299-3p, miR-133a-3p, miR-200a, miR-200c, miR-342-3p, miR-214, miR-149-3p and miR-1224-5p. In addition to malignant conditions, ZEB1-AS1 has functional role in non-malignant conditions like diabetic nephropathy, diabetic lung, arthrosclerosis, Chlamydia trachomatis infection, pulmonary fibrosis and ischemic stroke. This review outlines different molecular mechanisms of ZEB1-AS1 in a variety of disorders and highlights its importance in their pathogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li D, Qu G, Ling S, Sun Y, Cui Y, Yang Y, Cao X. A cuproptosis-related lncRNA signature to predict prognosis and immune microenvironment of colon adenocarcinoma. Sci Rep 2023; 13:6284. [PMID: 37072493 PMCID: PMC10113217 DOI: 10.1038/s41598-023-33557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Cuproptosis is a novel cell death modality but its regulatory role in the colon cancer remains obscure. This study is committed to establishing a cuproptosis-related lncRNA (CRL) signature to forecast the prognosis for colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) samples were randomly divided into training and validation cohorts. LASSO-COX analysis was performed to construct a prognostic signature consisting of five CRLs (AC015712.2, ZEB1-AS1, SNHG26, AP001619.1, and ZKSCAN2-DT). We found the patients with high-risk scores suffered from poor prognosis in training cohort (p < 0.001) and validation cohort (p = 0.004). Nomogram was created based on the 5-CRL signature. Calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) demonstrated the nomogram performed well in 1‑, 3‑, and 5‑year overall survival (OS). Subsequently, we observed increased infiltration of multiple immune cells and upregulated expression of immune checkpoints and RNA methylation modification genes in high-risk patients. Additionally, gene set enrichment analysis (GSEA) revealed two tumor-related pathways, including MAPK and Wnt signaling pathways. Finally, we found AKT inhibitors, all-trans retinoic acid (ATRA), camptothecin, and thapsigargin had more sensitivity to antitumor therapy in high-risk patients. Collectively, this CRL signature is promising for the prognostic prediction and precise therapy of COAD.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Guangzhen Qu
- Department of Interventional Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shen Ling
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Papanikolaou V, Kyrodimos E, Mastronikolis N, Asimakopoulos AD, Papanastasiou G, Tsiambas E, Spyropoulou D, Katsinis S, Manoli A, Papouliakos S, Pantos P, Ragos V, Peschos D, Chrysovergis A. Anti-EGFR/BRAF-Tyrosine Kinase Inhibitors in Thyroid Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:151-156. [PMID: 36875315 PMCID: PMC9949544 DOI: 10.21873/cdp.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Alterations in significant genes located on chromosome 7 - including epidermal growth factor receptor (EGFR) and also v-Raf murine sarcoma viral oncogene homolog B (BRAF) as a mitogen-activated protein kinase (MAPK) - combined or not with numerical imbalances of the whole chromosome (aneuploidy-polysomy) are crucial genetic events involved in the development and progression of malignancies. Identification of EGFR/BRAF-dependent specific somatic mutations and other mechanisms of deregulation (i.e., amplification) is critical for applying targeted therapeutic approaches [tyrosine kinase inhibitors (TKIs] or monoclonal antibodies (mAbs). Thyroid carcinoma is a specific pathological entity characterized by a variety of histological sub-types. Follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC) represent its main sub-types. In the current review, we explore the role of EGFR/BRAF alterations in thyroid carcinoma in conjunction with the corresponding anti-EGFR/BRAF TKI-based novel therapeutic strategies for patients with specific genetic signatures.
Collapse
Affiliation(s)
- Vasileios Papanikolaou
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Efthymios Kyrodimos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | | | | | - George Papanastasiou
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Spyros Katsinis
- Department of Otorhinolaryngology, Pamakaristos General Hospital, Athens, Greece
| | - Arezina Manoli
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Sotirios Papouliakos
- Department of Otorhinolaryngology, General Hospital "Gennimatas", Athens, Greece
| | - Pavlos Pantos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Aristeidis Chrysovergis
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
9
|
Sui X, Sun Y, Zhang G, Chi N, Guan Y, Wang D, Li X. hsa-mir-133a-2 promotes the proliferation and invasion of cervical cancer cells by targeting the LAMB3-mediated PI3K/ATK pathway. Cancer Med 2023; 12:5874-5888. [PMID: 36305754 PMCID: PMC10028115 DOI: 10.1002/cam4.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cervical cancer, one of the common types of malignant tumors progressed in women, is on the rise in developing countries. Numerous previous studies have demonstrated that hsa-mir-133a-2 miRNA is abnormally expressed in cervical cancer cells. However, its fundamental mechanism in cervical cancer needs to be further clarified. Our study set out to investigate the effect of hsa-mir-133a-2 on the phenotypes of cervical cancer cells as well as any potential molecular processes involved in the proliferation and invasion of cervical cancer cells. METHODS The Cancer Genome Atlas-cervical squamous cell carcinoma and endocervical adenocarcinoma(TCGA-CESC) was adopted in order to verify the expression of hsa-mir-133a-2 in cervical cancer tissues and to identify its potential targets. The interaction between Laminin subunit beta-3(LAMB3) and hsa-mir-133a-2 was verified by TargetScan database as well as Luciferase reporter assay. The Cell Counting Kit-8 (CCK8) and transwell methods were utilized to assess the influence of hsa-mir-133a-2 on the proliferation and invasion characteristics of cervical cancer cells. We studied the role that hsa-mir-133a-2 plays in cervical cancer progression through Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis as well as Western Blot (WB) experiment. RESULTS Down-regulation of hsa-mir-133a-2 was detected in cervical cancer tissues. It directly targeted LAMB3 and negatively regulated LAMB3 expression. The overexpression of hsa-mir-133a-2 has a significant inhibiting effect on cervical cancer cell proliferation and invasion. The overexpression of hsa-mir-133a-2 significantly inhibits the proliferation and invasion of cervical cancer cells. Moreover, the LAMB3 was able to up-regulate the phosphorylation levels of AKT and phosphatidylinositol 3-kinase (PI3K) protein in cervical cancer cells. hsa-mir-133a-2 could also modulate the PI3K/AKT signaling pathway by targeting LAMB3. CONCLUSION hsa-mir-133a-2 inhibits cervical cancer cell proliferation and invasion by indirectly regulating the PI3K/AKT signaling pathway, providing us with a new clinical treatment strategy for cervical cancer.
Collapse
Affiliation(s)
- Xiaoyu Sui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yurong Sun
- Teaching and Research Section of Pathology, Qiqihar Medical University, Qiqihar, P. R. China
| | - Guiyu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, P. R. China
| | - Na Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Yitong Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Dan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Xiulan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| |
Collapse
|
10
|
Wang X, Wu B, Sun G, He W, Gao J, Huang T, Liu J, Zhou Q, He X, Zhang S, Zhang Z, Zhu H. Selenium Biofortification Enhanced miR167a Expression in Broccoli Extracellular Vesicles Inducing Apoptosis in Human Pancreatic Cancer Cells by Targeting IRS1. Int J Nanomedicine 2023; 18:2431-2446. [PMID: 37192899 PMCID: PMC10182772 DOI: 10.2147/ijn.s394133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose Pancreatic adenocarcinoma (PAAD) presents an extremely high morbidity and mortality rate. Broccoli has excellent anti-cancer properties. However, the dosage and serious side effects still limit the application of broccoli and its derivatives for cancer therapy. Recently, extracellular vesicles (EVs) derived from plants are emerging as novel therapeutic agents. Thus, we conducted this study to determine the effectiveness of EVs isolated from Se-riched broccoli (Se-BDEVs) and conventional broccoli (cBDEVs) for the treatment of PAAD. Methods In this study, we first isolated Se-BDEVs and cBDEVs by a differential centrifugation method, and characterized them by using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Then, miRNA-seq was combined with target genes prediction, and functional enrichment analysis to reveal the potential function of Se-BDEVs and cBDEVs. Finally, the functional verification was conducted in PANC-1 cells. Results Se-BDEVs and cBDEVs exhibited similar characteristics in size and morphology. Subsequent miRNA-seq revealed the expression of miRNAs in Se-BDEVs and cBDEVs. Using a combination of miRNA target prediction and KEGG functional analysis, we found miRNAs in Se-BDEVs and cBDEVs may play an important role in treating pancreatic cancer. Indeed, our in vitro study showed that Se-BDEVs had greater anti-PAAD potency than cBDEVs due to increased bna-miR167a_R-2 (miR167a) expression. Transfection with miR167a mimics significantly induced apoptosis of PANC-1 cells. Mechanistically, further bioinformatics analysis showed that IRS1, which is involved in the PI3K-AKT pathway, is the key target gene of miR167a. Conclusion This study highlights the role of miR167a transported by Se-BDEVs which could be a new tool for counteracting tumorigenesis.
Collapse
Affiliation(s)
- Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
| | - Guogen Sun
- Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jing Liu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
- Correspondence: Zixiong Zhang, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, No. 158, Muyang Avenue, Enshi, Hubei, People’s Republic of China, Email
| | - He Zhu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
- He Zhu, The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, People’s Republic of China, Email
| |
Collapse
|
11
|
Jia M, Feng S, Cao F, Deng J, Li W, Zhou W, Liu X, Bai W. Identification of EGFR-Related LINC00460/mir-338-3p/MCM4 Regulatory Axis as Diagnostic and Prognostic Biomarker of Lung Adenocarcinoma Based on Comprehensive Bioinformatics Analysis and Experimental Validation. Cancers (Basel) 2022; 14:5073. [PMID: 36291859 PMCID: PMC9600278 DOI: 10.3390/cancers14205073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 09/23/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is one of the most aggressive and lethal tumor types and requires effective diagnostic and therapeutic targets. Though the epidermal growth factor receptor (EGFR) is an important target for LUAD therapy, acquired resistance is still inevitable. In recent years, the regulation of the EGFR by competing endogenous RNAs (ceRNAs) has been extensively studied and significant progress has been made. Therefore, we aim to find new targets for the diagnosis and treatment of LUAD by analyzing the EGFR-related ceRNA network in LUAD and expect to address the problem of EGFR resistance. Methods: We identified differentially expressed lncRNAs, miRNAs and mRNAs closely associated with the EGFR by analyzing transcriptome data from LUAD samples. Comprehensive bioinformatics analysis strongly suggests that the LINC00460-mir-338-3p-MCM4 ceRNA network plays an important role in the diagnosis and prognosis of LUAD. The effects of different patterns of the LINC00460/MCM4 axis on the overall survival of patients with LUAD were analyzed by a polygene regulation model. We also verified the expression of these genes in LUAD cell lines and tumor tissues by RT-PCR and immunohistochemistry. The functional enrichment analysis and targeted drug prediction of the MCM4 gene were performed. Results: Survival analysis indicated that high expressions of LINC00460 and MCM4 predict a shorter survival period for patients. Univariate and multivariate regression analyses demonstrated that higher expressions of LINC00460 and MCM4 were significantly associated with tumor size, lymph node metastasis, distant metastasis and TNM stage. A multi-gene regulation model analysis revealed that the LINC00460 (downregulation)-mir-338-3p (upregulation)-MCM4 (downregulation) pattern significantly improved the overall survival of LUAD patients (p = 0.0093). RT-PCR and immunohistochemical experiments confirmed our analytical results. In addition, the functional enrichment analysis indicated that MCM4-related genes were mainly enriched in the cell cycle and cell division. A functional association network analysis showed that MCM4 was closely related to the EGFR. Finally, the possible targeted drugs of MCM4 were queried through the drug database platform, hoping to solve its drug resistance problem by targeting EGFR-related genes. Conclusions: In summary, the LINC00460/MCM4 axis can be used as a potential new perspective for targeting EGFR genes in precision medicine and is expected to serve as a diagnostic, prognostic and drug target for LUAD.
Collapse
Affiliation(s)
- Mingxi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shanshan Feng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Fengxi Cao
- Second Affiliated Hospital of Luohe Medical College, Luohe Medical College, Luohe 462000, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wangyan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
13
|
Golla U, Sesham K, Dallavalasa S, Manda NK, Unnam S, Sanapala AK, Nalla S, Kondam S, Kumar R. ABHD11-AS1: An Emerging Long Non-Coding RNA (lncRNA) with Clinical Significance in Human Malignancies. Noncoding RNA 2022; 8:ncrna8020021. [PMID: 35314614 PMCID: PMC8938790 DOI: 10.3390/ncrna8020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of lncRNAs has been linked to the development and progression of different cancers. One such lncRNA is ABHD11 antisense RNA 1 (ABHD11-AS1), which has recently gained attention for its significant role in human malignancies. ABHD11-AS1 is highly expressed in gastric, lung, breast, colorectal, thyroid, pancreas, ovary, endometrium, cervix, and bladder cancers. Several reports highlighted the clinical significance of ABHD11-AS1 in prognosis, diagnosis, prediction of cancer progression stage, and treatment response. Significantly, the levels of ABHD11-AS1 in gastric juice had been exhibited as a clinical biomarker for the assessment of gastric cancer, while its serum levels have prognostic potential in thyroid cancers. The ABHD11-AS1 has been reported to exert oncogenic effects by sponging different microRNAs (miRNAs), altering signaling pathways such as PI3K/Akt, epigenetic mechanisms, and N6-methyladenosine (m6A) RNA modification. In contrast, the mouse homolog of AHD11-AS1 (Abhd11os) overexpression had exhibited neuroprotective effects against mutant huntingtin-induced toxicity. Considering the emerging research reports, the authors attempted in this first review on ABHD11-AS1 to summarize and highlight its oncogenic potential and clinical significance in different human cancers. Lastly, we underlined the necessity for future mechanistic studies to unravel the role of ABHD11-AS1 in tumor development, prognosis, progression, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| | - Kishore Sesham
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri 522503, India;
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Mysuru 570015, India;
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Sambamoorthy Unnam
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Arun Kumar Sanapala
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Sharada Nalla
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Susmitha Kondam
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Rajesh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| |
Collapse
|
14
|
Zheng T, Zhang X, Wang Y, Wang A. SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis. J Int Med Res 2022. [PMCID: PMC8733378 DOI: 10.1177/03000605211053717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aijun Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Benzodiazepines safeguards nerve cells from the toxicity of lidocaine via miR-133a-3p/EGFR pathway. Transpl Immunol 2021; 71:101510. [PMID: 34856331 DOI: 10.1016/j.trim.2021.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Lidocaine was an anesthetic commonly used for analgesia, but the neurotoxicity could not be ignored. However, benzodiazepines could alleviate the toxicity when combined with other drugs. PURPOSE To explore the molecular mechanism of benzodiazepines in protecting nerve cells after the induction of lidocaine. METHODS PC12 cells were induced by lidocaine (0 mM, 0.1 mM, 0.5 mM and 1 mM) first and then treated by benzodiazepines (0 μM-200 μM). RT-qPCR assays measured RNA expressions of epidermal growth factor receptor (EGFR) and microRNA-133a-3p (miR-133a-3p) in PC12 cell line, respectively. Western blot was for protein detections of EGFR and caspase-3. Flow cytometry assay assessed apoptosis and cellular viability was validated via Cell Counting Kit-8 (CCK-8) test. Bioinformatics analysis predicted the potential link between miR-133a-3p and EGFR and the binding was verified using the Dual luciferase reporter experiment. RESULTS Benzodiazepines increased cellular viability of PC12 cells up to 100 μM while suppressed viability between 100 and 200 μM. Benzodiazepines (0 μM, 10 μM, 50 μM and 100 μM) did not regulate PC12 cell viability but promoted the viability of lidocaine-treated PC12 cells. Lidocaine downregulated miR-133a-3p RNA expression but facilitated EGFR mRNA expression, which was reversed after treated by benzodiazepines. MiR-133a-3p targeted and negatively regulated EGFR expressions in mRNA and protein levels. Furthermore, miR-133a-3p inhibitor and overexpressed EGFR transfection both restrained the decreased PC12 cell viability and prompted cell apoptosis caused by benzodiazepines. CONCLUSION Benzodiazepines restrained lidocaine-induced toxicity in PC12 cells which secured viability and reduced apoptosis via miR-133a-3p/EGFR pathway.
Collapse
|
16
|
Yang C, Liu Y, Fang K. Thymosin β10 mediates the effects of microRNA-184 in the proliferation and epithelial-mesenchymal transition of BCPAP cells. Exp Ther Med 2021; 22:742. [PMID: 34055058 PMCID: PMC8138264 DOI: 10.3892/etm.2021.10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 11/05/2022] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system. It has been reported that thymosin β10 (TMSB10) serves a vital role in tumor invasion and metastasis, and further understanding the role of TMSB10 in thyroid cancer may provide new insights into the development of novel targeted drugs. Bioinformatics analysis suggested that there might exist a regulatory relationship between miR-184 and TMSB10. Therefore, the expression of microRNA (miR)-184 was investigated in the TPC-1 and BCPAP thyroid cancer cell lines and the Nthy-ori 3-1 thyroid epithelial cell line via reverse transcription-quantitative PCR. The effect of miR-184 on BCPAP cell proliferation was evaluated using MTT and colony formation assays. In addition, the expression levels of epithelial-mesenchymal transition (EMT)-associated proteins were examined via western blot analysis and immunofluorescence staining. Furthermore, the targeting association between miR-184 and TMSB10 was verified using a dual-luciferase reporter assay. Notably, miR-184 overexpression attenuated BCPAP cell proliferation, increased the expression level of the epithelial marker E-cadherin, and decreased that of the mesenchymal marker vimentin. These effects were reversed in BCPAP cells following TMSB10 overexpression. The present study revealed that TMSB10 may be considered as a key mediator in promoting papillary thyroid carcinoma (PTC) cell proliferation and EMT, which were negatively regulated by miR-184. Therefore, the findings of the present study may provide a novel potential therapeutic target for attenuating PTC cell proliferation.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Yunni Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Kun Fang
- Department of Surgery, Yinchuan Women and Children's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
17
|
Zhang Q, Xu L, Wang J, Zhu X, Ma Z, Yang J, Li J, Jia X, Wei L. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther 2021; 14:1187-1204. [PMID: 33654410 PMCID: PMC7910089 DOI: 10.2147/ott.s288799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM5C, a histone H3K4-specific demethylase, possess various biological functions in development of cancers. However, its relation to the microRNA (miRNA) regulation in lung cancer remains unknown. This study aims to study the regulatory role of KDM5C on modification of miR-133a in the progression of lung cancer. Methods Differentially expressed miRNAs were filtered from 34 paired lung cancer and paracancerous tissues. The correlation between miR-133a expression and the prognosis of lung cancer patients was determined by a bioinformatics website. Furthermore, malignant aggressiveness of lung cancer cells was detected after miR-133a upregulation by CCK-8, flow cytometry, and Transwell assays and in vivo tumorigenesis and metastasis experiments. Subsequently, we analyzed mRNA downregulated in cells overexpressing miR-133a using m microarray analysis and expounded the upstream regulatory mechanism of miR-133a using bioinformatics website prediction and functional validation. Results miR-133a was reduced in lung cancer tissues, and patients with low expression of miR-133a have worse survival rates. miR-133a restoration curtailed growth and metastasis of lung cancer cells in vitro and in vivo. Moreover, miR-133a downregulated PTBP1 expression, whereas overexpression of PTBP1 attenuated the suppressive effect of miR-133a on lung cancer cell aggressiveness. The level of methylation modification of miR-133a was reduced in lung cancer cells. KDM5C inhibited the expression of miR-133a by promoting the demethylation modification of its promoter histone. Conclusion Histone demethylase KDM5C inhibits the expression of miR-133a by elevating the demethylation modification of the promoter histone of miR-133a, thereby promoting the expression of PTBP1, which finally accelerates lung cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zeheng Ma
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Junfeng Yang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
18
|
Wei M, Li L, Zhang Y, Zhang M, Su Z. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models. Gene 2020; 761:145038. [DOI: 10.1016/j.gene.2020.145038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
|
19
|
Han B, Yang X, Hosseini DK, Luo P, Liu M, Xu X, Zhang Y, Su H, Zhou T, Sun H, Chen X. Development and validation of a survival model for thyroid carcinoma based on autophagy-associated genes. Aging (Albany NY) 2020; 12:19129-19146. [PMID: 33055358 PMCID: PMC7732287 DOI: 10.18632/aging.103715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Abnormalities in autophagy-related genes (ARGs) are closely related to the occurrence and development of thyroid carcinoma (THCA). However, the effect of ARGs on the prognosis of THCA remains unclear. Here, by analyzing data from TCGA, 26 differentially expressed ARGs were screened. Cox regression and Lasso regression were utilized to analyze the prognosis of the training group, and a risk model was constructed. Our results show that low-risk patients had better overall survival (OS) than high-risk patients, and the area under the ROC curve in the training and testing groups was significant (3-year AUC, 0.735 vs 0.796; 5-year AUC, 0.821 vs 0.804). In addition, a comprehensive analysis of the 5 identified ARGs demonstrated that most of them were related to OS in THCA patients, and two of them (CX3CL1 and CDKN2A) were differentially expressed in THCA and normal thyroid tissues at the protein level. GSEA suggested that the inactivation of the cell defense system and the activation of some classical tumor signaling pathways are important driving forces for the progression of THCA. This study demonstrated that the 5 ARGs in the survival model are promising multidimensional biomarkers for the diagnosis, prognosis, and treatment of THCA.
Collapse
Affiliation(s)
- Baoai Han
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin 30000, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Internal Medicine, Stanford University School of Medicine, Stanford, USA 94305, USA
| | - Pan Luo
- Department of Otorhinolaryngology, Head and Neck surgery, Wuhan Central Hospital, Wuhan 430014, China
| | - Mengzhi Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ya Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongguo Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Sun
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
20
|
Identification of Potential Key Genes and Pathways in Enzalutamide-Resistant Prostate Cancer Cell Lines: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8341097. [PMID: 32724813 PMCID: PMC7382728 DOI: 10.1155/2020/8341097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
Enzalutamide (ENZ) has been approved for the treatment of advanced prostate cancer (PCa), but some patients develop ENZ resistance initially or after long-term administration. Although a few key genes have been discovered by previous efforts, the complete mechanisms of ENZ resistance remain unsolved. To further identify more potential key genes and pathways in the development of ENZ resistance, we employed the GSE104935 dataset, including 5 ENZ-resistant (ENZ-R) and 5 ENZ-sensitive (ENZ-S) PCa cell lines, from the Gene Expression Omnibus (GEO) database. Integrated bioinformatics analyses were conducted, such as analysis of differentially expressed genes (DEGs), Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) analysis, gene set enrichment analysis (GSEA), and survival analysis. From these, we identified 201 DEGs (93 upregulated and 108 downregulated) and 12 hub genes (AR, ACKR3, GPER1, CCR7, NMU, NDRG1, FKBP5, NKX3-1, GAL, LPAR3, F2RL1, and PTGFR) that are potentially associated with ENZ resistance. One upregulated pathway (hedgehog pathway) and seven downregulated pathways (pathways related to androgen response, p53, estrogen response, TNF-α, TGF-β, complement, and pancreas β cells) were identified as potential key pathways involved in the occurrence of ENZ resistance. Our findings may contribute to further understanding the molecular mechanisms of ENZ resistance and provide some clues for the prevention and treatment of ENZ resistance.
Collapse
|