1
|
Piercey O, Chantrill L, Hsu HC, Ma B, Price T, Tan IB, Teng HW, Tie J, Desai J. Expert consensus on the optimal management of BRAF V600E-mutant metastatic colorectal cancer in the Asia-Pacific region. Asia Pac J Clin Oncol 2024. [PMID: 39456063 DOI: 10.1111/ajco.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The burden of colorectal cancer (CRC) is high in the Asia-Pacific region, and several countries in this region have among the highest and/or fastest growing rates of CRC in the world. A significant proportion of patients will present with or develop metastatic CRC (mCRC), and BRAFV600E-mutant mCRC represents a particularly aggressive phenotype that is less responsive to standard chemotherapies. In light of recent therapeutic advances, an Asia-Pacific expert consensus panel was convened to develop evidence-based recommendations for the diagnosis, treatment, and management of patients with BRAFV600E-mutant mCRC. The expert panel comprised nine medical oncologists from Australia, Hong Kong, Singapore, and Taiwan (the authors), who met to review current literature and develop eight consensus statements that describe the optimal management of BRAFV600E-mutant mCRC in the Asia-Pacific region. As agreed by the expert panel, the consensus statements recommend molecular testing at diagnosis to guide individualized treatment decisions, propose optimal treatment pathways according to microsatellite stability status, advocate for more frequent monitoring of BRAFV600E-mutant mCRC, and discuss local treatment strategies for oligometastatic disease. Together, these expert consensus statements are intended to optimize treatment and improve outcomes for patients with BRAFV600E-mutant mCRC in the Asia-Pacific region.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lorraine Chantrill
- Illawarra Shoalhaven Local Health District, Illawarra, New South Wales, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Hung-Chih Hsu
- Division of Hematology Oncology, Chang Gung Memorial Hospital, New Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Brigette Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Timothy Price
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Iain Beehuat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Hao-Wei Teng
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Ma J, Nie X, Kong X, Xiao L, Liu H, Shi S, Wu Y, Li N, Hu L, Li X. MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer. BMC Med Imaging 2024; 24:262. [PMID: 39367333 PMCID: PMC11453062 DOI: 10.1186/s12880-024-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. METHODS A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. RESULTS KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. CONCLUSIONS Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Xinsheng Nie
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiangjiang Kong
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Lingqing Xiao
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Han Liu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Shengming Shi
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Yupeng Wu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Na Li
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Linlin Hu
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiaofu Li
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
3
|
Ugai S, Yao Q, Takashima Y, Zhong Y, Matsuda K, Kawamura H, Imamura Y, Okadome K, Mima K, Arima K, Kosumi K, Song M, Meyerhardt JA, Giannakis M, Nowak JA, Ugai T, Ogino S. Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation. Cancer Sci 2024; 115:3455-3465. [PMID: 39039804 PMCID: PMC11448363 DOI: 10.1111/cas.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Evidence indicates that combinations of anti-EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)-low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS-wild-type tumors (31%). KRAS c.34G>T mutants showed higher CIMP-high prevalence (14%) and lower CIMP-negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T-mutated tumors were associated with cecal location, non-microsatellite instability (MSI)-high status, BRAF wild type, and PIK3CA mutation when compared with KRAS-wild-type tumors. Compared with BRAF-mutated tumors, KRAS c.34G>T mutants showed more frequent LINE-1 hypomethylation, a biomarker for early-onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF-wild-type colorectal carcinomas, compared with KRAS-wild-type tumors, multivariable-adjusted colorectal cancer-specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05-3.17) in KRAS c.34G>T (p.G12C)-mutated tumors (p = 0.035) and 1.57 (1.22-2.02) in other KRAS-mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma.
Collapse
Affiliation(s)
- Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qian Yao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical, Boston, Massachusetts, USA
| | - Yuxue Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Kosuke Matsuda
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yu Imamura
- Department of Esophageal Surgery, The Cancer Institute Hospital of the Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical, Boston, Massachusetts, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| |
Collapse
|
4
|
Zhu X, Lin SQ, Xie J, Wang LH, Zhang LJ, Xu LL, Xu JG, Lv YB. Biomarkers of lymph node metastasis in colorectal cancer: update. Front Oncol 2024; 14:1409627. [PMID: 39328205 PMCID: PMC11424378 DOI: 10.3389/fonc.2024.1409627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths globally, trailing only behind lung cancer, and stands as the third most prevalent malignant tumor, following lung and breast cancers. The primary cause of mortality in colorectal cancer (CRC) stems from distant metastasis. Among the various routes of metastasis in CRC, lymph node metastasis predominates, serving as a pivotal factor in both prognostication and treatment decisions for patients. This intricate cascade of events involves multifaceted molecular mechanisms, highlighting the complexity underlying lymph node metastasis in CRC. The cytokines or proteins involved in lymph node metastasis may represent the most promising lymph node metastasis markers for clinical use. In this review, we aim to consolidate the current understanding of the mechanisms and pathophysiology underlying lymph node metastasis in colorectal cancer (CRC), drawing upon insights from the most recent literatures. We also provide an overview of the latest advancements in comprehending the molecular underpinnings of lymph node metastasis in CRC, along with the potential of innovative targeted therapies. These advancements hold promise for enhancing the prognosis of CRC patients by addressing the challenges posed by lymph node metastasis.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shui-Quan Lin
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Xie
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Hui Wang
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Juan Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Ling Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Guang Xu
- Department of Gastroenterology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yang-Bo Lv
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
5
|
Chang Z, Liu B, He H, Li X, Shi H. High expression of RUNX1 in colorectal cancer subtype accelerates malignancy by inhibiting HMGCR. Pharmacol Res 2024; 206:107293. [PMID: 38971271 DOI: 10.1016/j.phrs.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Colorectal cancer (CRC) presents a complex landscape, characterized by both inter-tumor and intra-tumor heterogeneity. RUNX1, a gene implicated in modulating tumor cell growth, survival, and differentiation, remains incompletely understood regarding its impact on CRC prognosis. In our investigation, we discerned a positive correlation between elevated RUNX1 expression and aggressive phenotypes across various CRC subtypes. Notably, knockdown of RUNX1 demonstrated efficacy in restraining CRC proliferation both in vitro and in vivo, primarily through inducing apoptosis and impeding cell proliferation. Mechanistically, we unveiled a direct regulatory link between RUNX1 and cholesterol synthesis, mediated by its control over HMGCR expression. Knockdown of RUNX1 in CRC cells triggered HMGCR transcriptional activation, culminating in elevated cholesterol levels that subsequently hindered cancer progression. Clinically, heightened RUNX1 expression emerged as a prognostic marker for adverse outcomes in CRC patients. Our findings underscore the pivotal involvement of RUNX1 in CRC advancement and its potential as a therapeutic target. The unique influence of RUNX1 on cholesterol synthesis and HMGCR transcriptional regulation uncovers a novel pathway contributing to CRC progression.
Collapse
Affiliation(s)
- Zhilin Chang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Bing Liu
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Han He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaoyan Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Hui Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Alkan A, Doğaner Gİ, Tanrıverdi Ö. Serum Uric Acid Level May Be a Predictive Factor for BRAF V600E Mutation in Older Patients with Metastatic Colorectal Cancer: An Exploratory Analysis. Oncology 2024:1-8. [PMID: 38952125 DOI: 10.1159/000539981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION This study aimed to show the relationship between the serum uric acid level measured at diagnosis and the BRAF mutation status in the primary tumor tissue in patients with metastatic colorectal cancer. METHODS In this retrospective cross-sectional study, 264 patients (64% male) whose serum uric acid level was measured at the time of diagnosis and whose BRAF mutation status in the primary tumor was determined were included. RESULTS The BRAF mutation rate was 14% (n = 37). The median serum uric acid levels of all patients were 6.9 mg/dL (25%, 75% percentile range 3.7, 8.2). The serum uric acid level cut-off value was 6.6 mg/dL. Sensitivity and specificity for BRAF mutated patients were 84% and 27%, respectively. These rates were calculated as 85% and 70% in BRAF-mutated patients aged 65 and over. There was a significant correlation between BRAF mutation and high serum uric acid level, female gender, tumor located in the ascending colon, and multiple metastatic sites. The independent factors affecting BRAF mutation were age 65 and over, tumor in the ascending colon, and high serum uric acid level. CONCLUSION As a result, we concluded that high serum uric acid level measured during diagnosis in metastatic colorectal cancer is an accessible and economical biomarker that can predict BRAF mutation in patients aged 65 and over.
Collapse
Affiliation(s)
- Ali Alkan
- Department of Medical Oncology and Oncological Clinical Research Center, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Turkey
- Muğla Sıtkı Koçman University Graduate School of Medical Sciences, Elderly Health PhD Program, Muğla, Turkey
| | | | - Özgür Tanrıverdi
- Department of Medical Oncology and Oncological Clinical Research Center, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Turkey
- Muğla Sıtkı Koçman University Graduate School of Medical Sciences, Elderly Health PhD Program, Muğla, Turkey
| |
Collapse
|
7
|
Lund-Andersen C, Torgunrud A, Kanduri C, Dagenborg VJ, Frøysnes IS, Larsen MM, Davidson B, Larsen SG, Flatmark K. Novel drug resistance mechanisms and drug targets in BRAF-mutated peritoneal metastasis from colorectal cancer. J Transl Med 2024; 22:646. [PMID: 38982444 PMCID: PMC11234641 DOI: 10.1186/s12967-024-05467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Patients with peritoneal metastasis from colorectal cancer (PM-CRC) have inferior prognosis and respond particularly poorly to chemotherapy. This study aims to identify the molecular explanation for the observed clinical behavior and suggest novel treatment strategies in PM-CRC. METHODS Tumor samples (230) from a Norwegian national cohort undergoing surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) with mitomycin C (MMC) for PM-CRC were subjected to targeted DNA sequencing, and associations with clinical data were analyzed. mRNA sequencing was conducted on a subset of 30 samples to compare gene expression in tumors harboring BRAF or KRAS mutations and wild-type tumors. RESULTS BRAF mutations were detected in 27% of the patients, and the BRAF-mutated subgroup had inferior overall survival compared to wild-type cases (median 16 vs 36 months, respectively, p < 0.001). BRAF mutations were associated with RNF43/RSPO aberrations and low expression of negative Wnt regulators (ligand-dependent Wnt activation). Furthermore, BRAF mutations were associated with gene expression changes in transport solute carrier proteins (specifically SLC7A6) and drug metabolism enzymes (CES1 and CYP3A4) that could influence the efficacy of MMC and irinotecan, respectively. BRAF-mutated tumors additionally exhibited increased expression of members of the novel butyrophilin subfamily of immune checkpoint molecules (BTN1A1 and BTNL9). CONCLUSIONS BRAF mutations were frequently detected and were associated with particularly poor survival in this cohort, possibly related to ligand-dependent Wnt activation and altered drug transport and metabolism that could confer resistance to MMC and irinotecan. Drugs that target ligand-dependent Wnt activation or the BTN immune checkpoints could represent two novel therapy approaches.
Collapse
Affiliation(s)
- Christin Lund-Andersen
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.
| | - Annette Torgunrud
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | | | - Vegar J Dagenborg
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ida S Frøysnes
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Mette M Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Departments of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stein G Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Peng H, Zhang J, Yang Z, Chen L, Chen J, Cai C. Prediction of the survival status and tumor microenvironment in colorectal cancer through genotyping analysis based on toll-like receptors. Saudi J Gastroenterol 2024; 30:243-251. [PMID: 38813725 PMCID: PMC11379252 DOI: 10.4103/sjg.sjg_424_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks third in both the incidence and mortality rates among male and female cancers, and it is the leading digestive system cancer. Due to the inter- and intratumor heterogeneity of cancer, the TNM system is insufficient for predicting prognosis, necessitating the use of molecular biomarkers for prognostic prediction. Toll-like receptors (TLRs) have been associated with CRC survival rates. This study focused on the investigation of the role and potential value of TLRs in CRC genotyping to aid in immunotherapy for CRC patients. METHODS Differential gene expression analysis was performed on CRC transcriptomic data from The Cancer Genome Atlas database. TLRs were referred from the literature, and their intersection with differentially expressed genes (DEGs) in CRC yielded TLR-DEGs. The expression patterns of TLR-DEGs were predicted using the STRING website, and copy number variations of TLR-DEGs were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on TLR-DEGs. ConsensusClusterPlus R package was used for clustering CRC patients, and ESTIMATE and GSEAbase were employed to analyze immune characteristics of different subtypes. Immune phenotyping scores and tumor immune dysfunction and exclusion scores were evaluated. DEGs of different subtypes were analyzed, followed by GO and KEGG enrichment analyses, the protein-protein interaction (PPI) network analysis, and further selection of hub genes. The sensitivity of drugs was assessed using the identified hub genes. RESULTS We identified 37 TLR-DEGs, and the PPI analysis revealed their coexpression, although they were distributed on different chromosomes. Enrichment analyses indicated that the 37 TLR-DEGs were linked to cancer cell immune response. Based on these TLR-DEGs, CRC patients were classified into three subtypes. Cluster2 exhibited lower survival rates and higher immune infiltration levels and predicted poorer response to immune checkpoint inhibitor therapy. The intersection of DEGs from cluster2 and cluster1 with DEGs from cluster2 and cluster3 yielded a set of 426 commonly shared DEGs. Enrichment analyses revealed that these shared DEGs might regulate immune cell viability. Eight common hub genes for different subtypes were further identified to predict drug-related correlations. CONCLUSION The developed TLR genotyping was used to predict the survival status and tumor microenvironment of CRC, providing a foundation for understanding the molecular mechanisms of TLR signaling and deepening its clinical significance.
Collapse
Affiliation(s)
- Huaidu Peng
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | | | | | | | | | | |
Collapse
|
9
|
Zhou Y, Wu S, Qu FJ. Therapeutic strategies targeting the epidermal growth factor receptor signaling pathway in metastatic colorectal cancer. World J Gastrointest Oncol 2024; 16:2362-2379. [PMID: 38994135 PMCID: PMC11236217 DOI: 10.4251/wjgo.v16.i6.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
More than 1.9 million new colorectal cancer (CRC) cases and 935000 deaths were estimated to occur worldwide in 2020, representing about one in ten cancer cases and deaths. Overall, colorectal ranks third in incidence, but second in mortality. More than half of the patients are in advanced stages at diagnosis. Treatment options are complex because of the heterogeneity of the patient population, including different molecular subtypes. Treatments have included conventional fluorouracil-based chemotherapy, targeted therapy, immunotherapy, etc. In recent years, with the development of genetic testing technology, more and more targeted drugs have been applied to the treatment of CRC, which has further prolonged the survival of metastatic CRC patients.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
10
|
Xiao J, Yu X, Meng F, Zhang Y, Zhou W, Ren Y, Li J, Sun Y, Sun H, Chen G, He K, Lu L. Integrating spatial and single-cell transcriptomics reveals tumor heterogeneity and intercellular networks in colorectal cancer. Cell Death Dis 2024; 15:326. [PMID: 38729966 PMCID: PMC11087651 DOI: 10.1038/s41419-024-06598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.
Collapse
Affiliation(s)
- Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Fanlin Meng
- CapitalBio Technology Corporation, Beijing, China
| | - Yuncong Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Wenbin Zhou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yonghong Ren
- CapitalBio Technology Corporation, Beijing, China
| | - Jingxia Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yimin Sun
- CapitalBio Technology Corporation, Beijing, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
12
|
Bourmoum M, Radulovich N, Sharma A, Tkach JM, Tsao MS, Pelletier L. β-catenin mediates growth defects induced by centrosome loss in a subset of APC mutant colorectal cancer independently of p53. PLoS One 2024; 19:e0295030. [PMID: 38324534 PMCID: PMC10849215 DOI: 10.1371/journal.pone.0295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/13/2023] [Indexed: 02/09/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second leading cause of cancer-related deaths worldwide. The centrosome is the main microtubule-organizing center in animal cells and centrosome amplification is a hallmark of cancer cells. To investigate the importance of centrosomes in colorectal cancer, we induced centrosome loss in normal and cancer human-derived colorectal organoids using centrinone B, a Polo-like kinase 4 (Plk4) inhibitor. We show that centrosome loss represses human normal colorectal organoid growth in a p53-dependent manner in accordance with previous studies in cell models. However, cancer colorectal organoid lines exhibited different sensitivities to centrosome loss independently of p53. Centrinone-induced cancer organoid growth defect/death positively correlated with a loss of function mutation in the APC gene, suggesting a causal role of the hyperactive WNT pathway. Consistent with this notion, β-catenin inhibition using XAV939 or ICG-001 partially prevented centrinone-induced death and rescued the growth two APC-mutant organoid lines tested. Our study reveals a novel role for canonical WNT signaling in regulating centrosome loss-induced growth defect/death in a subset of APC-mutant colorectal cancer independently of the classical p53 pathway.
Collapse
Affiliation(s)
- Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nikolina Radulovich
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Johnny M. Tkach
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ming-Sound Tsao
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
14
|
Heidarian S, Takbiri Osgoei L, Zare Karizi S, Amani J, Arbabian S. Signal-On Fluorescence Biosensor for Detection of miRNA-21 Based on ROX labeled Specific Stem-Loop Probe. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144368. [PMID: 39005737 PMCID: PMC11246647 DOI: 10.5812/ijpr-144368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 07/16/2024]
Abstract
Background The abnormal expression of microRNA (miRNA) influences RNA transcription and protein translation, leading to tumor progression and metastasis. Today, reliably identifying aberrant miRNA expression remains challenging, especially when employing quick, simple, and portable detection methods. Objectives This study aimed to diagnose and detect the miR-21 biomarker with high sensitivity and specificity. Methods Our detection approach involves immobilizing ROX dye-labeled single-stranded DNA probes (ROX-labeled ssDNA) onto MWCNTs to detect target miRNA-21. Initially, adsorbing ROX-labeled ssDNA onto MWCNTs causes fluorescence quenching of ROX. Subsequently, introducing its complementary DNA (cDNA) forms double-stranded DNA (dsDNA), which results in the desorption and release from MWCNTs, thus restoring ROX fluorescence. Results The study examined changes in fluorescence intensities before and after hybridization with miRNA-21. The fluorescence emission intensities responded linearly to increases in miR-21 concentration from 10-9 to 3.2 × 10-6 M. The developed fluorescence sensor exhibited a detection limit of 1.12 × 10-9 M. Conclusions This work demonstrates that using a nano-biosensor based on carbon nanotubes offers a highly sensitive method for the early detection of colorectal cancer (CRC), supplementing existing techniques.
Collapse
Affiliation(s)
- Somayeh Heidarian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Laya Takbiri Osgoei
- Department of Microbiology, Faculty of Biological Science, North Tehran Branch. Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva, Branch, Islamic Azad University Pishva, Varamin, Iran
| | - Jafar Amani
- Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sedigheh Arbabian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Jiang T, Zheng J, Li N, Li X, He J, Zhou J, Sun B, Chi Q. Dissecting the Mechanisms of Intestinal Immune Homeostasis by Analyzing T-Cell Immune Response in Crohn's Disease and Colorectal Cancer. Curr Gene Ther 2024; 24:422-440. [PMID: 38682449 DOI: 10.2174/0115665232294568240201073417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Crohn's disease (CD) and colorectal cancer (CRC) represent a group of intestinal disorders characterized by intricate pathogenic mechanisms linked to the disruption of intestinal immune homeostasis. Therefore, comprehending the immune response mechanisms in both categories of intestinal disorders is of paramount significance in the prevention and treatment of these debilitating intestinal ailments. METHOD IIn this study, we conducted single-cell analysis on paired samples obtained from primary colorectal tumors and individuals with Crohn's disease, which was aimed at deciphering the factors influencing the composition of the intestinal immune microenvironment. By aligning T cells across different tissues, we identified various T cell subtypes, such as γδ T cell, NK T cell, and regulatory T (Treg) cell, which maintained immune system homeostasis and were confirmed in enrichment analyses. Subsequently, we generated pseudo-time trajectories for subclusters of T cells in both syndromes to delineate their differentiation patterns and identify key driver genes Result: Furthermore, cellular communication and transcription factor regulatory networks are all essential components of the intricate web of mechanisms that regulate intestinal immune homeostasis. The identified complex cellular interaction suggested potential T-lineage immunotherapeutic targets against epithelial cells with high copy number variation (CNV) levels in CD and CRC. CONCLUSION Finally, the analysis of regulon networks revealed several promising candidates for cell-specific transcription factors (TFs). This study focused on the immune molecular mechanism under intestinal diseases. It contributed to the novel insight of depicting a detailed immune landscape and revealing T-cell responding mechanisms in CD and CRC.
Collapse
Affiliation(s)
- Tianming Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT06510, USA
| | - Nana Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jixing He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junde Zhou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT06510, USA
| | - Qiang Chi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Cha BS, Jang YJ, Lee ES, Kim DY, Woo JS, Son J, Kim S, Shin J, Han J, Kim S, Park KS. Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell-Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Adv Healthc Mater 2023; 12:e2300854. [PMID: 37129521 DOI: 10.1002/adhm.202300854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) as the second leading cause of global cancer deaths poses critical challenges in clinical settings. Cancer-derived small extracellular vesicles (sEVs), which are secreted by cancer cells, have been shown to mediate tumor development, invasion, and even metastasis, and have thus received increasing attention for the development of cancer diagnostic or therapeutic platforms. In the present study, the sEV-targeted systematic evolution of ligands by exponential enrichment (E-SELEX) is developed to generate a high-quality aptamer (CCE-10F) that recognizes and binds to CRC-derived sEVs. Via an in-depth investigation, it is confirmed that this novel aptamer possesses high affinity (Kd = 3.41 nm) for CRC-derived sEVs and exhibits a wide linear range (2.0 × 104 -1.0 × 106 particles µL-1 ) with a limit of detection (LOD) of 1.0 × 103 particles µL-1 . Furthermore, the aptamer discriminates CRC cell-derived sEVs from those derived from normal colon cell, human serum, and other cancer cells, showing high specificity for CRC cell-derived sEVs and significantly suppresses the critical processes of metastasis, including cellular migration, invasion, and angiogenesis, which are originally induced by sEVs themselves. These findings are highly encouraging for the potential use of the aptamer in sEV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Su Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokhwan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
17
|
Borgsmüller N, Valecha M, Kuipers J, Beerenwinkel N, Posada D. Single-cell phylogenies reveal changes in the evolutionary rate within cancer and healthy tissues. CELL GENOMICS 2023; 3:100380. [PMID: 37719146 PMCID: PMC10504633 DOI: 10.1016/j.xgen.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.
Collapse
Affiliation(s)
- Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
18
|
Ukkola I, Nummela P, Heiskanen A, Holm M, Zafar S, Kero M, Haglund C, Satomaa T, Kytölä S, Ristimäki A. N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer. Cancers (Basel) 2023; 15:3571. [PMID: 37509233 PMCID: PMC10376987 DOI: 10.3390/cancers15143571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors.
Collapse
Affiliation(s)
- Iiris Ukkola
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Pirjo Nummela
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | | | - Matilda Holm
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Sadia Zafar
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Tero Satomaa
- Glykos Finland Co., Ltd., 00790 Helsinki, Finland
| | - Soili Kytölä
- HUSLAB, Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Ari Ristimäki
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Christenson ES, Tsai HL, Le DT, Jaffee EM, Dudley J, Xian RR, Gocke CD, Eshleman JR, Lin MT. Colorectal cancer in patients of advanced age is associated with increased incidence of BRAF p.V600E mutation and mismatch repair deficiency. Front Oncol 2023; 13:1193259. [PMID: 37350948 PMCID: PMC10284017 DOI: 10.3389/fonc.2023.1193259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction The highest incidence of colorectal cancer (CRC) is in patients diagnosed at 80 years or older highlighting a need for understanding the clinical and molecular features of these tumors. Methods. In this retrospective cohort study, 544 CRCs underwent next generation sequencing and mismatch repair (MMR) evaluation. Molecular and clinical features were compared between 251 patients with traditional-onset CRC (50-69 years at diagnosis) and 60 with late-onset CRC (>80 years at diagnosis). Results Late-onset CRC showed a significantly higher rate of right-sided tumors (82% vs 35%), MMR deficiency (35% vs. 8%) and BRAF p.V600E mutations (35% vs. 8%) and a significantly lower rate of stage IV disease (15% vs 28%) and APC mutations (52% vs. 78%). Association of these features with advanced age was supported by stratifying patients into 6 age groups (<40, 40-49, 50-59, 60-69, 70-79 and >80 years). However, the age-related rise in MMR deficient (dMMR) CRC was only seen in the female patients with an incidence of 48% (vs. 10% in the male patient) in the >80y group. In addition, BRAF p.V600E was significantly enriched in MMR deficient CRC of advanced age (67% in late-onset CRC). Categorizing CRC by mutational profiling, late-onset CRC revealed a significantly higher rate of dMMR/BRAF + APC - (18% vs. 2.0%), dMMR/BRAF - APC - (8.3% vs. 1.2%) and MMR proficient (pMMR)/BRAF + APC - (12% vs. 4.0%) as compared to traditional-onset CRC. Discussion In summary, there was a higher rate of dMMR and BRAF p.V600E in late-onset CRC, independently or in combination. The higher incidence of dMMR in late-onset CRC in females is most likely predominantly driven by BRAF p.V600E induced hypermethylation. Prospective studies with treatment plans designed specifically for these older patients are warranted to improve their outcomes.
Collapse
Affiliation(s)
- Eric S. Christenson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hua-Ling Tsai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- Division of Quantitative Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Dung T. Le
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan Dudley
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Rena R. Xian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher D. Gocke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - James R. Eshleman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Manzi J, Hoff CO, Ferreira R, Pimentel A, Datta J, Livingstone AS, Vianna R, Abreu P. Targeted Therapies in Colorectal Cancer: Recent Advances in Biomarkers, Landmark Trials, and Future Perspectives. Cancers (Basel) 2023; 15:cancers15113023. [PMID: 37296986 DOI: 10.3390/cancers15113023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to the tremendous therapeutic improvements, especially after the 2000s, in addition to increased social awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002. Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic choice. Thus, this review will summarize the current literature on targeted therapies, highlighting the molecular biomarkers involved and their pathways.
Collapse
Affiliation(s)
- Joao Manzi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Agustin Pimentel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alan S Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Martinelli E, Arnold D, Cervantes A, Stintzing S, Van Cutsem E, Tabernero J, Taieb J, Wasan H, Ciardiello F. European expert panel consensus on the clinical management of BRAF V600E-mutant metastatic colorectal cancer. Cancer Treat Rev 2023; 115:102541. [PMID: 36931147 DOI: 10.1016/j.ctrv.2023.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Metastatic colorectal cancer (mCRC) is a heterogenous disease caused by various genetic alterations. The BRAFV600E mutation occurs in approximately 8-12% of patients and is characterised by an aggressive clinical course and poor prognosis. Here we review the current knowledge on BRAFV600E-mutant mCRC and provide a series of consensus statements on its clinical management. The treatment landscape for BRAFV600E-mutant mCRC has changed greatly due to the emergence of molecular targeted therapies (including BRAF inhibitors) and immune checkpoint inhibitors. A scientific literature search identified available data on molecular testing, treatments, and clinical monitoring of patients with BRAFV600E-mutant mCRC. Consensus statements were discussed and developed by a European expert panel. This manuscript provides consensus management guidance for different clinical presentations of BRAFV600E-mutant mCRC and makes recommendations regarding treatment sequencing choices. To guide appropriate clinical management and treatment decisions for mCRC patients, tumour tissue analysis for DNA mismatch repair/microsatellite status and, at a minimum, KRAS, NRAS, and BRAF mutational status is mandatory at the time of diagnosis. Finally, we discuss the rapidly evolving treatment landscape for BRAFV600E-mutant mCRC and define priorities for the development of novel therapeutic strategies that are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Erika Martinelli
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy.
| | - Dirk Arnold
- Department of Oncology and Hematology, Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany.
| | - Andres Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sebastian Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité - Universitaetsmedizin Berlin, 10117 Berlin, Germany.
| | - Eric Van Cutsem
- Department of Digestive Oncology, University Hospitals Gasthuisberg Leuven and KULeuven, Leuven, Belgium.
| | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), IOB-Quiron, 08035 Barcelona, Spain.
| | - Julien Taieb
- Department of Gastroenterology and GI Oncology, Georges Pompidou European Hospital, Assitance Publique-Hôpitaux de Paris AP-HP Paris Centre, Université Paris Cité, SIRIC CARPEM, Paris, France.
| | - Harpreet Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| | - Fortunato Ciardiello
- Department of Precision Medicine, Division of Medical Oncology, University of Campania, Luigi Vanvitelli, 80131 Naples, Italy.
| |
Collapse
|
23
|
Colorectal Cancer Liver Metastases: Genomics and Biomarkers with Focus on Local Therapies. Cancers (Basel) 2023; 15:cancers15061679. [PMID: 36980565 PMCID: PMC10046329 DOI: 10.3390/cancers15061679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Molecular cancer biomarkers help personalize treatment, predict oncologic outcomes, and identify patients who can benefit from specific targeted therapies. Colorectal cancer (CRC) is the third-most common cancer, with the liver being the most frequent visceral metastatic site. KRAS, NRAS, BRAF V600E Mutations, DNA Mismatch Repair Deficiency/Microsatellite Instability Status, HER2 Amplification, and NTRK Fusions are NCCN approved and actionable molecular biomarkers for colorectal cancer. Additional biomarkers are also described and can be helpful in different image-guided hepatic directed therapies specifically for CRLM. For example, tumors maintaining the Ki-67 proliferation marker after thermal ablation was shown to be particularly resilient to ablation. Ablation margin was also shown to be an important factor in predicting local recurrence, with a ≥10 mm minimal ablation margin being required to attain local tumor control, especially for patients with mutant KRAS CRLM.
Collapse
|
24
|
Zannier F, Angerilli V, Spolverato G, Brignola S, Sandonà D, Balistreri M, Sabbadin M, Lonardi S, Bergamo F, Mescoli C, Scarpa M, Bao QR, Dei Tos AP, Pucciarelli S, Urso ELD, Fassan M. Impact of DNA mismatch repair proteins deficiency on number and ratio of lymph nodal metastases in colorectal adenocarcinoma. Pathol Res Pract 2023; 243:154366. [PMID: 36774759 DOI: 10.1016/j.prp.2023.154366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Approximately 15 % of colorectal adenocarcinomas (CRCs) are characterized by an altered expression of DNA mismatch repair (MMR) proteins (i.e. MMR deficiency [MMRd]). Lymph node ratio (LNR) represents one of the most important prognostic markers in non-advanced CRCs. No significant data are available regarding LNR distribution depending on MMR status. PURPOSE OF THE STUDY The aim of the present work was to compare pathological and clinical characteristics of MMRd tumors versus MMR proficient (MMRp) cases. Particular attention was paid to how these molecular sub-groups relate to the LNR. MATERIALS AND METHODS A mono-Institutional series of 1037 consecutive surgically treated stage I-IV CRCs were retrospectively selected and data were obtained from pathological reports. Cases were characterized for MMR/MSI status by means of immunohistochemistry or for microsatellite instability (MSI) analysis. RESULTS MMRd/MSI tumors (n = 194; 18.7 %) showed significant differences in comparison to MMRp lesions for sex (female prevalence 50.5 % vs 40.7 %; p = 0.013), age (74.2 vs 69.2; p < 0.001), location (right side; p < 0.001), diameter (larger than MMRp; p < 0.001), growth pattern (expansive pattern of growth; p < 0.001), peri- (p = 0.0002) and intra-neoplastic (p = 0.0018) inflammatory infiltrate, presence of perineural invasion (p < 0.001), stage (lower stage at presentation; p < 0.001), grade (higher prevalence of high-grade tumors; p < 0.001), and LNR (lower; p < 0.001). CONCLUSIONS MMRd/MSI tumors are a distinct molecular CRC subtype characterized by a significantly lower LNR in comparison to MMRp lesions. These data further support the prognostic impact of MMRd/MSI status in early-stage CRCs.
Collapse
Affiliation(s)
| | | | - Gaya Spolverato
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Stefano Brignola
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, Treviso, Italy
| | - Daniele Sandonà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | | | - Marianna Sabbadin
- Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Francesca Bergamo
- Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Marco Scarpa
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | | | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Emanuele L D Urso
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy; Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy.
| |
Collapse
|
25
|
Ibrahiem AT, Eladl E, Toraih EA, Fawzy MS, Abdelwahab K, Elnaghi K, Emarah Z, Shaalan AAM, Ehab Z, Soliman NA. Prognostic Value of BRAF, Programmed Cell Death 1 (PD1), and PD Ligand 1 (PDL1) Protein Expression in Colon Adenocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13020237. [PMID: 36673047 PMCID: PMC9858159 DOI: 10.3390/diagnostics13020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Patients with colorectal cancer in different stages show variable outcomes/therapeutic responses due to their distinct tumoral biomarkers and biological features. In this sense, this study aimed to explore the prognostic utility of BRAF, programmed death-1 (PD1), and its ligand (PDL1) protein signatures in colon adenocarcinoma. The selected protein markers were explored in 64 archived primary colon adenocarcinomas in relation to clinicopathological features. BRAF overexpression was found in 39% of the cases and was significantly associated with grade 3, N1, advanced Dukes stage, presence of relapse, and shorter overall survival (OS). PD1 expression in the infiltrating immune cells (IICs) exhibited significant association with T2/T3, N0/M0, early Dukes stage, and absence of relapse. PDL1 expression in IICs is significantly associated with advanced nodal stage/distant metastasis, advanced Dukes stage, and shorter OS. Meanwhile, PDL1 expression in neoplastic cells (NC) was associated with the advanced lymph node/Dukes stage. A positive combined expression pattern of PDL1 in NC/IICs was associated with poor prognostic indices. Tumor PDL1 expression can be an independent predictor of OS and DFS. The multivariate analyses revealed that short OS was independently associated with the RT side location of the tumor, PD1 expression in stromal IICs, and PDL1 expression in NC. In conclusion, overexpression of BRAF in colon adenocarcinoma is considered a poor prognostic pathological marker. In addition, PDL1 expression in NC is considered an independent prognostic factor for DFS/OS. Combined immunohistochemical assessment for BRAF and PD1/PDL1 protein expressions in colon adenocarcinoma might be beneficial for selecting patients for future targeted therapy.
Collapse
Affiliation(s)
- Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Entsar Eladl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Laboratory Medicine and pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
- Correspondence: ; Tel.: +20-1008584720
| | - Khaled Abdelwahab
- Surgical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Khaled Elnaghi
- Medical Oncology Unit, Oncology Center, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Ziad Emarah
- Medical Oncology Unit, Oncology Center, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 82621, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ziad Ehab
- Faculty of Medicine, Mansoura University, Mansoura 21955, Egypt
| | - Nahed A. Soliman
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
26
|
Vital M, Carusso F, Vergara C, Neffa F, Della Valle A, Esperón P. Genetic and epigenetic characteristics of patients with colorectal cancer from Uruguay. Pathol Res Pract 2023; 241:154264. [PMID: 36495761 DOI: 10.1016/j.prp.2022.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC), the 3rd most frequent cancer worldwide, affects both men and women. This pathology arises from the progressive accumulation of genetic and epigenetic alterations. In this study, KRAS, NRAS, PIK3CA, and BRAF gene mutations, mismatch repair (MMR) genes methylation profile, microsatellite instability (MSI) and CpG Island Methylator Phenotype (CIMP) status were assessed. The associations of these molecular features with clinicopathological data were also investigated. A hundred and eight unselected CRC samples and their histological and clinical data, were gathered between 2017 and 2020. The prevalence of KRAS, NRAS and BRAF gene mutations was similar to that described in other populations. 28.7% of tumors were KRAS-mutated, mostly in men, distal location, with a CIMP-negative status. BRAFV600E frequency was 6.5% and associated with MSI (p = 0.048), MLH1-methylated (p < 0.001) and CIMP-High (p < 0.001) status. We also confirmed that BRAFV600E tumors were more prevalent in older women and proximal location. A striking different result was the lack of most common variants in the PIK3CA gene. A complete absence of PIK3CA-mutated tumors in a population has not been previously reported. Among MMR genes, the only with an aberrant methylation pattern was MLH1 gene. Its frequency was 9.25%, lower than previously reported. Methylated tumors were most frequent in patients older than 70 years old and proximal tumor location. Finally, CIMP-High status was mainly observed in moderately differentiated tumors with a rate of 15.7%. Our findings were consistent with previous reports in other populations, but also showed some features unique to our cohort. This study is the first to report the analysis of a large number molecular biomarkers of CRC in Uruguay and one of the few performed in Latin-America.
Collapse
Affiliation(s)
- Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay.
| | - Florencia Carusso
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Carolina Vergara
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Florencia Neffa
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Adriana Della Valle
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay; Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|
27
|
Guerrero RM, Labajos VA, Ballena SL, Macha CA, Lezama MS, Roman CP, Beltran PM, Torrejon AF. Targeting BRAF V600E in metastatic colorectal cancer: where are we today? Ecancermedicalscience 2022; 16:1489. [PMID: 36819812 PMCID: PMC9934973 DOI: 10.3332/ecancer.2022.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of direct cancer death worldwide. The study of the molecular state of oncogenes has predictive and prognostic value in metastatic CRC (mCRC). The B-raf proto-oncogene (BRAF) gene mutation represents the 8%-12% of all mutations in mCRC. The BRAF V600E mutation, considered the most common alteration of BRAF, corresponds to a constitutive kinase with a high activating capacity of the RAS/RAF/MEK/ERK pathway after a cascade of successive phosphorylations in the transcription of genes. BRAF V600E mutation is more prevalent in women, elderly, right-sided colon cancer and Caucasian population. Unfortunately, it is considered a poor predictive and prognosis biomarker. Patients with mCRC BRAF V600E mutated (BRAFm) are generally associated with poor response to chemotherapy and short progression-free survival and overall survival. Recently, randomised clinical trials have studied the combination of different chemotherapy regimens with angiogenic inhibitors in mCRC BRAFm. In addition, new anti-BRAF and immunotherapy agents have also been studied in this population, with positive results. The objective of this review is to acknowledge the biology and molecular pathway of BRAF, critically analyse the clinical trials and the therapy options published until today and evaluate the options of treatment according to the patient's clinical presentation.
Collapse
Affiliation(s)
- Rodrigo Motta Guerrero
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0002-8086-3513
| | - Veronica Arnao Labajos
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0001-7079-1010
| | - Sophia Lozano Ballena
- Hospital Almanzor Aguinaga Asenjo, Chiclayo 14001, Peru
- https://orcid.org/0000-0002-7868-6802
| | - Carlos Aliaga Macha
- Centro Oncológico ALIADA, San Isidro 15036, Peru
- https://orcid.org/0000-0003-0237-7058
| | - Miguel Sotelo Lezama
- Centro Oncológico ALIADA, San Isidro 15036, Peru
- https://orcid.org/0000-0002-8861-9355
| | - Cristian Pacheco Roman
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0003-2359-5126
| | - Paola Montenegro Beltran
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0002-1484-9537
| | | |
Collapse
|
28
|
Martinelli E, Cremolini C, Mazard T, Vidal J, Virchow I, Tougeron D, Cuyle PJ, Chibaudel B, Kim S, Ghanem I, Asselain B, Castagné C, Zkik A, Khan S, Arnold D. Real-world first-line treatment of patients with BRAF V600E-mutant metastatic colorectal cancer: the CAPSTAN CRC study. ESMO Open 2022; 7:100603. [PMID: 36368253 PMCID: PMC9832736 DOI: 10.1016/j.esmoop.2022.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND BRAFV600E mutations occur in 8%-12% of metastatic colorectal cancer (mCRC) cases and are associated with poor survival. European guidelines recommend combination (doublet or triplet) chemotherapy plus bevacizumab in first line. However, an unmet need remains for more effective treatments for these patients. PATIENTS AND METHODS CAPSTAN CRC is a European, retrospective, multicenter, observational study evaluating real-world treatment practices for patients with BRAFV600E-mutant mCRC treated between 1 January 2016 and 31 January 2020. The primary objective was to describe first-line treatment patterns. Secondary objectives included describing baseline demographics, mutational testing procedures, treatment effectiveness, and safety. RESULTS In total, 255 patients (median age 66.0 years; 58.4% female) with BRAFV600E-mutant unresectable mCRC from seven countries were included. Most had right-sided tumors (52.5%) and presented with synchronous disease at diagnosis (66.4%). Chemotherapy plus targeted therapy (68.7%) was preferred at first line over chemotherapy alone (31.3%). The main first-line treatments were FOLFOX plus bevacizumab (27.1%) and FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin, irinotecan) with/without bevacizumab (27.1%/19.2%). Median duration of first-line treatment was 4.9 months. Overall, 52.5% received second-line treatment. Across all first-line regimens, progression-free survival (PFS) and overall survival were 6.0 [95% confidence interval (CI) 5.3-6.7] months and 12.9 (95% CI 11.6-14.1) months, respectively. Triplet plus targeted therapy was associated with more adverse events (75.0%) compared with triplet chemotherapy alone (50.0%) and doublet chemotherapy alone (36.1%). Multivariate analysis identified low body mass index and presence of three or more metastatic sites as significant prognostic factors for PFS. CONCLUSIONS This study is, to date, the largest real-world analysis of patients with BRAFV600E-mutant mCRC, providing valuable insights into routine first-line treatment practices for these patients. The data highlight the intrinsic aggressiveness of this disease subgroup, confirming results from previous real-world studies and clinical trials, and stressing the urgent need for more effective treatment options in this setting.
Collapse
Affiliation(s)
- E Martinelli
- Medical Oncology, Department of Precision Medicine, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy.
| | - C Cremolini
- Oncologia Medica, University of Pisa, Pisa, Italy
| | - T Mazard
- Institut de Recherche en Cancerologie de Montpellier, INSERM, Montpellier University, Institut du Cancer de Montpellier, Montpellier, France
| | - J Vidal
- Department of Medical Oncology, Hospital del Mar - IMIM, CIBERONC, Barcelona, Spain
| | - I Virchow
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - D Tougeron
- Department of Hepato-gastroenterology, Poitiers University Hospital and University of Poitiers, Poitiers, France
| | - P-J Cuyle
- Gastroenterology and Digestive Oncology Department, Imelda General Hospital, Bonheiden, Belgium
| | - B Chibaudel
- Department of Medical Oncology, Hôpital Franco-Britannique - Fondation Cognacq-Jay, Levallois-Perret, France
| | - S Kim
- Department of Medical Oncology, Centre Hospitalier Régional et Universitaire de Besançon, Besançon, France
| | - I Ghanem
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | | | - C Castagné
- Pierre Fabre, Boulogne-Billancourt, France
| | - A Zkik
- Pierre Fabre, Boulogne-Billancourt, France
| | - S Khan
- Pierre Fabre, Boulogne-Billancourt, France
| | - D Arnold
- Asklepios Tumorzentrum Hamburg AK Altona, Hamburg, Germany
| |
Collapse
|
29
|
Shimozaki K, Hirata K, Sato T, Nakamura M, Kato K, Hirano H, Kumekawa Y, Hino K, Kawakami K, Kito Y, Matsumoto T, Kawakami T, Komoda M, Nagashima K, Sato Y, Yamazaki K, Hironaka S, Takaishi H, Hamamoto Y, Muro K. WJOG13219G: The Efficacy and Safety of FOLFOXIRI or Doublet plus Anti-VEGF Therapy in Previously Untreated BRAF V600E Mutant Metastatic Colorectal Cancer: A Multi-Institutional Registry-Based Study (BRACELET Study). Clin Colorectal Cancer 2022; 21:339-346. [PMID: 36117091 DOI: 10.1016/j.clcc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The real-world survival benefit of FOLFOXIRI (fluorouracil, leucovorin, oxaliplatin, and irinotecan) plus anti-VEGF therapy (Triplet) over doublet chemotherapy (Doublet) remains controversial in patients with BRAFV600E mutant metastatic colorectal cancer (mCRC). PATIENTS AND METHODS WJOG13219G was a multicenter, retrospective, registry-based study of patients with BRAFV600E mutant mCRC who received first-line triplet or doublet chemotherapy from January 2014 to December 2019 in Japan. Inverse probability of treatment weighting (IPTW) was used to adjust for patient background. RESULTS The analysis included 79 and 91 patients in the Triplet and Doublet groups, respectively. The Triplet group was significantly younger and had better performance status. No statistical difference was noted in progression-free survival (PFS; HR, 0.82; 95% CI, 0.60-1.13; P = .22) and overall survival (OS; HR, 0.88; 95% CI, 0.62-1.25; P = .48) between both groups. IPTW analysis also showed no difference between the 2 groups in PFS (HR, 0.86; 95% CI, 0.69-1.08; P = .20) and OS (HR, 0.93; 95% CI, 0.73-1.20; P = .59). The Triplet and Doublet groups had an objective response rate of 53% and 41%, respectively (P = .10). At least one grade 3 or 4 adverse event was seen in 51 (65%) and 43 (47%) patients in the Triplet and Doublet groups, respectively, with the incidence of neutropenia being significantly higher in the former. CONCLUSION Triplet therapy had no survival benefit versus doublet therapy in the overall and IPTW cohorts or specific subgroups for real-world patients with BRAFV600E mutant mCRC.
Collapse
Affiliation(s)
- Keitaro Shimozaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenro Hirata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Taro Sato
- Gastroenterology Center, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Maho Nakamura
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Kyoko Kato
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yosuke Kumekawa
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Kaori Hino
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Kentaro Kawakami
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido, Japan
| | - Yosuke Kito
- Ishikawa Prefectural Central Hospital Department of Medical Oncology, Ishikawa, Japan
| | | | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masato Komoda
- National Hospital Organization Kyushu Cancer Center, Department of Gastrointestinal and Medical Oncology, Fukuoka, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shuichi Hironaka
- Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiromasa Takaishi
- Center for Preventive Medicine, Keio University Hospital, Tokyo, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University Hospital, Tokyo, Japan
| | - Kei Muro
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
30
|
Benesch MGK, O’Brien SBL. Epidemiology of Undifferentiated Carcinomas. Cancers (Basel) 2022; 14:cancers14235819. [PMID: 36497299 PMCID: PMC9740284 DOI: 10.3390/cancers14235819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Undifferentiated carcinomas are rare cancers that lack differentiation, such that they cannot be classified into any conventional histological subtype. These cancers are uniquely codified and are contrasted to carcinomas with an ascertained histology that are grade classified as poorly differentiated, undifferentiated, or anaplastic. Given their rarity, there are no standardized overviews of undifferentiated carcinomas in the literature, and it is unknown if their classification indicates a unique prognosis profile. In this study, we summarize the clinicodemographic and mortality outcomes of undifferentiated carcinomas in twelve primary sites and for unknown primaries, comprising 92.8% of all undifferentiated carcinomas diagnosed from 1975-2017 in the Surveillance, Epidemiology, and End Results Program (SEER). Incidence has decreased to 4 per 1 million cancer diagnoses since 1980. Relative to the most common undifferentiated cancers with a defined histology, undifferentiated carcinomas have overall worse prognosis, except in nasopharyngeal and salivary gland cancers (hazard ratio (HR) 0.7-1.3). After correction for age, sex, race, detection stage, and treatment (surgery, chemotherapy, and radiotherapy), the mortality HR averages 1.3-1.4 for these cancers relative to histologically ascertainable undifferentiated cancers. However, there is a wide variance depending on site, signifying that survival outcomes for undifferentiated carcinomas depend on factors related to site tumor biology.
Collapse
|
31
|
Dain Md Opo FA, Alsaiari AA, Rahman Molla MH, Ahmed Sumon MA, Yaghmour KA, Ahammad F, Mohammad F, Simal-Gandara J. Identification of novel natural drug candidates against BRAF mutated carcinoma; An integrative in-silico structure-based pharmacophore modeling and virtual screening process. Front Chem 2022; 10:986376. [PMID: 36267655 PMCID: PMC9577413 DOI: 10.3389/fchem.2022.986376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
The BRAF gene is responsible for transferring signals from outside of the cell to inside of the nucleus by converting a protein namely B-Raf through the RAS/MAPK pathway. This pathway contribute to cell division, proliferation, migration, and apoptotic cell death of human and animal. Mutation in this gene may cause the development of several cancers, including lung, skin, colon, and neuroblastoma. Currently, a few available drugs are being used that has developed by targeting the BRAF mutated protein, and due to the toxic side effects, patients suffer a lot during their treatment. Therefore this study aimed to identify potentially lead compounds that can target and block the expression of BRAF and subsequently inhibit the cancer. The hits were generated through the pharmacophore model-based virtual screening, molecular docking, pharmacohore model validation, ADME (absorption, distribution, metabolism, and excretion) analysis molecular dynamics (MD) simulation to find more suitable candidate against the overexpress BRAF gene. The pharmacophore based screening initially identified 14 k possible hits from online database which were further screened by ligand scout advance software to get hit compound. Based on molecular docking score of ZINC70454679 (-10.6 kcal/mol), ZINC253500968 (-9.4 kcal/mol), ZINC106887736 (-8.6 kcal/mol), and ZINC107434492 (-8.1 kcal/mol), pharmacophore feature and toxicity evaluation, we selected four possible lead compounds. The dynamic simulation with Schrodinger Maestro software was used to determine the stability of the potential lead candidates with target protein (PDB ID: 5VAM). The results showed that the newly obtained four compounds were more stable than the control ligand (Pub Chem ID: 90408826). The current results showed that the ZINC70454679, ZINC253500968, ZINC106887736, and ZINC107434492 compounds may be able to work against several cancers through targeting the BRAF overexpressed gene. To develop a novel drug candidate, however the evaluation of the web lab based experimental work are necessary to evaluate the efficiency of the each compound against the BRAF target gene.
Collapse
Affiliation(s)
- F. A. Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center (KFMRC), KAU, Jeddah, Saudi Arabia
| | - Ahad Amer Alsaiari
- Clinical Laboratories, Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | | | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled A. Yaghmour
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Foysal Ahammad
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| |
Collapse
|
32
|
Puccini A, Seeber A, Berger MD. Biomarkers in Metastatic Colorectal Cancer: Status Quo and Future Perspective. Cancers (Basel) 2022; 14:4828. [PMID: 36230751 PMCID: PMC9564318 DOI: 10.3390/cancers14194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide, and its incidence is steadily increasing. During the last two decades, a tremendous improvement in outcome has been achieved, mainly due to the introduction of novel drugs, targeted treatment, immune checkpoint inhibitors (CPIs) and biomarker-driven patient selection. Moreover, progress in molecular diagnostics but also improvement in surgical techniques and local ablative treatments significantly contributed to this success. However, novel therapeutic approaches are needed to further improve outcome in patients diagnosed with metastatic CRC. Besides the established biomarkers for mCRC, such as microsatellite instability (MSI) or mismatch repair deficiency (dMMR), RAS/BRAF, sidedness and HER2 amplification, new biomarkers have to be identified to better select patients who derive the most benefit from a specific treatment. In this review, we provide an overview about therapeutic relevant and established biomarkers but also shed light on potential promising markers that may help us to better tailor therapy to the individual mCRC patient in the near future.
Collapse
Affiliation(s)
- Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
33
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
34
|
Meta-Analysis of the Prognostic and Predictive Role of the CpG Island Methylator Phenotype in Colorectal Cancer. DISEASE MARKERS 2022; 2022:4254862. [PMID: 36157209 PMCID: PMC9499813 DOI: 10.1155/2022/4254862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Background Various studies have produced contradictory results on the prognostic role of the CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Although a meta-analysis published in 2014 reported a worse prognosis of CIMP among CIMP-high (CIMP-H) CRC patients, the sample sizes of the major included studies were small. In this study, we included the most recent studies with large sample sizes and performed an updated meta-analysis on the relationship between CIMP and CRC prognosis. Methods A search of MEDLINE, Web of Science, and Cochrane for studies related to CIMP and CRC published until July 2021 was conducted based on the PICO (participant, intervention, control, outcome) framework. Data extraction and literature analyses were performed according to PRISMA standards. Results In the present update, 36 eligible studies (20 recently published) reported survival data in 15315 CRC patients, 18.3% of whom were characterized as CIMP-H. Pooled analysis suggested that CIMP-H was associated with poorer overall survival (OS) (hazard ratio [HR] = 1.37, 95% CI: 1.26–1.48) and disease-free survival/progression-free survival/recurrence-free survival (DFS/PFS/RFS) (HR = 1.51, 95% CI: 1.19–1.91) among CRC patients. Subgroup analysis based on tumor stage and DNA mismatch repair (MMR) status showed that only patients with stages III-IV and proficient MMR (pMMR) tumors showed a significant association between CIMP-H and shorter OS, with HRs of 1.52 and 1.37, respectively. Three studies were pooled to explore the predictive value of CIMP on CRC patient DFS after receiving postoperative chemotherapy, and no significant correlation was found. Conclusion CIMP-H is associated with a significantly poor prognosis in CRC patients, especially those with stage III-IV and pMMR tumors. However, the predictive value of CIMP needs to be confirmed by more prospective randomized studies.
Collapse
|
35
|
Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, Wu X, Wen L, Ge H, Fu W, Tang F. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med 2022; 14:93. [PMID: 35974387 PMCID: PMC9380328 DOI: 10.1186/s13073-022-01093-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the second-leading cause of cancer-related death worldwide with metastases being the main cause of cancer-related death. Here, we investigated the genomic and transcriptomic alterations in matching adjacent normal tissues, primary tumors, and metastatic tumors of CRC patients. METHODS We performed whole genome sequencing (WGS), multi-region whole exome sequencing (WES), simultaneous single-cell RNA-Seq, and single-cell targeted cDNA Sanger sequencing on matching adjacent normal tissues, primary tumors, and metastatic tumors from 12 metastatic colorectal cancer patients (n=84 for genomes, n=81 for exomes, n=9120 for single cells). Patient-derived tumor organoids were used to estimate the anti-tumor effects of a PPAR inhibitor, and self-renewal and differentiation ability of stem cell-like tumor cells. RESULTS We found that the PPAR signaling pathway was prevalently and aberrantly activated in CRC tumors. Blocking of PPAR pathway both suppressed the growth and promoted the apoptosis of CRC organoids in vitro, indicating that aberrant activation of the PPAR signaling pathway plays a critical role in CRC tumorigenesis. Using matched samples from the same patient, distinct origins of the metastasized tumors between lymph node and liver were revealed, which was further verified by both copy number variation and mitochondrial mutation profiles at single-cell resolution. By combining single-cell RNA-Seq and single-cell point mutation identification by targeted cDNA Sanger sequencing, we revealed important phenotypic differences between cancer cells with and without critical point mutations (KRAS and TP53) in the same patient in vivo at single-cell resolution. CONCLUSIONS Our data provides deep insights into how driver mutations interfere with the transcriptomic state of cancer cells in vivo at a single-cell resolution. Our findings offer novel knowledge on metastatic mechanisms as well as potential markers and therapeutic targets for CRC diagnosis and therapy. The high-precision single-cell RNA-seq dataset of matched adjacent normal tissues, primary tumors, and metastases from CRCs may serve as a rich resource for further studies.
Collapse
Affiliation(s)
- Rui Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Jingyun Li
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xin Zhou
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Peking University Third Hospital Cancer Center, Beijing, 100193, China
| | - Yunuo Mao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Wendong Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Shuai Gao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Yuan Gao
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Shuntai Yu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Xinglong Wu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
| | - Hao Ge
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Fu
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China.
- Peking University Third Hospital Cancer Center, Beijing, 100193, China.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of General Surgery, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, People's Republic of China.
- Beijing Advanced Innovation Center for Genomics & Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100871, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
36
|
Liu X, Ou K, Ma X, Gao L, Wang Q, Zhang H, Yang L. Safety and efficacy of irinotecan, oxaliplatin, and capecitabine (XELOXIRI) regimen with or without targeted drugs in patients with metastatic colorectal cancer: a retrospective cohort study. BMC Cancer 2022; 22:807. [PMID: 35864467 PMCID: PMC9306070 DOI: 10.1186/s12885-022-09889-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five-fluorouracil, folinic acid, oxaliplatin and irinotecan (FOLFOXIRI) regimen is used as the first-line treatment for metastatic colorectal cancer (mCRC). The use of capecitabine, an oral fluoropyrimidine pro-drug, is feasible and safe; hence, it provides an interesting alternative to 5-fluorouracil in the abovementioned regimen. This study aimed to evaluate the efficacy and safety of capecitabine, oxaliplatin, and irinotecan (XELOXIRI) regimen use with or without targeted drugs in Chinese patients with mCRC. METHODS We conducted a retrospective, longitudinal cohort study of patients with mCRC who received XELOXIRI regimen with or without targeted drugs (bevacizumab or cetuximab) every 2 weeks between January 2017 and November 2019 at the National Cancer Center/Cancer Hospital, the Chinese Academy of Medical Sciences, and Peking Union Medical College. Treatment efficacy was assessed by investigators by evaluating the objective response rate (ORR) and disease control rate (DCR). Overall survival (OS) was assessed using Cox proportional hazards models. The adverse events were also analyzed. RESULTS Sixty-one consecutive patients were examined and followed up for survival. As of November 8, 2021, the median follow-up time was 35.4 months. Disease progression and death occurred in 50 (82%) and 38 (62%) patients, respectively. The median treatment duration of XELOXIRI with or without bevacizumab or cetuximab was 10 cycles (range, 1-12 cycles). The median OS and PFS were 32.2 months (95%CI [24.8-39.6]) and 9.3 months (95% CI [8.1-10.5]), respectively. The ORR of 48 patients with measurable lesions was 70.8%, and the DCR was 89.6%. RAS/BRAF wild-type (HR 0.39; 95% CI [0.16-0.96], p = 0.04) and metastatic organs > 2 (HR 3.25; 95% CI [1.34-7.87], p = 0.009) were independent prognostic factors for OS. The incidence of any grade of adverse events (AEs) was 96.7% (59/61). Grade ≥ 3 AEs included neutropenia (19.7%), leukopenia (9.8%), diarrhea (3.3%), vomiting (3.3%), febrile neutropenia (1.6%), and thrombocytopenia (1.6%). No treatment-related death occurred. CONCLUSION The use of the XELOXIRI regimen with or without a targeted drug was effective, with a manageable toxicity profile in Chinese patients with mCRC.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China
| | - Kai Ou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China
| | - Xiaoting Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China
| | - Lizhen Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China.,Department of Medical Oncology, Beijing Chaoyang Huanxing Cancer Hospital, Beijing, 100023, China
| | - Qi Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China.,Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Haizeng Zhang
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China
| | - Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Beijing, 100021, China.
| |
Collapse
|
37
|
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 2022; 72:372-401. [PMID: 35472088 DOI: 10.3322/caac.21728] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents approximately 10% of all cancers and is the second most common cause of cancer deaths. Initial clinical presentation as metastatic CRC (mCRC) occurs in approximately 20% of patients. Moreover, up to 50% of patients with localized disease eventually develop metastases. Appropriate clinical management of these patients is still a challenging medical issue. Major efforts have been made to unveil the molecular landscape of mCRC. This has resulted in the identification of several druggable tumor molecular targets with the aim of developing personalized treatments for each patient. This review summarizes the improvements in the clinical management of patients with mCRC in the emerging era of precision medicine. In fact, molecular stratification, on which the current treatment algorithm for mCRC is based, although it does not completely represent the complexity of this disease, has been the first significant step toward clinically informative genetic profiling for implementing more effective therapeutic approaches. This has resulted in a clinically relevant increase in mCRC disease control and patient survival. The next steps in the clinical management of mCRC will be to integrate the comprehensive knowledge of tumor gene alterations, of tumor and microenvironment gene and protein expression profiling, of host immune competence as well as the application of the resulting dynamic changes to a precision medicine-based continuum of care for each patient. This approach could result in the identification of individual prognostic and predictive parameters, which could help the clinician in choosing the most appropriate therapeutic program(s) throughout the entire disease journey for each patient with mCRC. CA Cancer J Clin. 2022;72:000-000.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Division of Medical Oncology, IRCCS Foundation Home for the Relief of Suffering, San Giovanni Rotondo, Italy
| | - Giulia Martini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Institute of Oncology, University of Vic/Central University of Catalonia, Barcelona, Spain
- Oncology Institute of Barcelona-Quironsalud, Biomedical Research Center in Cancer, Barcelona, Spain
| | - Andres Cervantes
- Medical Oncology Department, Instituto de Investigación Sanitaria Valencia Biomedical Research Institute, University of Valencia, Valencia, Spain
- Carlos III Institute of Health, Biomedical Research Center in Cancer, Madrid, Spain
| |
Collapse
|
38
|
Oryani MA, Tavasoli A, Ghalavand MA, Ashtiani RZ, Rezaee A, Mahmoudi R, Golvari H, Owrangi S, Soleymani-Goloujeh M. Epigenetics and its therapeutic potential in colorectal cancer. Epigenomics 2022; 14:683-697. [PMID: 35473313 DOI: 10.2217/epi-2022-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alisam Rezaee
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Golvari
- School of Nursing & Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroor Owrangi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Fencer MG, Davis CH, Spencer KR. Current Updates on HER2–Directed Therapies in Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2022. [DOI: 10.1007/s11888-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Angerilli V, Sabella G, Centonze G, Lonardi S, Bergamo F, Mangogna A, Pietrantonio F, Fassan M, Milione M. BRAF-mutated colorectal adenocarcinomas: pathological heterogeneity and clinical implications. Crit Rev Oncol Hematol 2022; 172:103647. [PMID: 35248712 DOI: 10.1016/j.critrevonc.2022.103647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in molecular biology have markedly increased our understanding of the heterogeneous molecular landscape of colorectal cancer (CRC). Up to 15% of CRCs harbor the BRAF p.V600E somatic mutation (BRAFmt), a well-established negative prognostic marker in patients with metastatic CRC (mCRC). The BEACON CRC trial set a new standard of care in patients with progressive BRAFmt cancers, consisting of the combination of encorafenib and cetuximab. On these bases, BRAF mutational testing is now recommended in patients with mCRC. However, efforts are needed to further stratify patients carrying this mutation. Here, we discuss the heterogeneous pathologic and molecular landscape of BRAFmt CRCs, focusing on the promises and pitfalls of molecular diagnostics, on novel biomarkers to improve patients' stratification and on the current diagnostic scenario for CRC. We believe that a better stratification based on histopathological features and novel molecular biomarkers should be performed to optimize patient management and therapeutic decision-making.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanni Centonze
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sara Lonardi
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, 34137 Trieste, Italy
| | | | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padua; Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Massimo Milione
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| |
Collapse
|
41
|
Efficacy of Retreatment with Oxaliplatin-Based Regimens in Metastatic Colorectal Cancer Patients: The RETROX-CRC Retrospective Study. Cancers (Basel) 2022; 14:cancers14051197. [PMID: 35267504 PMCID: PMC8909235 DOI: 10.3390/cancers14051197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Background: oxaliplatin with fluoropyrimidine is a “mainstay” regarding the upfront treatment of metastatic colorectal cancer (mCRC). In contrast, the efficacy and safety of oxaliplatin-based regimens in late-care settings have been poorly reported. Methods: we identified a real-world mCRC patient cohort who were re-treated with oxaliplatin, and in which clinicopathological features were retrospectively analyzed to identify efficacy–predictive determinants (RETROX-CRC study). Results: of 2606 patients, 119 fulfilled the eligibility criteria. Oxaliplatin retreatment response rate (RR) and disease control rate (DCR) were 21.6% (CI 14.4–31.0%), and 57.8% (CI 47.7–67.4). A trend towards better RR and DCR was observed among patients who had first oxaliplatin in an adjuvant setting; a poorer outcome was observed if two or more intervening treatments were delivered. Median progression-free survival (PFS) was 5.1 months (95%CI 4.3–6.1), reducing to 4.0 months (95%CI 3.07–5.13) if oxaliplatin was readministered beyond third-line (HR 2.02; 1.25–3.25; p = 0.004). Safety data were retrieved in 65 patients (54.6%); 18.5% (12/65) and 7.7% (5/65) had G3–4 toxicities. Toxicities led to discontinuation in 34/119 (28.6%). Conclusions: oxaliplatin retreatment produced further RR in around one-fifth of patients and DCR 57.8%. Efficacy decreased in more pre-treated patients and around one-third of patients discontinued treatment due to adverse events. Translational studies improving patient selection are warranted.
Collapse
|
42
|
Susanti S, Wibowo S, Akbariani G, Yoshuantari N, Heriyanto DS, Ridwanuloh AM, Hariyatun H, Handaya AY, Kurnianda J, Hutajulu SH, Ilyas M. Molecular Analysis of Colorectal Cancers Suggests a High Frequency of Lynch Syndrome in Indonesia. Cancers (Basel) 2021; 13:cancers13246245. [PMID: 34944866 PMCID: PMC8699188 DOI: 10.3390/cancers13246245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The incidence of young people <50 years old who are diagnosed with colorectal cancer (CRC), termed as early onset colorectal cancer (EOCRC), accounted for nearly 30% of the total CRC patients in Indonesia, which is about three times higher than what is being reported in Europe, the UK and USA. Lynch syndrome (LS) is a hereditary type of CRC that is associated with a younger age of onset. Detecting LS has been long reported to be a cost-effective strategy to provide aid in the diagnosis or management of the individual or at-risk family members. The aim of this retrospective study was to screen for Lynch Syndrome in Indonesian CRC patients using simple and robust polymerase chain reaction (PCR)-based molecular testing, known as N_LyST (Nottingham Lynch Syndrome Test). To our knowledge, we are the first to study and observe a potentially higher frequency of LS (13.85%) among CRC patients in Indonesia (n = 231). This may partially contribute to the reported much higher rate of EOCRC found in the country. Abstract There is about three times higher incidence of young patients <50 years old with colorectal cancer, termed EOCRC, in Indonesia as compared to Europe, the UK and USA. The aim of this study was to investigate the frequency of Lynch Syndrome (LS) in Indonesian CRC patients. The previously described Nottingham Lynch Syndrome Test (N_LyST) was used in this project. N_LyST is a robust high-resolution melting (HRM)-based test that has shown 100% concordance with standard reference methods, including capillary electrophoresis and Sanger sequencing. The test consisted of five mononucleotide microsatellite markers (BAT25, BAT26, BCAT25, MYB, EWSR1), BRAF V600E mutation and MLH1 region C promoter for methylation (using bisulphite-modified DNA). A total of 231 archival (2016–2019) formalin-fixed, paraffin-embedded (FFPE) tumour tissues from CRC patients collected from Dr. Sardjito General Hospital Yogyakarta, Indonesia, were successfully tested and analysed. Among those, 44/231 (19.05%) were MSI, 25/231 (10.82%) were harbouring BRAF V600E mutation and 6/231 (2.60%) had MLH1 promoter methylation. Almost all—186/197 (99.45%)—MSS cases were MLH1 promoter unmethylated, while there were only 5/44 (11.36%) MSI cases with MLH1 promoter methylation. Similarly, only 9/44 (20.45%) of MSI cases were BRAF mutant. There were 50/231 (21.65%) EOCRC cases, with 15/50 (30%) regarded as MSI, as opposed to 29/181 (16.02%) within the older group. In total, 32/231 patients (13.85%) were classified as “Probable Lynch” (MSI, BRAF wildtype and MLH1 promoter unmethylated), which were enriched in EOCRC as compared to older patients (24% vs. 11.05%, p = 0.035). Nonetheless, 30/50 (76.00%) cases among the EOCRC cases were non-LS (sporadic) and were significantly associated with a left-sided tumour. The overall survival of both “Probable Lynch” and non-LS (sporadic) groups (n = 227) was comparable (p = 0.59), with follow up period of 0–1845 days/61.5 months. Stage, node status, histological grading and ECOG score were significantly associated with patient overall survival (p < 0.005), yet only ECOG was an independent factor for OS (HR: 4.38; 95% CI: 1.72–11.2; p = 0.002). In summary, this study is the first to reveal a potentially higher frequency of LS among CRC patients in Indonesia, which may partially contribute to the reported much higher number of EOCRC as compared to the incidence in the West.
Collapse
Affiliation(s)
- Susanti Susanti
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG72UH, UK;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Jawa Tengah 53182, Indonesia
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
- Correspondence:
| | - Satrio Wibowo
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
| | - Gilang Akbariani
- PathGen Diagnostik Teknologi, Center for Innovation and Utilization of Science and Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN), Bogor 16911, Indonesia; (S.W.); (G.A.)
| | - Naomi Yoshuantari
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (N.Y.); (D.S.H.)
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (N.Y.); (D.S.H.)
| | - Asep Muhamad Ridwanuloh
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia; (A.M.R.); (H.H.)
| | - Hariyatun Hariyatun
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia; (A.M.R.); (H.H.)
| | - Adeodatus Yuda Handaya
- Division of Digestive Surgeon, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia;
| | - Johan Kurnianda
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (J.K.); (S.H.H.)
| | - Susanna Hilda Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia; (J.K.); (S.H.H.)
| | - Mohammad Ilyas
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG72UH, UK;
| |
Collapse
|
43
|
Yeh JH, Tsai HL, Chen YC, Li CC, Huang CW, Chang TK, Su WC, Chen PJ, Liu YP, Wang JY. BRAF, MEK, and EGFR Triplet Inhibitors as Salvage Therapy in BRAF-Mutated Metastatic Colorectal Cancer-A Case Series Study Target Therapy of BRAF- Mutated mCRC. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1339. [PMID: 34946284 PMCID: PMC8707783 DOI: 10.3390/medicina57121339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/01/2023]
Abstract
Backgroundand objectives: Patients with BRAF-mutated metastatic colorectal cancer have considerably poorer responses to conventional systemic treatment. The real-world effects of triplet therapy with BRAF, mitogen-activated protein kinase kinase, and epidermal growth factor receptor inhibitors in Asia have not been well-reported. Materials and Methods: This single-center case series included patients with BRAF-mutated metastatic colorectal cancer undergoing triplet therapy after failure of prior systemic treatment from 2016 to 2020. The primary outcome was progression-free survival, and secondary outcomes were overall survival, response rate, disease control rate, and adverse events. Results: Nine eligible patients with BRAF-mutated metastatic colorectal cancer receiving triplet therapy were enrolled, with a median follow-up time of 14.5 months (range, 1-26). Most patients (88.8%) had two or more prior systemic treatments, and the triplet regimen was mainly dabrafenib, trametinib, and panitumumab. The overall response rate and disease control rate were 11.1% and 33.3%, respectively. Median progression-free survival and overall survival were 2.9 and 7.4 months, respectively, and a trend toward better overall survival was found with left-sided metastatic colorectal cancer compared with right-sided disease (9.2 vs. 6.9 months, p = 0.093). Adverse events were mostly Grade 1-2, including nausea, hypertension, gastrointestinal symptoms, and skin disorders. Conclusions: In this single-center case series, triplet therapy with BRAF, mitogen-activated protein kinase kinase, and epidermal growth factor receptor inhibitors in BRAF-mutated metastatic colorectal cancer had an acceptable safety profile and reasonable efficacy.
Collapse
Grants
- KMUH109-9R32, KMUH109-9R33, KMUH109-9R34, KMUH109-9M30, KMUH109-9M31, KMUH109-9M32, KMUH109-9M33, KMUHSA10903, KMUHSA11013, KMUH-DK(C)110010, KMUH-DK(B)110004-3 Kaohsiung Medical University Chung-Ho Memorial Hospital
Collapse
Affiliation(s)
- Jen-Hao Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung 80794, Taiwan
- Department of Medical technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 82445, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.Y.); (Y.-P.L.)
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-L.T.); (Y.-C.C.); (C.-C.L.); (C.-W.H.); (T.-K.C.); (W.-C.S.); (P.-J.C.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|
44
|
Al-Harazi O, Kaya IH, El Allali A, Colak D. A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer. Front Genet 2021; 12:721949. [PMID: 34790220 PMCID: PMC8591094 DOI: 10.3389/fgene.2021.721949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of reliable methods for identification of robust biomarkers for complex diseases is critical for disease diagnosis and prognosis efforts. Integrating multi-omics data with protein-protein interaction (PPI) networks to investigate diseases may help better understand disease characteristics at the molecular level. In this study, we developed and tested a novel network-based method to detect subnetwork markers for patients with colorectal cancer (CRC). We performed an integrated omics analysis using whole-genome gene expression profiling and copy number alterations (CNAs) datasets followed by building a gene interaction network for the significantly altered genes. We then clustered the constructed gene network into subnetworks and assigned a score for each significant subnetwork. We developed a support vector machine (SVM) classifier using these scores as feature values and tested the methodology in independent CRC transcriptomic datasets. The network analysis resulted in 15 subnetwork markers that revealed several hub genes that may play a significant role in colorectal cancer, including PTP4A3, FGFR2, PTX3, AURKA, FEN1, INHBA, and YES1. The 15-subnetwork classifier displayed over 98 percent accuracy in detecting patients with CRC. In comparison to individual gene biomarkers, subnetwork markers based on integrated multi-omics and network analyses may lead to better disease classification, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Dilek Colak
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Li Y, Li D, Chen Y, Lu Y, Zhou F, Li C, Zeng Z, Cai W, Lin L, Li Q, Ye M, Dong J, Yin L, Tang D, Zhang G, Dai Y. Robust Glycogene-Based Prognostic Signature for Proficient Mismatch Repair Colorectal Adenocarcinoma. Front Oncol 2021; 11:727752. [PMID: 34692502 PMCID: PMC8529276 DOI: 10.3389/fonc.2021.727752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Proficient mismatch repair (pMMR) colorectal adenocarcinoma (CRAC) metastasizes to a greater extent than MMR-deficient CRAC. Prognostic biomarkers are preferred in clinical practice. However, traditional biomarkers screened directly from sequencing are often not robust and thus cannot be confidently utilized. Methods To circumvent the drawbacks of blind screening, we established a new strategy to identify prognostic biomarkers in the conserved and specific oncogenic pathway and its regulatory RNA network. We performed RNA sequencing (RNA-seq) for messenger RNA (mRNA) and noncoding RNA in six pMMR CRAC patients and constructed a glycosylation-related RNA regulatory network. Biomarkers were selected based on the network and their correlation with the clinicopathologic information and were validated in multiple centers (n = 775). Results We constructed a competing endogenous RNA (ceRNA) regulatory network using RNA-seq. Genes associated with glycosylation pathways were embedded within this scale-free network. Moreover, we further developed and validated a seven-glycogene prognosis signature, GlycoSig (B3GNT6, GALNT3, GALNT8, ALG8, STT3B, SRD5A3, and ALG6) that prognosticate poor-prognostic subtype for pMMR CRAC patients. This biomarker set was validated in multicenter datasets, demonstrating its robustness and wide applicability. We constructed a simple-to-use nomogram that integrated the risk score of GlycoSig and clinicopathological features of pMMR CRAC patients. Conclusions The seven-glycogene signature served as a novel and robust prognostic biomarker set for pMMR CRAC, highlighting the role of a dysregulated glycosylation network in poor prognosis.
Collapse
Affiliation(s)
- Yixi Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China.,Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dehua Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yongping Lu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, China
| | - Mingjun Ye
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jingjing Dong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin, China
| |
Collapse
|
46
|
The Prognostic Value of Locoregional Interventions for BRAF V600E Metastatic Colorectal Cancer: A Retrospective Cohort Analysis. Biomolecules 2021; 11:biom11091268. [PMID: 34572480 PMCID: PMC8468777 DOI: 10.3390/biom11091268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
The prognostic heterogeneity in patients with BRAF V600E metastatic colorectal cancer (mCRC) remains poorly defined. Real-world data of 93 BRAF V600E mCRC patients from Sun Yat-sen University Cancer Center were evaluated using the prognostic factors affecting overall survival (OS). Treatment of metastases served as an independent prognosticator, where curative locoregional interventions (LRIs) were associated with superior clinical outcomes (adjusted hazard ratio (HR): 0.46, 95% confidence interval (CI): 0.22–0.98; p = 0.044). The LRIs group showed an improved median OS of 49.4 months versus 18.3 months for the palliative treatments (PTs) group. The median OS of patients with colorectal liver metastasis (CRLM) was significantly prolonged after undergoing LRIs (42.4 vs. 23.7 months; HR: 0.11, 95% CI: 0.01–1.22; p = 0.030), and patients in the LRIs plus liver-limited or lung-limited metastasis (LLM) group benefited more than those in the LRIs plus non-LLM group when compared to the PTs group (LLM from LRIs vs. PTs, HR: 0.16, 95% CI: 0.04–0.68; p = 0.006. Non-LLM from LRIs vs. PTs, HR: 0.47, 95% CI: 0.21–1.05; p = 0.074). In conclusion, we confirmed the positive prognostic value of LRIs in BRAF V600E mCRC, particularly in patients with CRLM or LLM.
Collapse
|
47
|
Fassan M, Scarpa A, Remo A, De Maglio G, Troncone G, Marchetti A, Doglioni C, Ingravallo G, Perrone G, Parente P, Luchini C, Mastracci L. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice. Pathologica 2021; 112:248-259. [PMID: 33179625 PMCID: PMC7931577 DOI: 10.32074/1591-951x-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The pathologist emerged in the personalized medicine era as a central actor in the definition of the most adequate diagnostic and therapeutic algorithms. In the last decade, gastrointestinal oncology has seen a significantly increased clinical request for the integration of novel prognostic and predictive biomarkers in histopathological reports. This request couples with the significant contraction of invasive sampling of the disease, thus conferring to the pathologist the role of governor for both proper pathologic characterization and customized processing of the biospecimens. This overview will focus on the most commonly adopted immunohistochemical and molecular biomarkers in the routine clinical characterization of gastrointestinal neoplasms referring to the most recent published recommendations, guidelines and expert opinions.
Collapse
Affiliation(s)
- Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | | | - Giancarlo Troncone
- Department of Public Health, Federico II University Medical School Naples, Italy
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, Center for Excellence on Aging and Translational Medicine, University of Chieti-Pescara, Italy
| | - Claudio Doglioni
- Vita e Salute University, Milan, Italy.,Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Perrone
- Department of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Mastracci
- Anatomic Pathology, San Martino IRCCS Hospital,, Genova, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| |
Collapse
|
48
|
Angerilli V, Fontana E, Lonardi S, Sbaraglia M, Borelli B, Munari G, Salmaso R, Guzzardo V, Spolverato G, Pucciarelli S, Pilati P, Hahne JC, Bergamo F, Zagonel V, Dei Tos AP, Sadanandam A, Loupakis F, Valeri N, Fassan M. Intratumor morphologic and transcriptomic heterogeneity in V600EBRAF-mutated metastatic colorectal adenocarcinomas. ESMO Open 2021; 6:100211. [PMID: 34271310 PMCID: PMC8282957 DOI: 10.1016/j.esmoop.2021.100211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Intratumor heterogeneity (ITH) is described as the presence of various clones within one tumor, each with their own unique features in terms of morphology, inflammation, genetics or transcriptomics. Heterogeneity provides the fuel for drug resistance; therefore, an accurate assessment of tumor heterogeneity is essential for the development of effective therapies. The purpose of this study was to dissect morphologic and molecular ITH in colorectal adenocarcinoma. MATERIALS AND METHODS A series of 120 V600EBRAF-mutated (V600EBRAFmt) consecutive metastatic colorectal adenocarcinomas was assessed for morphologic heterogeneity. The two heterogeneous components of each specimen underwent a histopathological, immunohistochemical and molecular characterization to evaluate: histologic variant, grading, tumor-infiltrating lymphocytes (TILs), mismatch repair proteins' expression, KRAS/BRAF/NRAS mutations, microsatellite instability (MSI) status and consensus molecular subtype (CMS). RESULTS Thirty-one out of 120 (25.8%) V600EBRAFmt primary colorectal adenocarcinomas presented a heterogeneous morphology. Among these, eight cases had adequate material for molecular profiling. Five out of the eight (62.5%) cases resulted instable at MSI testing. The majority (62.5%) of the samples showed a CMS4 phenotype based on gene expression profiling. Heterogeneity in CMS classification was observed in four out of eight cases. One out of eight cases presented significant heterogeneity in the number of TILs between the two components of the tumor. CONCLUSIONS Although the distribution of the immune infiltrate appears relatively conserved among heterogeneous areas of the same tumor, changes in gene expression profile and CMS occur in 50% of V600EBRAFmt adenocarcinoma cases in our small series and might contribute to variability in response to anticancer therapy and clinical outcomes. Assessment of morphological and molecular ITH is needed to improve colorectal cancer classification and to tailor anticancer treatments and should be included in the pathology report.
Collapse
Affiliation(s)
- V Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - E Fontana
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - S Lonardi
- Medical Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - M Sbaraglia
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - B Borelli
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - G Munari
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - R Salmaso
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - V Guzzardo
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - G Spolverato
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - S Pucciarelli
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - P Pilati
- Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - J C Hahne
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - F Bergamo
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - V Zagonel
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - A P Dei Tos
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - A Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - F Loupakis
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - N Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Division of Surgery and Cancer, Imperial College London, London, UK
| | - M Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
49
|
Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents. Recent Pat Anticancer Drug Discov 2021; 15:143-153. [PMID: 32603286 DOI: 10.2174/1574892815666200630103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death. OBJECTIVE In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC. METHODS The search terms "colorectal cancer" or "colon cancer" or "colorectal carcinoma" or "colon carcinoma" in combination with "ubiquitin proteasome" and "autophagy" were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020. RESULTS The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated. CONCLUSION The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.
Collapse
Affiliation(s)
- Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Rasouli
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Petrillo A, Salati M, Trapani D, Ghidini M. Circulating Tumor DNA as a Biomarker for Outcomes Prediction in Colorectal Cancer Patients. Curr Drug Targets 2021; 22:1010-1020. [PMID: 33155906 DOI: 10.2174/1389450121999201103194248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022]
Abstract
Circulating tumour DNA (ctDNA) is a novel tool that has been investigated in several types of tumours, including colorectal cancer (CRC). In fact, the techniques based on liquid biopsies are proposed as appealing non-invasive alternatives to tissue biopsy, adding more insights into tumour molecular profile, heterogeneity and for cancer detection and monitoring. Additionally, some analysis showed that in CRC patients, ctDNA seems to act as a biomarker able to predict the outcome (prognostic role) and the response to treatments (predictive role). In particular, in the early stage CRC (stage I-III), it could represent a time marker of adjuvant therapy as well as a marker of minimal residual disease and recurrence risk in addition to the already recognized risk factors. In metastatic CRC, the analysis of molecular tumour profile by ctDNA has shown to have high concordance with the tissue biopsy at diagnosis. Additionally, some studies demonstrated that ctDNA level during the treatment was linked with the early response to treatment and prognosis. Finally, the quantitative analysis of ctDNA and copy number alterations may be useful in order to detect resistance to therapy at the time of progression of disease and to help in finding new therapeutic targets.
Collapse
Affiliation(s)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|