1
|
Zhang W, Wen W, Tan R, Zhang M, Zhong T, Wang J, Chen H, Fang X. Ferroptosis: Potential therapeutic targets and prognostic predictions for acute myeloid leukemia (Review). Oncol Lett 2024; 28:574. [PMID: 39397802 PMCID: PMC11467844 DOI: 10.3892/ol.2024.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Ferroptosis is a relatively recently discovered type of regulated cell death that is induced by iron-dependent lipid peroxidation. The key contributing factors to ferroptosis are the loss of glutathione peroxidase 4 which is required for reversing lipid peroxidation, the buildup of redox-active iron and the oxidation of phospholipids containing polyunsaturated fatty acids. Ferroptosis has been associated with a number of diseases, including cancers such as hepatocellular carcinoma, breast cancer, acute renal damage and neurological disorders such as Alzheimer's disease and Alzheimer's disease, and there may be an association between ferroptosis and acute myeloid leukemia (AML). The present review aims to describe the primary regulatory pathways of ferroptosis, and the relationship between ferroptosis and the occurrence and development of AML. Furthermore, the present review comprehensively summarizes the latest advances in the treatment and prognosis of ferroptosis in AML.
Collapse
Affiliation(s)
- Wenlu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Meirui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tantan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiping Chen
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
2
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
3
|
Huang H, Long Z, Deng Y, Huang Z, Lv Z, Sun Q, Liu H, Liang H, Hu F. Alterations in Astrocyte Subpopulations in Glioma and Identification of Cuproptosis-Related Genes Using Single-Cell RNA Sequencing. J Inflamm Res 2024; 17:6329-6344. [PMID: 39281776 PMCID: PMC11402359 DOI: 10.2147/jir.s473932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Mitochondrial metabolism is essential for energy production and the survival of brain cells, particularly in astrocytes. Cuproptosis is a newly identified form of programmed cell death that occurs due to the disruption of mitochondrial metabolism caused by excessive copper toxicity. However, the relationship between cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) and the prognosis of gliomas remains unclear. Patients and Methods In this study, we utilized 32,293 cells obtained from three in-house single-cell RNA sequencing (scRNA-seq) datasets, along with 6,148 cells acquired from the Chinese Glioma Genome Atlas (CGGA) involving 14 glioma patients, to identify and validate the TME of gliomas. Results Based on an analysis of 32,293 single cells, we investigated intra-tumor heterogeneity, intercellular communication, and astrocyte differentiation trajectories in gliomas. Our findings revealed that the TGFβ signaling pathway exhibited a higher relative strength in astrocyte subpopulations. Additionally, we identified a novel three-gene signature (CDKN2A, SOX2, and MPC1) was identified for prognostic prediction. Furthermore, glioma patients with a high-risk score demonstrated poorer overall survival (OS) compared to those with a low-risk score in both training and testing datasets (P training set < 0.001; P test set = 0.037). Conclusion Our study revealed the prognostic value of the CRGs in astrocytes exhibiting tumor immunosuppressive characteristics in glioma. We established a novel three-gene prognostic model that offers new insights into the prognosis and treatment strategies for gliomas.
Collapse
Affiliation(s)
- Hao Huang
- Department of Preventive Medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, People's Republic of China
| | - Zhiping Long
- Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ying Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhicong Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hui Liu
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Yin L, Luo X, Zhang X, Cheng B. The evolving process of ferroptosis in thyroid cancer: Novel mechanisms and opportunities. J Cell Mol Med 2024; 28:e18587. [PMID: 39163517 PMCID: PMC11335058 DOI: 10.1111/jcmm.18587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Thyroid cancer (TC) is a prevalent endocrine malignancy, with a significant increase in incidence worldwide. Ferroptosis is a novel form of programmed cell death, primarily caused by iron overload and reactive oxygen species (ROS)-dependent accumulation of lipid peroxides. The main manifestations of cellular ferroptosis are rupture of the outer membrane, crumpling of the mitochondria and shrinkage or disappearance of the mitochondrial cristae, thus leading to cell death. Ferroptosis is an important phenomenon in tumour progression, with crosstalk with tumour-associated signalling pathways profoundly affecting tumour progression, immune effects and treatment outcomes. The functions and mechanisms of ferroptosis in TC have also attracted increasing attention, mainly in terms of influencing tumour proliferation, invasion, migration, immune response, therapeutic susceptibility and genetic susceptibility. However, at present, the tumour biology of the morphological, biological and mechanism pathways of ferroptosis is much less deep in TC than in other malignancies. Hence, in this review, we highlighted the emerging role of ferroptosis in TC progression, including the novel mechanisms and potential opportunities for diagnosis and treatment, as well as discussed the limitations and prospects. Ferroptosis-based diagnostic and therapeutic strategies can potentially provide complementary management of TCs.
Collapse
Affiliation(s)
- Lin Yin
- Thyroid Gland Breast SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Xiaodan Luo
- Department of HemodialysisHuangshi Central HospitalHuangshiChina
| | - Xian Zhang
- Department of Neurology, Affiliated Zhongda HospitalResearch Institution of Neuropsychiatry, School of Medicine, Southeast UniversityNanjingJiangsuChina
| | - Bomin Cheng
- Chinese Medicine Health Management CenterShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| |
Collapse
|
5
|
Wei J, Qiu D, Yang X, Wang J, Shi M, Sun L, Lu X, Wang C, Liu H, Li R. Unraveling the role of sulfiredoxin-1 in early-onset preeclampsia: A key player in trophoblast ferroptosis. J Reprod Immunol 2024; 164:104273. [PMID: 38852489 DOI: 10.1016/j.jri.2024.104273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Preeclampsia (PE) significantly contributes to obstetric complications and maternal mortality, yet its pathogenesis and mechanisms are not well understood. Sulfiredoxin-1 (SRXN1) is known for its antioxidant activity and its role in defending against oxidative stress; it is also linked to various cancers. However, the role of SRXN1 in PE remains unclear. Our study found a significant decrease in SRXN1 levels in the serum and placental tissues of patients with early-onset preeclampsia (EOPE). Similarly, a PE-like mouse model showed reduced SRXN1 expression. Our in vitro experiments showed that reducing SRXN1 impaired trophoblast viability, decreased invasion and migration, and led to cell death, primarily through ferroptosis. These results are consistent with analyses of placental tissues from EOPE patients. In summary, lower SRXN1 levels during pregnancy contribute to trophoblast ferroptosis, potentially affecting the development and progression of EOPE.
Collapse
Affiliation(s)
- Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Di Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xinyao Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Caihong Wang
- Department of Obstetrics, Dongguan Houjie Hospital, Dongguan 523945, China.
| | - Haizhi Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Zhao H, Ren Y, Kou H, Zhang J, Zhang X. Increased CD56 expression after photodynamic therapy indicates an increased natural killer cell count following early photodynamic therapy for cutaneous squamous cell carcinoma. Oncol Lett 2024; 28:372. [PMID: 38910905 PMCID: PMC11190733 DOI: 10.3892/ol.2024.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common type of skin cancer. Photodynamic therapy (PDT) is a promising therapeutic method for managing cSCC due to its proven ability to target specific areas over time and its low risk of side effects. PDT may cause tissue damage and vascular shutdown, and may regulate local immunological responses. The present study aimed to investigate and compare the early lymphocyte modifications before and after PDT for SCC. A total of 10 patients with SCC were identified by pathological investigation. Initially, all wounds were treated with 20% aminolevulinic acid (ALA)-PDT as the initial stage in the therapeutic procedure. The wounds were treated by exposing them to red LED light with a wavelength of 635 nm, an energy density of 100 J/cm2 and an intensity of 80 mW/cm2. The tumor tissue was surgically removed 24 h later, and another round of PDT therapy was administered. Immunohistochemistry for CD3 and CD56 was conducted on the wound tissue post-surgery. If the wound showed granulation, necrosis or secretion, debridement was added to the therapy. All patients were monitored for 0.6-1.0 year post-treatment. ALA-PDT combination surgery fully controlled the tumor tissue in all 10 patients. The immunohistochemical analysis of the wound tissues showed that the expression of CD56 increased, while the expression of CD3 was not different after photodynamic therapy. These results also indirectly indicated that the overall count of NK cells in the 10 patients increased, nevertheless, there was no alteration in the T lymphocyte count. In conclusion, the ALA-PDT combination surgical therapy for cSCC demonstrates favorable results. An increase in CD56 expression may be a mechanism for the effective treatment of cSCC with PDT.
Collapse
Affiliation(s)
- Hongqing Zhao
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- Department of Plastic and Cosmetic Surgery, Nanbu County People's Hospital, Nanchong, Sichuan 637300, P.R. China
| | - Yuan Ren
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- Department of Plastic and Cosmetic Surgery, Army Medical University, Chongqing 400042, P.R. China
| | - Huiling Kou
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junbo Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xingcun Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
7
|
Chen Y, Pan G, Wu F, Zhang Y, Li Y, Luo D. Ferroptosis in thyroid cancer: Potential mechanisms, effective therapeutic targets and predictive biomarker. Biomed Pharmacother 2024; 177:116971. [PMID: 38901201 DOI: 10.1016/j.biopha.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Thyroid cancer is a prevalent endocrine malignancy whose global incidence has risen over the past several decades. Ferroptosis, a regulated form of cell death distinguished by the excessive buildup of iron-dependent lipid peroxidates, stands out from other programmed cell death pathways in terms of morphological and molecular characteristics. Increasing evidence suggests a close association between thyroid cancer and ferroptosis, that is, inducing ferroptosis effectively suppresses the proliferation of thyroid cancer cells and impede tumor advancement. Therefore, ferroptosis represents a promising therapeutic target for the clinical management of thyroid cancer in clinical settings. Alterations in ferroptosis-related genes hold potential for prognostic prediction in thyroid cancer. This review summarizes current studies on the role of ferroptosis in thyroid cancer, elucidating its mechanisms, therapeutic targets, and predictive biomarkers. The findings underscore the significance of ferroptosis in thyroid cancer and offer valuable insights into the development of innovative treatment strategies and accurate predictors for the thyroid cancer.
Collapse
Affiliation(s)
- Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Gang Pan
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fan Wu
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yu Zhang
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuanhui Li
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Dingcun Luo
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
8
|
Zhao JY, Yao JM, Zhang XZ, Wang KL, Jiang S, Guo SY, Sheng QQ, Liao L, Dong JJ. A New Ferroptosis-Related Long Non-Coding RNA Risk Model Predicts the Prognosis of Patients With Papillary Thyroid Cancer. World J Oncol 2024; 15:648-661. [PMID: 38993258 PMCID: PMC11236373 DOI: 10.14740/wjon1838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death that involves in cancer progression. However, the role of ferroptosis-related long non-coding RNAs (lncRNAs) in papillary thyroid cancer (PTC) remains to be elucidated. The purpose of this paper was to clarify the prognostic value of ferroptosis-related lncRNAs in PTC. Methods The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. The correlation between ferroptosis-related genes (FRGs) and lncRNA was determined using Pearson correlation analysis. Multivariate Cox regression model (P < 0.01) was performed to establish a ferroptosis-related lncRNAs risk model. Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, risk curve and nomograms were then performed to assess the accuracy and clinical applicability of prognostic models. The correlations between the prognosis model and clinicopathological variables, immune and m6A were analyzed. Finally, in vitro assays were performed to verify the role of LINC00900, LINC01614 and PARAL1 on the proliferation, migration and invasion in TPC-1 and BCPAP cells, as well as the relationship between three lncRNAs and ferroptosis. Results A five-ferroptosis-related lncRNAs (PARAL1, LINC00900, DPH6-DT, LINC01614, LPP-AS2) risk model was constructed. Based on the risk score, samples were divided into the high- and low-risk groups. Patients in the low-risk group had better prognosis than those in high-risk group. Compared to traditional clinicopathological features, risk score was more accurate in predicting prognosis in patients with PTC. Additionally, the difference of immune cell, function and checkpoints was observed between two groups. Moreover, experiments showed that LINC00900 promoted the proliferation, migration and invasion in TPC-1 and BCPAP cells, while LINC01614 and PARAL1 revealed opposite effects, all of which were related to ferroptosis. Conclusions In summary, we identified a five-ferroptosis-related lncRNAs risk model to predict the prognosis of PTC. Furthermore, our study also revealed that LINC00900 functioned as a tumor suppressor lncRNA, LINC01614 and PARAL1 as an oncogenic lncRNA in PTC.
Collapse
Affiliation(s)
- Jun Yu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan 250014, China
- These authors contributed equally to this paper
| | - Jin Ming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan 250014, China
- These authors contributed equally to this paper
| | - Xin Zhong Zhang
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| | - Kai Li Wang
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| | - Shan Jiang
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| | - Si Yi Guo
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| | - Qi Qi Sheng
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan 250014, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan 250014, China
| | - Jian Jun Dong
- Department of Endocrinology and Metabology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji’nan 250012, China
| |
Collapse
|
9
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
10
|
Wang H, Liu Y, Tang A, Zhang X. Molecular subtypes of clear cell renal carcinoma based on PCD-related long non-coding RNAs expression: insights into the underlying mechanisms and therapeutic strategies. Eur J Med Res 2024; 29:292. [PMID: 38773560 PMCID: PMC11106887 DOI: 10.1186/s40001-024-01883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND PCD-related long non-coding RNAs (PRLs) are rarely investigated in relation to clear cell renal carcinoma (ccRCC). As part of this study, we evaluated the immunological potential of PRL signatures as a biomarker for ccRCC prognosis and immunological function. MATERIALS AND METHODS Data were downloaded from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases. A Pearson correlation analysis was conducted on the 27 PCD-associated genes to determine whether lncRNAs were significantly associated with PCD. Kaplan-Meier analysis, biological function identification, immune infiltration analysis, estimation of efficacy of immunotherapy and targeted drug screening, and exploration of the landscape of mutation status were conducted by analyzing the risk scores. RESULTS Seven PRLs, LINC02747, AP001636.3, AC022126.1, LINC02657, LINC02609, LINC02154, and ZNNT1, were used to divide patients with ccRCC into groups with high and low risk. High-risk patients had a worse prognosis than low-risk patients, according to the results, and the PRL signature showed promising predictive ability. More immune cells were clustered in the high-risk group, whereas the immune cell function of the low-risk group was significantly suppressed. The high-risk group was less sensitive to immunotherapy, whereas the low-risk group had positive responses to most drugs. CONCLUSIONS Collectively, we established and verified a PRL signature that could competently guide the prognostic survival and immunotherapy of ccRCC. In addition, molecular subtypes were determined for ccRCC based on PRL expression, which may help elucidate the underlying molecular mechanism of ccRCC and develop targeted treatments.
Collapse
Affiliation(s)
- Han Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, China
| | - Yang Liu
- Department of Oncology, Yantian District People's Hospital, Shenzhen, China
| | - Aifa Tang
- Science and Educational Center of Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Ying L, Kong L, Qiu X, Cheng A, Wang Q, Xiu L, Shi J, Tao Y, Chai Z. A novel mitochondria-related core gene signature to predict the prognosis and evaluate tumour microenvironment in CESC single-cell validation. J Cell Mol Med 2024; 28:e18265. [PMID: 38534098 PMCID: PMC10967144 DOI: 10.1111/jcmm.18265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria and their related genes (MTRGs) are pivotal in the tumour microenvironment (TME) of cervical cancer, influencing prognosis and treatment response. This study developed a prognostic model using MTRGs to predict overall survival (OS) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), aiming for personalized therapy. Analysing 14 MTRGs like ISCU and NDUFA11 through techniques such as univariate Cox regression, we found that a low mitochondrial (MT) score is associated with better survival, while a high MT score predicts poorer outcomes. The TME score, particularly influenced by CD8 T cells, also correlates with prognosis, with a high score indicating favourable outcomes. The interplay between MT and TME subtypes revealed that the best prognosis is seen in patients with a low MT and high TME score. Our findings highlight the role of MTRGs as potential biomarkers and therapeutic targets in cervical cancer, offering a novel approach to improving patient outcomes through a more nuanced understanding of mitochondrial function and immune interactions within the TME. This model presents a promising avenue for enhancing the precision of prognostic assessments in CESC.
Collapse
Affiliation(s)
- Lingxiao Ying
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Lin Kong
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Xiaoxiao Qiu
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Aihua Cheng
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Qijun Wang
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Limeng Xiu
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Jinmei Shi
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Yanfei Tao
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| | - Zhihong Chai
- Department of GynecologyTaizhou Municipal Hospital, Medical College of Taizhou UniversityTaizhouChina
| |
Collapse
|
12
|
Sun L, Zheng G, Zhou M, Zhang Y, Yang Y, Zhang S, Gao L. In Vitro Ferroptotic and Antitumor Effect of Free or Liposome-Encapsulated Artesunate in Papillary Thyroid Cancer Cells. ACS OMEGA 2024; 9:7463-7470. [PMID: 38405445 PMCID: PMC10882705 DOI: 10.1021/acsomega.3c05226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Papillary thyroid cancer (PTC) is generally treated as an indolent and curable cancer. However, the unavailability of surgery and ineffective radiotherapy persists in PTCs, resulting in poor outcomes and low survival rates. Thus, new chemotherapeutic strategies for PTCs are urgently needed. Resistance to ferroptosis remarkably contributes to cancer occurrence and progression. Artesunate (ART) has been repurposed as an anticancer drug, as it induces cell death in numerous cancers. However, whether ART induces ferroptosis in PTC cells and, consequently, facilitates PTC therapy remains elusive. Furthermore, overcoming the pharmacological limitations of ART is a key requirement to support its clinical application. Herein, we reanalyzed the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression database (GTEx) to characterize the occurrence of resistance to ferroptosis in thyroid cancer. In vitro results showed that ART induced ferroptosis in PTC cells by increasing the cellular iron content. The encapsulation of ART by liposomes did not alter the efficiency in inducing ferroptosis and inhibiting the invasion and migration of PTC cells compared with direct ART application. Thus, PTC resistance to ferroptosis can be overcome by ART and liposome-encapsulated ART.
Collapse
Affiliation(s)
- Li Sun
- Department
of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Shandong
Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
- The
First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Guangzhe Zheng
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Meng Zhou
- Department
of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Shandong
Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Yingyu Zhang
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Yashuang Yang
- Department
of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Shandong
Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Shuping Zhang
- The
First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Ling Gao
- Department
of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Shandong
Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| |
Collapse
|
13
|
Li Y, Su H, Liu K, Zhao Z, Wang Y, Chen B, Xia J, Yuan H, Huang DS, Gu Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature. World J Surg Oncol 2024; 22:49. [PMID: 38331878 PMCID: PMC10854045 DOI: 10.1186/s12957-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Collapse
Affiliation(s)
- Yawei Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hang Su
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaidong Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuquan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huating Yuan
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - De-Shuang Huang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Franco-Juárez EX, González-Villasana V, Camacho-Moll ME, Rendón-Garlant L, Ramírez-Flores PN, Silva-Ramírez B, Peñuelas-Urquides K, Cabello-Ruiz ED, Castorena-Torres F, Bermúdez de León M. Mechanistic Insights about Sorafenib-, Valproic Acid- and Metformin-Induced Cell Death in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:1760. [PMID: 38339037 PMCID: PMC10855535 DOI: 10.3390/ijms25031760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.
Collapse
Affiliation(s)
- Edgar Xchel Franco-Juárez
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Vianey González-Villasana
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Luisa Rendón-Garlant
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Patricia Nefertari Ramírez-Flores
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico;
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Ethel Daniela Cabello-Ruiz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Fabiola Castorena-Torres
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| |
Collapse
|
15
|
Zhang J, Zhou X, Yao F, Zhang J, Li Q. TIPARP as a prognostic biomarker and potential immunotherapeutic target in male papillary thyroid carcinoma. Cancer Cell Int 2024; 24:34. [PMID: 38233939 PMCID: PMC10795290 DOI: 10.1186/s12935-024-03223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Male patients with papillary thyroid carcinoma (PTC) tend to have poorer prognosis compared to females, partially attributable to a higher rate of lymph node metastasis (LNM). Developing a precise predictive model for LNM occurrence in male PTC patients is imperative. While preliminary predictive models exist, there is room to improve accuracy. Further research is needed to create optimized prognostic models specific to LNM prediction in male PTC cases. METHODS We conducted a comprehensive search of publicly available microarray datasets to identify candidate genes continuously upregulated or downregulated during PTC progression in male patients only. Univariate Cox analysis and lasso regression were utilized to construct an 11-gene signature predictive of LNM. TIPARP emerged as a key candidate gene, which we validated at the protein level using immunohistochemical staining. A prognostic nomogram incorporating the signature and clinical factors was developed based on the TCGA cohort. RESULTS The 11-gene signature demonstrated good discriminative performance for LNM prediction in training and validation datasets. High TIPARP expression associated with advanced stage, high T stage, and presence of LNM. A prognostic nomogram integrating the signature and clinical variables reliably stratified male PTC patients into high and low recurrence risk groups. CONCLUSIONS We identified a robust 11-gene signature and prognostic nomogram for predicting LNM occurrence in male PTC patients. We propose TIPARP as a potential contributor to inferior outcomes in males, warranting further exploration as a prognostic biomarker and immunotherapeutic target. Our study provides insights into the molecular basis for gender disparities in PTC.
Collapse
Affiliation(s)
- Jianlin Zhang
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Xumin Zhou
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Fan Yao
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - JiaLi Zhang
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Qiang Li
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
16
|
Liu S, Yao Y, Hou M, Mei J, Sun L, Zhang G. Identification and validation of a ferroptosis-related signature for prediction of the prognosis and tumor microenvironment in patients with chromophobe renal cell carcinoma. BMC Cancer 2023; 23:1079. [PMID: 37940859 PMCID: PMC10634106 DOI: 10.1186/s12885-023-11589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ferroptosis is a novel form of regulated cell death that is different from other forms, which has an important role in tumor growth inhibition. The purpose of this study was to construct and validate a prognostic signature related to ferroptosis in chromophobe renal cell carcinoma (ChRCC) and to explore its role in immune cell infiltration and systemic therapy. METHODS The gene expression profiles of ChRCC patients obtained from The Cancer Genome Atlas (TCGA) database were used to identify differentially expressed prognostic ferroptosis-related genes (FRGs) by univariate Cox proportional hazards analyses. Ferroptosis molecular subtypes were obtained by consensus clustering analysis. The FRG-based signature in the training set was established by least absolute shrinkage and selection operator analysis and verified in the testing set. The association between molecular subtypes and the prognostic signature and immune microenvironment was explored to predict responses to immunotherapy. Immunohistochemistry was used to verify expression of the FRG-based signature externally. RESULTS ChRCC patients were divided into two FRG subtypes. Two FRGs (TFRC and SLC7A11) were identified to construct the prognostic signature. The high-risk group and cluster 2 had worse overall survival than the low-risk group and cluster 1, respectively. The low-risk group and cluster 1 had higher levels of immune cell infiltration and expression of MHC and immune checkpoint molecules than the high-risk group and cluster 2. The risk score was a predictor of overall survival and had a good predictive ability, which was verified in the testing set and evaluated by ROC and calibration curves. The high-risk group had a higher tumor mutation burden. The different sensitivities of targeted drugs in patients with different risks were evaluated. External immunohistochemical analysis showed that TFRC and SLC7A11 were highly expressed in tumor tissues compared with para-cancer normal tissues, and the expression level was significantly associated with a more advanced stage and worse cancer-specific survival. CONCLUSIONS An FRG signature was identified and validated to predict the clinicopathological features and prognosis of ChRCC. A significant association between the signature and immune cell infiltration, immune checkpoint expression, and drug response is helpful to guide comprehensive treatment of ChRCC.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Mingyu Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, P.R. China
| | - Jingchang Mei
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China.
| |
Collapse
|
17
|
D'Aprile S, Denaro S, Pavone AM, Giallongo S, Giallongo C, Distefano A, Salvatorelli L, Torrisi F, Giuffrida R, Forte S, Tibullo D, Li Volti G, Magro G, Vicario N, Parenti R. Anaplastic thyroid cancer cells reduce CD71 levels to increase iron overload tolerance. J Transl Med 2023; 21:780. [PMID: 37924062 PMCID: PMC10625232 DOI: 10.1186/s12967-023-04664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Follicular thyroid cancer (FTC) is a prevalent form of differentiated thyroid cancer, whereas anaplastic thyroid cancer (ATC) represents a rare, fast-growing, undifferentiated, and highly aggressive tumor, posing significant challenges for eradication. Ferroptosis, an iron-dependent cell death mechanism driven by the excessive production of reactive oxygen species and subsequent lipid peroxidation, emerges as a promising therapeutic strategy for cancer. It has been observed that many cancer cells exhibit sensitivity to ferroptosis, while some other histotypes appear to be resistant, by counteracting the metabolic changes and oxidative stress induced by iron overload. METHODS Here we used human biopsies and in vitro approaches to analyse the effects of iron-dependent cell death. We assessed cell proliferation and viability through MTT turnover, clonogenic assays, and cytofluorimetric-assisted analysis. Lipid peroxidation assay and western blot were used to analyse molecular mechanisms underlying ferroptosis modulation. Two distinct thyroid cancer cell lines, FTC-133 (follicular) and 8505C (anaplastic), were utilized. These cell lines were exposed to ferroptosis inducers, Erastin and RSL3, while simulating an iron overload condition using ferric ammonium citrate. RESULTS Our evidence suggests that FTC-133 cell line, exposed to iron overload, reduced their viability and showed increased ferroptosis. In contrast, the 8505C cell line seems to better tolerate ferroptosis, responding by modulating CD71, which is involved in iron internalization and seems to have a role in resistance to iron overload and consequently in maintaining cell viability. CONCLUSIONS The differential tolerance to ferroptosis observed in our study may hold clinical implications, particularly in addressing the unmet therapeutic needs associated with ATC treatment, where resistance to ferroptosis appears more pronounced compared to FTC.
Collapse
Affiliation(s)
- Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Maria Pavone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Filippo Torrisi
- Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | | | | | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
18
|
HajiEsmailPoor Z, Kargar Z, Tabnak P. Radiomics diagnostic performance in predicting lymph node metastasis of papillary thyroid carcinoma: A systematic review and meta-analysis. Eur J Radiol 2023; 168:111129. [PMID: 37820522 DOI: 10.1016/j.ejrad.2023.111129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of radiomics in lymph node metastasis (LNM) prediction in patients with papillary thyroid carcinoma (PTC) through a systematic review and meta-analysis. METHOD A literature search of PubMed, EMBASE, and Web of Science was conducted to find relevant studies published until February 18th, 2023. Studies that reported the accuracy of radiomics in different imaging modalities for LNM prediction in PTC patients were selected. The methodological quality of included studies was evaluated by radiomics quality score (RQS) and quality assessment of diagnostic accuracy studies (QUADAS-2) tools. General characteristics and radiomics accuracy were extracted. Overall sensitivity, specificity, and area under the curve (AUC) were calculated for diagnostic accuracy evaluation. Spearman correlation coefficient and subgroup analysis were performed for heterogeneity exploration. RESULTS In total, 25 studies were included, of which 22 studies provided adequate data for meta-analysis. We conducted two types of meta-analysis: one focused solely on radiomics features models and the other combined radiomics and non-radiomics features models in the analysis. The pooled sensitivity, specificity, and AUC of radiomics and combined models were 0.75 [0.68, 0.80] vs. 0.77 [0.74, 0.80], 0.77 [0.74, 0.81] vs. 0.83 [0.78, 0.87] and 0.80 [0.73, 0.85] vs 0.82 [0.75, 0.88], respectively. The analysis showed a high heterogeneity level among the included studies. There was no threshold effect. The subgroup analysis demonstrated that utilizing ultrasonography, 2D segmentation, central and lateral LNM detection, automatic segmentation, and PyRadiomics software could slightly improve diagnostic accuracy. CONCLUSIONS Our meta-analysis shows that the radiomics has the potential for pre-operative LNM prediction in PTC patients. Although methodological quality is sufficient but we still need more prospective studies with larger sample sizes from different centers.
Collapse
Affiliation(s)
| | - Zana Kargar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Du R, Li J, Li F, Mi L, Dionigi G, Sun H, Liang N. Estimating disease-free survival of thyroid cancer based on novel cuprotosis-related gene model. Front Endocrinol (Lausanne) 2023; 14:1209172. [PMID: 37745716 PMCID: PMC10515282 DOI: 10.3389/fendo.2023.1209172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background Cuprotosis is a newly discovered form of cell death that differs from other types of cell death. The aim of this study was to investigate the functional role and a possible prognostic model for thyroid cancer. Methods TCGA and GEO were used to investigate the differential expression of CRGs in THCA. KEGG and GO enrichment analyses were applied to investigate the possible molecular functions. The features of CRGs were selected by LASSO regression. 20 pairs of samples were randomly collected from the hospital to compare expression between tumor and normal. Results Among the 19 CRGs related to thyroid cancer recurrence, 16 genes were differentially expressed in thyroid cancer. KEGG analysis showed that the 19 CRGs were mainly enriched in cell death, cell cycle and ribosomal pathways. K-M survival analysis and subsequent multiple logistic regression revealed that the expression of BUB1 and GINS2 were potential risk factors for disease-free survival (DFS) of thyroid cancer. In addition, further LASSO-regression selected the following three DFS-related CRGs: FDX1, BUB1 and RPL3. A novel prognostic prediction model was constructed by nomogram, and the prediction probability for 1-, 3- and 5-year survival approached the actual time. As for the possible mechanisms, FDX1, BUB1 and RPL3 were associated with immune infiltration. The cell model experiment illustrated that the ATM signaling pathway might be involved in thyroid cancer cell death. Conclusion Three CRG models (FDX1, BUB1, RPL3) could better predict the prognosis of thyroid cancer. Immune cell infiltration and the ATM pathway were the possible mechanisms.
Collapse
Affiliation(s)
- Rui Du
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Jingting Li
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Fang Li
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Lusi Mi
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Gianlorenzo Dionigi
- Department of Pathophysiology and Transplantation, Division of Surgery, Istituto Auxologico Italiano IRCCS (Istituto di Ricovero e Cura a Carattere Scientifco), University of Milan, Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| | - Nan Liang
- Division of Thyroid Surgery, The China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun, China
| |
Collapse
|
20
|
Metovic J, Cabutti F, Osella-Abate S, Orlando G, Tampieri C, Napoli F, Maletta F, Daniele L, Volante M, Papotti M. Clinical and Pathological Features and Gene Expression Profiles of Clinically Aggressive Papillary Thyroid Carcinomas. Endocr Pathol 2023; 34:298-310. [PMID: 37208504 PMCID: PMC10511602 DOI: 10.1007/s12022-023-09769-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Papillary thyroid carcinoma (PTC) is considered an indolent neoplasm but it may demonstrate aggressive behavior. We aimed to identify clinical and pathological characteristics and molecular signatures associated with aggressive forms of PTCs. We selected 43 aggressive PTC cases based on the presence of metastases at the time of diagnosis, the development of distant metastasis during follow-up, and/or biochemical recurrence, and 43 PTC patients that were disease-free upon follow-up, matching them according to age, sex, pT, and pN parameters. Twenty-four pairs (a total of 48 cases) and 6 normal thyroid tissues were studied using targeted mRNA screening of cancer-associated genes employing NanoString nCounter® technology. In general, aggressive PTCs showed distinctive clinical and morphological features. Among adverse prognostic parameters, the presence of necrosis and an increased mitotic index were associated with shorter disease-free and overall survivals. Other parameters associated with shorter disease-free or overall survivals include a lack of tumor capsule, the presence of vascular invasion, tumor-infiltrating lymphocytes, fibrosclerotic changes, age > 55 years, and a high pTN stage. Various pathways were differentially regulated in non-aggressive as compared to aggressive PTC, including the DNA damage repair, the MAPK, and the RAS pathways. In particular, the hedgehog pathway was differentially de-regulated in aggressive PTC as compared to non-aggressive PTC cases, being WNT10A and GLI3 genes significantly up- and down-regulated in aggressive PTC and GSK3B up-regulated in non-aggressive PTC cases. In conclusion, our study revealed specific molecular signatures and morphological features in aggressive PTC that may be useful to predict more aggressive behavior in a subset of PTC patients. These findings may be useful when developing novel, tailored treatment options for these patients.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Francesco Cabutti
- Department of Medical Sciences, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Cristian Tampieri
- Department of Medical Sciences, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Francesca Maletta
- Pathology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | | | - Marco Volante
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Città Della Salute E Della Scienza Hospital, Pathology Unit, Turin, Italy
| |
Collapse
|
21
|
Yang L, Ma J, Lei P, Yi J, Ma Y, Huang Z, Wang T, Ping H, Ruan D, Sun D, Pan H. Advances in Antioxidant Applications for Combating 131I Side Effects in Thyroid Cancer Treatment. TOXICS 2023; 11:529. [PMID: 37368629 DOI: 10.3390/toxics11060529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Thyroid cancer is the most common endocrine cancer, and its prevalence has been increasing for decades. Approx. 95% of differentiated thyroid carcinomas are treated using 131iodine (131I), a radionuclide with a half-life of 8 days, to achieve optimal thyroid residual ablation following thyroidectomy. However, while 131I is highly enriched in eliminating thyroid tissue, it can also retain and damage other body parts (salivary glands, liver, etc.) without selectivity, and even trigger salivary gland dysfunction, secondary cancer, and other side effects. A significant amount of data suggests that the primary mechanism for these side effects is the excessive production of reactive oxygen species, causing a severe imbalance of oxidant/antioxidant in the cellular components, resulting in secondary DNA damage and abnormal vascular permeability. Antioxidants are substances that are capable of binding free radicals and reducing or preventing the oxidation of the substrate in a significant way. These compounds can help prevent damage caused by free radicals, which can attack lipids, protein amino acids, polyunsaturated fatty acids, and double bonds of DNA bases. Based on this, the rational utilization of the free radical scavenging function of antioxidants to maximize a reduction in 131I side effects is a promising medical strategy. This review provides an overview of the side effects of 131I, the mechanisms by which 131I causes oxidative stress-mediated damage, and the potential of natural and synthetic antioxidants in ameliorating the side effects of 131I. Finally, the disadvantages of the clinical application of antioxidants and their improving strategies are prospected. Clinicians and nursing staff can use this information to alleviate 131I side effects in the future, both effectively and reasonably.
Collapse
Affiliation(s)
- Li Yang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhongke Huang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Tingjue Wang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Haiyan Ping
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Danping Ruan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hongying Pan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
22
|
Qin RX, Yang Y, Chen JF, Huang LJ, Xu W, Qin QC, Liang XJ, Lai XY, Huang XY, Xie MS, Chen L. Transcriptomic analysis reveals the potential biological mechanism of AIS and lung adenocarcinoma. Front Neurol 2023; 14:1119160. [PMID: 37265472 PMCID: PMC10229805 DOI: 10.3389/fneur.2023.1119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Acute ischemic stroke (AIS) and lung adenocarcinoma (LUAD) are associated with some of the highest morbidity and mortality rates worldwide. Despite reports on their strong correlation, the causal relationship is not fully understood. The study aimed to identify and annotate the biological functions of hub genes with clinical diagnostic efficacy in AIS and LUAD. Methods Transcriptome and single-cell datasets were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified the differentially expressed genes (DEGs) upregulated in AIS and LUAD and found 372 genes intersecting both datasets. Hub genes were identified using protein-protein interaction (PPI) networks, and the diagnostic and prognostic utility of these hub genes was then investigated using receiver operating characteristic (ROC) curves, survival analysis, and univariable Cox proportional hazard regression. Single-cell analysis was used to detect whether the hub genes were expressed in tumor epithelial cells. The immune microenvironment of AIS and LUAD was assessed using the CIBERSORT algorithm. The protein expression of these hub genes was tracked using the Human Protein Atlas (HPA). We calculated the number of positive cells using the digital pathology software QuPath. Finally, we performed molecular docking after using the Enrichr database to predict possible medicines. Results We identified the molecular mechanisms underlying hub genes in AIS and LUAD and found that CCNA2, CCNB1, CDKN2A, and CDK1 were highly expressed in AIS and LUAD tissue samples compared to controls. The hub genes were mainly involved in the following pathways: the cell cycle, cellular senescence, and the HIF-1 signaling pathway. Using immunohistochemical slices from the HPA database, we confirmed that these hub genes have a high diagnostic capability for AIS and LUAD. Further, their high expression is associated with poor prognosis. Finally, curcumin was tested as a potential medication using molecular docking modeling. Discussion Our findings suggest that the hub genes we found in this study contribute to the development and progression of AIS and LUAD by altering the cellular senescence pathway. Thus, they may be promising markers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Rong-Xing Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jia-Feng Chen
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Juan Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Xu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qing-Chun Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jun Liang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xin-Yu Lai
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Ying Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min-Shan Xie
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Regenerative Medicine and Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
23
|
Lin S, Xu Y, Liu B, Zheng L, Cao C, Wu P, Ding W, Ren F. A novel cuproptosis-related gene signature for overall survival prediction in uterine corpus endometrial carcinoma (UCEC). Heliyon 2023; 9:e14613. [PMID: 37035374 PMCID: PMC10073764 DOI: 10.1016/j.heliyon.2023.e14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Cuproptosis is a copper-dependent model of cell death involved in tumor genesis and progression. Its roles in uterine corpus endometrial carcinoma (UCEC) remains elusive. Here, we aimed to explore the expression and prognostic values of cuprotosis-related genes (CRGs) in UCEC. Expression profiles and clinical data of UCEC were downloaded from The Cancer Genome Atlas (TCGA), and randomly divided into testing or training cohort (1:1 ratio). The CRG signature was identified by LASSO regression analysis. The differentially expressed genes and their functional enrichment analysis were performed by the "limma" R package and Metascape, respectively. The immunocytes infiltration was measured by TIMER, and "GSVA" R package. In total, seven differentially expressed prognostic genes of CRGs in UCEC were identified, and four genes (GLS, CDKN2A, PC, and SUCLG1) were selected to construct a predictive model in training cohort. UCEC patients from training and testing cohorts were further divided into high- or low-risk groups according to the median risk score. High-risk group favored poor prognosis compared to low-risk group. Functional enrichment analysis revealed this CRG signature were got involved in the process of cell-cell adhesion and immune activities (e.g., IL-1 signaling pathway, cellular response to cytokine stimulus). Further analyses revealed there were significant differences between high- and low-risk patients regarding immunocytes infiltration, chemokines, and chemokine receptors. Finally, the expression and biological functions of identified CRGs were confirmed by UCEC samples and experimental methods in vitro. In summary, the CRG signature was significantly correlated with patients' overall survival, which could provide insights into the diagnosis and prognosis prediction for UCEC.
Collapse
|
24
|
Shi WK, Liu YX, Qiu XY, Zhou JY, Zhou JL, Lin GL. Construction and validation of a novel Ferroptosis-related gene signature predictive model in rectal Cancer. BMC Genomics 2022; 23:764. [DOI: 10.1186/s12864-022-08996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Rectal cancer (RC) is one of the most common malignant tumors. Ferroptosis is an iron-dependent form of cell death, which plays an important role in various cancers. However, the correlation between ferroptosis-related genes (FRGs) and prognosis in RC remains unclear.
Methods
Gene expression data from The Cancer Genome Atlas Rectum adenocarcinoma (TCGA-READ) and GSE87211 were downloaded. Clustering and functional enrichment were evaluated. A FRGs risk score was established based on the univariate Cox analysis and the Least absolute shrinkage and selection operator (LASSO) analysis. K-M analysis and ROC analysis were conducted to determine prognostic values. qRT-PCR was performed to validate levels of mRNA expression. Multivariate Cox analysis was used to build a prognostic prediction model based on the risk score.
Results
Based on FRGs, RC patients were grouped into two clusters. In the functional enrichment of differentially expressed genes between the two clusters, immune-related pathways dominated. A novel FRGs signature with 14 genes related to the overall survival (OS) of RC was established. qRT-PCR of the 14 genes identified TP63, ISCU, PLIN4, MAP3K5, OXSR, FANCD2 and ATM were overexpressed in RC tissue; HSPB1, MAPK1, ABCC1, PANX1, MAPK9 and ATG7 were underexpressed; TUBE1 had no difference. The high-risk group had a significantly lower OS than the low-risk group (P < 0.001), and ROC curve analysis confirmed the signature’s predictive capacity. Multivariate analysis demonstrated that the risk score and age were independent prognostic factors.
Conclusion
A novel FRGs model can be used to predict the prognosis in RC, as well as to guide individual treatment.
Collapse
|
25
|
Wang Z, Wu P, Shi J, Ji X, He L, Dong W, Wang Z, Zhang H, Sun W. A novel necroptosis-related gene signature associated with immune landscape for predicting the prognosis of papillary thyroid cancer. Front Genet 2022; 13:947216. [PMID: 36186479 PMCID: PMC9520455 DOI: 10.3389/fgene.2022.947216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Necroptosis, a type of programmed cell death, has been implicated in a variety of cancer-related biological processes. However, the roles of necroptosis-related genes in thyroid cancer yet remain unknown. Methods: A necroptosis-related gene signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis. The predictive value of the prognostic signature was validated in an internal cohort. Additionally, the single-sample gene set enrichment analysis (ssGSEA) was used to examine the relationships between necroptosis and immune cells, immunological functions, and immune checkpoints. Next, the modeled genes expressions were validated in 96 pairs of clinical tumor and normal tissue samples. Finally, the effects of modeled genes on PTC cells were studied by RNA interference approaches in vitro. Results: In this study, the risk signature of seven necroptosis-related genes was created to predict the prognosis of papillary thyroid cancer (PTC) patients, and all patients were divided into high- and low-risk groups. Patients in the high-risk group fared worse in terms of overall survival than those in the low-risk group. The area under the curve (AUC) of the receiving operating characteristic (ROC) curves proved the predictive capability of created signature. The risk score was found to be an independent risk factor for prognosis in multivariate Cox analysis. The low-risk group showed increased immune cell infiltration and immunological activity, implying that they might respond better to immune checkpoint inhibitor medication. Next, GEO database and qRT-PCR in 96 pairs of matched tumorous and non-tumorous tissues were used to validate the expression of the seven modeled genes in PTCs, and the results were compatible with TCGA database. Finally, overexpression of IPMK, KLF9, SPATA2 could significantly inhibit the proliferation, invasion and migration of PTC cells. Conclusion: The created necroptosis associated risk signature has the potential to have prognostic capability in PTC for patient outcome. The findings of this study could pave the way for further research into the link between necroptosis and tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- *Correspondence: Wei Sun, ; Hao Zhang,
| | - Wei Sun
- *Correspondence: Wei Sun, ; Hao Zhang,
| |
Collapse
|
26
|
A Potential Four-Gene Signature and Nomogram for Predicting the Overall Survival of Papillary Thyroid Cancer. DISEASE MARKERS 2022; 2022:8735551. [PMID: 36193505 PMCID: PMC9526076 DOI: 10.1155/2022/8735551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background. Although the prognosis of papillary thyroid cancer (PTC) is relatively good, some patients experience recurrence or distant metastasis after thyroidectomy and progress to radioactive iodine refractory stage. Therefore, accurate prediction of clinical outlook can aid to screen out the minority of patients with poorer prognosis and avoid excessive treatment in low-risk patients. Methods. The RNA-seq and clinical data of PTC patients was downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Multivariate and Lasso Cox regression analyses were used to construct a prognostic nomogram to predict overall survival (OS). Thereafter, quantitative RT-PCR and Human Protein Atlas (HPA) database were employed to verify the expression of key genes. Results. A four-gene risk score comprising ABI3BP, DPT, MRO, and TENM1 was exhibited strong prognostic value. Moreover, an integrated nomogram was established based on the risk score, age, AJCC (American Joint Commission on Cancer) stage, tumor size, extrathyroidal extension, and history of neoadjuvant treatment, which exhibited significantly better predictive performance than TNM stage system (
). GSEA (Gene Set Enrichment Analysis) and GSVA (Gene Set Variation Analysis) revealed that the different tumor-associated hallmarks, biological processes, and pathways were substantially enriched in the poor-prognosis group. In addition, a ceRNA network was constructed by including the four genes (ABI3BP, DPT, MRO, and TENM1), 54 lncRNAs, and 10 miRNAs. Finally, both the relative mRNA and protein expression of ABI3BP, DPT, MRO, and TENM1 were validated. Conclusion. The present study identified a four-gene risk signature and developed a novel nomogram, which could be regarded as a reliable prognostic model for PTC patients. The findings also revealed preliminary potential mechanisms that may influence the prognosis outcome. These results can be conducive to design personalized treatment and prognosis management in affected patients.
Collapse
|
27
|
Cheng T, Wu Y, Liu Z, Yu Y, Sun S, Guo M, Sun B, Huang C. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol 2022; 13:970950. [PMID: 36052076 PMCID: PMC9424905 DOI: 10.3389/fimmu.2022.970950] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, breast cancer (BRCA) has become the most common cancer in the world, whose pathological mechanism is complex. Among its subtypes, triple-negative breast cancer (TNBC) has the worst prognosis. With the increasing number of diagnosed TNBC patients, the urgent need of novel biomarkers is also rising. Cyclin-dependent kinase inhibitor 2A (CDKN2A) has recently emerged as a key regulator associated with ferroptosis and cuproptosis (FAC) and has exhibited a significant effect on BRCA, but its detailed mechanism remains elusive. Herein, we conducted the first converge comprehensive landscape analysis of FAC-related gene CDKN2A in BRCA and disclosed its prognostic value in BRCA. Then, an unsupervised cluster analysis based on CDKN2A-correlated genes unveiled three subtypes, namely cold-immune subtype, IFN-γ activated subtype and FTL-dominant subtype. Subsequent analyses depicting hallmarks of tumor microenvironment (TME) among three subtypes suggested strong association between TNBC and CDKN2A. Given the fact that the most clinically heterogeneous TNBC always displayed the most severe outcomes and lacked relevant drug targets, we further explored the potential of immunotherapy for TNBC by interfering CDKN2A and constructed the CDKN2A-derived prognostic model for TNBC patients by Lasso-Cox. The 21-gene–based prognostic model showed high accuracy and was verified in external independent validation cohort. Moreover, we proposed three drugs for TNBC patients based on our model via targeting epidermal growth factor receptor. In summary, our study indicated the potential of CDKN2A as a pioneering prognostic predictor for TNBC and provided a rationale of immunotherapy for TNBC, and offered fresh perspectives and orientations for cancer treatment via inducing ferroptosis and cuproptosis to develop novel anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Tianyi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yingyi Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macao SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zhiyu Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yi Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Shixue Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Chen Huang,
| | - Chen Huang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macao SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Baoqing Sun, ; Chen Huang,
| |
Collapse
|
28
|
Gorini F, Vassalle C. Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology. Antioxidants (Basel) 2022; 11:antiox11061188. [PMID: 35740085 PMCID: PMC9227825 DOI: 10.3390/antiox11061188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is considered one of the largest global public-health concerns, affecting approximately more than 400 million individuals worldwide. The pathogenesis of T2D is very complex and, among the modifiable risk factors, selenium (Se) has recently emerged as a determinant of T2D pathogenesis and progression. Selenium is considered an essential element with antioxidant properties, and is incorporated into the selenoproteins involved in the antioxidant response. Furthermore, deiodinases, the enzymes responsible for homeostasis and for controlling the activity of thyroid hormones (THs), contain Se. Given the crucial action of oxidative stress in the onset of insulin resistance (IR) and T2D, and the close connection between THs and glucose metabolism, Se may be involved in these fundamental relationships; it may cover a dual role, both as a protective factor and as a risk factor of T2D, depending on its basal plasma concentration and the individual’s diet intake. In this review we discuss the current evidence (from experimental, observational and randomized clinical studies) on how Se is associated with the occurrence of T2D and its influence on the relationship between thyroid pathophysiology, IR and T2D.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Correspondence:
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, 56124 Pisa, Italy;
| |
Collapse
|