1
|
Ishaq Y, Rauff B, Alzahrani B, Javed H, Ikram A. Identification of Serum-Derived CricRNA Diagnostic Panel and Revealing Their Regulatory Mechanisms in HCV-HCC: A Cross-Sectional Study. Health Sci Rep 2024; 7:e70282. [PMID: 39698527 PMCID: PMC11652392 DOI: 10.1002/hsr2.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Aims and Objectives Hepatitis C virus (HCV) infection is a significant risk factor for the development of hepatocellular carcinoma (HCC). Serum-derived circular RNAs (circRNAs) play several crucial roles in HCV and HCC. They represent a promising area of research for improving the diagnosis and understanding the mechanisms of HCV-HCC. This study aims to identify a serum-derived circular RNA (circRNA) diagnostic panel for HCV-HCC and to elucidate the regulatory mechanisms underlying their role in cancer progression. Methods In this study, data mining and in silico analysis were conducted to identify the role of circular RNAs (hsa_circ_0003288, circ-RNF13, hsa_circ_0004277, circANRIL, circUHRF1, hsa_circ_103047) and their associated biomarkers (IL-6 and NF-κB) in HCV-HCC pathogenesis. Additionally, RT-PCR was performed to assess their expression levels across different study groups (G0 = control, G1 = HCV, G2 = HCC, and G3 = HCV-induced HCC). Results The expression levels of circular RNAs, including hsa_circ_0003288, circ-RNF13, hsa_circ_0004277, circANRIL, circUHRF1, and hsa_circ_103047, as well as the biomarkers IL-6 and NF-κB, were significantly elevated in the G3 group compared to the G0 group. ROC analysis also revealed significantly different expression rates for G3 group and G0 group. Conclusion The data revealed that cricRNAs panel (hsa_circ_0003288, circ-RNF13, circANRIL, circUHRF1, and hsa_circ_103047) could serve as a diagnostic biomarker and therapeutic target for HCV-induced HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| | - Bisma Rauff
- Department of Biomedical EngineeringUET Lahore, Narowal campusNarowalPakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Hassnain Javed
- Provincial Public Health Reference Lab LahorePunjab AIDS Control ProgramLahorePakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| |
Collapse
|
2
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
3
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
He A, Liao F, Lin X. Circ_0007351 Exerts an Oncogenic Role In Colorectal Cancer Depending on the Modulation of the miR-5195-3p/GPRC5A Cascade. Mol Biotechnol 2024:10.1007/s12033-024-01071-3. [PMID: 38386274 DOI: 10.1007/s12033-024-01071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
Circular RNAs (circRNAs) exert critical functions in colorectal cancer development. In this work, we wanted to elucidate the functional role and regulatory mechanism of circ_0007351 in colorectal cancer. For quantification of circ_0007351, microRNA (miR)-5195-3p and G Protein-coupled receptor class C group 5 member A (GPRC5A), a qRT-PCR, immunoblotting or immunohistochemistry assay was performed. Effects of circ_0007351/miR-5195-3p/GPRC5A cascade were evaluated by determining cell viability, proliferation, colony formation, motility, and invasion. Relationships among variables were assessed by dual-luciferase reporter assay. Animal studies were performed to evaluate circ_0007351's function in the growth of xenograft tumors. Circ_0007351 was markedly up-regulated in colorectal cancer tissues and cells. Down-regulation of circ_0007351 hindered cell growth, migration and invasiveness. Also, circ_0007351 depletion exerted a suppressive function in colorectal cell xenograft growth in vivo. Mechanistically, circ_0007351 sponged miR-5195-3p to sequester miR-5195-3p. Reduction of available miR-5195-3p neutralized the effects of circ_0007351 down-regulation on cell phenotypes. MiR-5195-3p directly targeted and inhibited GPRC5A. Circ_0007351 regulated GPRC5A expression by sponging miR-5195-3p. Moreover, the effects of circ_0007351 down-regulation on cell functional phenotypes were due to in part the reduction of GPRC5A expression. Our findings show that circ_0007351 down-regulation impedes proliferation, motility, and invasiveness in colorectal cancer cells at least in part via the regulation of the miR-5195-3p/GPRC5A cascade, highlighting that circ_0007351 inhibition may have a potential therapeutic value for colorectal cancer.
Collapse
Affiliation(s)
- Aijun He
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China
| | - Fangxin Liao
- Oncology Department, People's Hospital of Shenzhen Nanshan, Shenzhen, 518100, China
| | - Xiaohui Lin
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China.
| |
Collapse
|
5
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
6
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Zuo Y, Xu H, Li Y, Zhang Z, Tao R, Wang M. Hsa_circ_0007707 participates in PDE3B-mediated apoptosis inhibition and inflammation promotion in fibroblast-like synoviocytes. Int Immunopharmacol 2023; 119:110157. [PMID: 37086679 DOI: 10.1016/j.intimp.2023.110157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Synovial samples collected from 30 rheumatoid arthritis (RA) patients and 30 normal controls were used to isolate fibroblast-like synoviocytes (FLSs) and named FLS-RA and FLS-Normal, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to detect circ_0007707 expression. Effects of circ_0007707 silencing on cell proliferation and apoptosis were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (Edu), and flow cytometry assays. Levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Increased circ_0007707 expression was observed in synovial samples from RA patients and FLS-RA cells. Functional analysis showed circ_0007707 silencing restrained cell proliferation, induced cell apoptosis, and decreased cell inflammatory response in FLS-RA cells. Mechanistic analysis revealed the sponge function of circ_0007707 on miR-27b-3p, and miR-27b-3p inhibition weakened circ_0007707 knockdown-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 could mediate PDE3B expression via sponging miR-27b-3p, and PDE3B overturned miR-27b-3p mimic-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 mediated cell apoptosis and inflammatory response in FLS-RA cells through the miR-27b-3p/PDE3B axis, indicating the potential function of circ_0007707 as a target for RA treatment.
Collapse
Affiliation(s)
- Yanhua Zuo
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huaheng Xu
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanxia Li
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zongfang Zhang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ran Tao
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Manxiang Wang
- Department of Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
8
|
Tang Y, Hu S, Li T, Qiu X. Tumor cells-derived exosomal circVCP promoted the progression of colorectal cancer by regulating macrophage M1/M2 polarization. Gene 2023; 870:147413. [PMID: 37028610 DOI: 10.1016/j.gene.2023.147413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most frequent tumors of the digestive tract and the second leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the most critical immune cells in the tumor microenvironment, which closely interact with tumor cells to promote tumor incidence and progression. However, the precise mechanism of action between CRC cells and TAMs polarization is still being investigated. METHODS Transmission electronic microscopy (TEM), NanoSight and western blotting were used to characterize exosomes (Exo) isolated from the culture medium of CRC cells. The cellular uptake and internalization of Exo were detected by confocal laser scanning microscopy. M1/ M2 phenotype markers expression were examined by ELISA and flow cytometry. Cell migration, invasion and proliferation were determined by transwell and CCK-8 assay, respectively. A xenograft tumor model was established to explore the role of circVCP in vivo. The target genes of circVCP or miR-9-5p were predicted by StarBase2.0. The target association among miR-9-5p and circVCP or NRP1 was confirmed using the luciferase assay and RNA-pull down assay. RESULTS circVCP was highly accumulated in exosomes derived from plasma of CRC patients and CRC cells. Additionally, exosomal circVCP derived from CRC cells promoted cell proliferation, migration and invasion by regulating the miR-9-5p/NRP1 axis, and induced macrophage M2 polarization and inhibited macrophage M1 polarization. CONCLUSIONS Over-expressed exosomal circVCP promoted the progression of CRC by regulating macrophage M1/M2 polarization through miR-9-5p/NRP1 axis. CircVCP may be a diagnostic biomarker and potential target for CRC therapy.
Collapse
|
9
|
Yao F, Shi W, Fang F, Lv MY, Xu M, Wu SY, Huang CL. Exosomal miR-196a-5p enhances radioresistance in lung cancer cells by downregulating NFKBIA. Kaohsiung J Med Sci 2023. [PMID: 36912495 DOI: 10.1002/kjm2.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Radiation therapy is recognized as an effective modality in the treatment of lung cancer, but radioresistance resulting from prolonged treatment reduces the chances of recovery. MicroRNAs (miRNAs) play a pivotal role in radiotherapy immunity. In this study, we aimed to investigate the mechanism by which miR-196a-5p affects radioresistance in lung cancer. The radioresistant lung cancer cell line A549R26-1 was established by radiation treatment. Cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were observed by microscopy, and the expression levels of CAF-specific marker proteins were detected by immunofluorescence. The shape of the exosomes was observed by electron microscopy. A CCK-8 assay was used to detect cell viability, while clone formation assays were used to detect cell proliferative capacity. Flow cytometry was performed to investigate apoptosis. The binding of miR-196a-5p and NFKBIA was predicted and further verified by the dual luciferase reporter experiment. qRT-PCR and western blotting were used to detect gene mRNA and protein levels. We found that exosomes secreted by CAFs could enhance lung cancer cell radioresistance. Moreover, miR-196a-5p potentially bound to NFKBIA, promoting malignant phenotypes in radioresistant cells. Furthermore, exosomal miR-196a-5p derived from CAFs increased radiotherapy immunity in lung cancer. Exosomal miR-196a-5p derived from CAFs enhanced radioresistance in lung cancer cells by downregulating NFKBIA, providing a new potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Fei Yao
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Shi
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fang Fang
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Meng-Yu Lv
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mei Xu
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yan Wu
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chun-Li Huang
- The First Clinical Faculty, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Zhang Y, Wang X, Wang S, Liu J, Li R, Li X, Zhang R. Circ-ERBB2 knockdown sensitized colorectal cancer cells to 5-FU via miR-181a-5p/PTEN/Akt pathway. J Biochem Mol Toxicol 2023; 37:e23297. [PMID: 36639866 DOI: 10.1002/jbt.23297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinchun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jia Liu
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruijia Li
- Department of Pharmacy, The Eight Hospital of Xian, Xian, People's Republic of China
| | - Xiaoxia Li
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Rui Zhang
- Emergency Department, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, People's Republic of China
| |
Collapse
|
11
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022. [PMID: 36156927 DOI: 10.3748/wjg.v28.i33.4744.pmid:36156927;pmcid:pmc9476856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia.
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
12
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
13
|
Chen J, Xu L, Fang M, Xue Y, Cheng Y, Tang X. Hsa_circ_0060927 participates in the regulation of Caudatin on colorectal cancer malignant progression by sponging miR-421/miR-195-5p. J Clin Lab Anal 2022; 36:e24393. [PMID: 35373390 PMCID: PMC9102760 DOI: 10.1002/jcla.24393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Caudatin is extracted from radix cynanchi bungei and has an inhibitory effect on cancer progression. The study aims to reveal the impacts of hsa_circ_0060927 on Caudatin-mediated colorectal cancer (CRC) development and the underneath mechanism. METHODS The expression levels of hsa_circ_0060927, microRNA-421 (miR-421) and miR-195-5p were detected by quantitative real-time reverse transcription-polymerase chain reaction. The protein expression was analyzed by Western blot or immunohistochemistry assay. Cell viability and proliferation were analyzed by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide or 5-Ethynyl-29-deoxyuridine assay. Cell apoptosis was quantified by flow cytometry analysis. Cell migration and invasion were investigated by transwell assay. The putative associations among hsa_circ_0060927, miR-421 and miR-195-5p were predicted by the starbase online database, and identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. The impacts of Caudatin treatment on tumor growth in vivo were revealed by a xenograft tumor model assay. RESULTS Hsa_circ_0060927 expression was significantly upregulated, whereas miR-421 and miR-195-5p were downregulated in CRC tissues and cells compared with control groups. Hsa_circ_0060927 expression was closely associated with lymph node metastasis and tumor-node-metastasis stage. Caudatin treatment significantly decreased hsa_circ_0060927 expression but increased miR-421 and miR-195-5p expression. Caudatin exposure suppressed CRC cell proliferation, migration and invasion, and induced cell apoptosis; however, hsa_circ_0060927 overexpression hindered these impacts. Additionally, hsa_circ_0060927 was associated with miR-421/miR-195-5p. Depletion of miR-421 or miR-195-5p attenuated the influences of hsa_circ_0060927 silencing on CRC development. Furthermore, Caudatin treatment repressed tumor growth in vivo. CONCLUSION Caudatin inhibited CRC cell malignancy through the hsa_circ_0060927/miR-421/miR-195-5p pathway, which provided a potential therapeutic agent for CRC.
Collapse
Affiliation(s)
- Juan Chen
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Li Xu
- First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| | - Mingzhi Fang
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yahong Xue
- Department of ColorectalNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yan Cheng
- Department of PharmacyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Xiuhong Tang
- Department of OncologyNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
14
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|