1
|
Huang G, Yang X, Yu Q, Luo Q, Ju C, Zhang B, Chen Y, Liang Z, Xia S, Wang X, Xiang D, Zhong N, Tang XX. Overexpression of STX11 alleviates pulmonary fibrosis by inhibiting fibroblast activation via the PI3K/AKT/mTOR pathway. Signal Transduct Target Ther 2024; 9:306. [PMID: 39523374 PMCID: PMC11551190 DOI: 10.1038/s41392-024-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Fibroblast activation plays an important role in the occurrence and development of idiopathic pulmonary fibrosis (IPF), which is a progressive, incurable, and fibrotic lung disease. However, the underlying mechanism of fibroblast activation in IPF remains elusive. Here, we showed that the expression levels of STX11 and SNAP25 were downregulated in the lung tissues from patients with IPF and mice with bleomycin (BLM)-induced lung fibrosis as well as in the activated fibroblasts. Upregulation of STX11 or SNAP25 suppressed TGF-β1-induced activation of human lung fibroblasts (HLFs) via promoting autophagy. However, they failed to suppress fibroblast actviation when autophagy was blocked with the use of chloroquine (CQ). In addition, STX11 or SNAP25 could inhibit TGF-β1-induced fibroblast proliferation and migration. In vivo, overexpression of STX11 exerted its protective role in the mice with BLM-induced lung fibrosis. STX11 and SNAP25 mutually promoted expression of each other. Co-IP assay indicated that STX11 has an interaction with SNAP25. Mechanistically, STX11-SNAP25 interaction activated fibroblast autophagy and further inhibited fibroblast activation via blocking the PI3K/AKT/mTOR pathway. Overall, the results suggested that STX11-SNAP25 interaction significantly inhibited lung fibrosis by promoting fibroblast autophagy and suppressing fibroblast activation via blocking the PI3K/ATK/mTOR signaling pathway. Therefore, STX11 serves as a promising therapeutic target in IPF.
Collapse
Affiliation(s)
- Guichuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangsheng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bangyan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
2
|
Wang Y, Cao Y, Wang Y, Sun J, Wang L, Song X, Zhao X. Construction and analysis of protein-protein interaction network for esophageal squamous cell carcinoma. Comput Biol Med 2024; 182:109156. [PMID: 39276610 DOI: 10.1016/j.compbiomed.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract. Clinical findings reveal that the five-year survival rate for mid-to late-stage ESCC patients is merely around 20 %, whereas those diagnosed at an early stage can achieve up to a 95 % survival rate. Consequently, early detection is paramount to improving ESCC patient survival. Protein markers are essential for diagnosing diseases, and the identification of new candidate proteins associated with ESCC through the protein-protein interaction (PPI) network is aimed for in this paper. The PPI network related to ESCC was constructed using protein data, comprising 2094 nodes and 19,660 edges. To assess the nodes' importance in the network, three metrics-degree centrality, betweenness centrality, and closeness centrality-were employed, leading to the identification of 81 key proteins. Subsequently, the biological significance of these proteins in the network was explored, combining biomedical knowledge from three perspectives: network, node, and cluster. The results demonstrated that 52 out of 81 key proteins were confirmed to be linked to ESCC. Among the remaining 29 unreported proteins, 18 displayed significant biological significance, indicating their potential as protein markers related to ESCC.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuhan Cao
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingcong Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Chen Z, Wang S, Wang J, Wang Y, Qi X, An B, Sun L, Lin L. SNAP25-induced MYC upregulation promotes high-grade neuroendocrine lung carcinoma progression. Front Immunol 2024; 15:1411114. [PMID: 39430761 PMCID: PMC11486671 DOI: 10.3389/fimmu.2024.1411114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background This study investigated the expression and role of Synaptosome associated protein 25 (SNAP25) in high-grade neuroendocrine carcinoma (HGNEC). Methods We used differentially expressed analysis and weighted gene co-expression network analysis (WGCNA) to identify key genes and modules in HGNEC. KEGG and GO analyses helped understand these genes' roles, and ROC curves assessed their diagnostic value. We also studied SNAP25's relation to immune infiltration and confirmed findings with in vitro and vivo experiments and datasets. Results WGCNA identified 595 key genes related to pathways like MAPK signaling, GABAergic synapse, and cancer-related transcriptional misregulation. Top genes included SNAP25, MYC, NRXN1, GAD2, and SYT1. SNAP25 was notably associated with M2 macrophage infiltration. Dataset GSE40275 confirmed SNAP25's high expression and poor prognosis in HGNEC. qRT-PCR and WB analyses showed increased SNAP25 and c-MYC levels in HGNEC, promoting MEK/ERK pathway activity. Reducing SNAP25 decreased H1299 cell proliferation, migration, invasion, and levels of c-MYC, MEK, and ERK. Finally, in vivo experiments further confirmed that SNAP25 knockout can inhibit tumor growth. Conclusion SNAP25 regulates c-MYC activation by stimulating the MEK/ERK pathway, ultimately influencing the development of HGNEC.
Collapse
Affiliation(s)
- Zhiqiang Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo An
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Huang B, Deng X, Zhou G, Li K, Feng Y, Xie G, Liu R, Song L, Huang Z, Jia Z. SYT4 binds to SNAP25 to facilitate exosomal secretion and prostate cancer enzalutamide resistance. Cancer Sci 2024; 115:2630-2645. [PMID: 38889208 PMCID: PMC11309949 DOI: 10.1111/cas.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.
Collapse
Affiliation(s)
- Budeng Huang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiyue Deng
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guochao Zhou
- The 947th Army Hospital of the Chinese PLAKashgarChina
| | - Keqiang Li
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuankang Feng
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guoqing Xie
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ruoyang Liu
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Liang Song
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenlin Huang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhankui Jia
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Di L, Li M, Lei X, Xie W, Liu G, Wang Y, Zhang W, Zhu WG. Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment. Sci Rep 2024; 14:17443. [PMID: 39075190 PMCID: PMC11286837 DOI: 10.1038/s41598-024-65018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/16/2024] [Indexed: 07/31/2024] Open
Abstract
Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.
Collapse
Affiliation(s)
- Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengyan Li
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xianli Lei
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Faculty of Medicine, Peking University, Beijing, 100191, China
| | - Wenting Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Guoqiang Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, 43614, USA
| | - Wenjing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Wei-Guo Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
- College of Basic Medical Sciences, Wan Nan Medical College, Wuhu, 241006, China.
- International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Kanahori M, Shimada E, Matsumoto Y, Endo M, Fujiwara T, Nabeshima A, Hirose T, Kawaguchi K, Oyama R, Oda Y, Nakashima Y. Immune evasion in lung metastasis of leiomyosarcoma: upregulation of EPCAM inhibits CD8 + T cell infiltration. Br J Cancer 2024; 130:1083-1095. [PMID: 38291183 PMCID: PMC10991329 DOI: 10.1038/s41416-024-02576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Leiomyosarcomas are among the most common histological types of soft tissue sarcoma (STS), with no effective treatment available for advanced patients. Lung metastasis, the most common site of distant metastasis, is the primary prognostic factor. We analysed the immune environment targeting lung metastasis of STS to explore new targets for immunotherapy. METHODS We analysed the immune environment of primary and lung metastases in 38 patients with STS using immunohistochemistry. Next, we performed gene expression analyses on primary and lung metastatic tissues from six patients with leiomyosarcoma. Using human leiomyosarcoma cell lines, the effects of the identified genes on immune cells were assessed in vitro. RESULTS Immunohistochemistry showed a significant decrease in CD8+ cells in the lung metastases of leiomyosarcoma. Among the genes upregulated in lung metastases, epithelial cellular adhesion molecule (EPCAM) showed the strongest negative correlation with the number of CD8+ cells. Transwell assay results showed that the migration of CD8+ T cells was significantly increased in the conditioned media obtained after inhibition or knock down of EPCAM. CONCLUSIONS EPCAM was upregulated in lung metastases of leiomyosarcoma, suggesting inhibition of CD8+ T cell migration. Our findings suggest that EPCAM could serve as a potential novel therapeutic target for leiomyosarcoma.
Collapse
Affiliation(s)
- Masaya Kanahori
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Eijiro Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Kengo Kawaguchi
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Ryunosuke Oyama
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kikuchi K, Takashima Y, Matsumoto T, Kuroda R. LIGHT regulated gene expression in rheumatoid synovial fibroblasts. Mol Biol Rep 2024; 51:356. [PMID: 38401037 PMCID: PMC10894125 DOI: 10.1007/s11033-024-09311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Synovial hyperplasia caused by rheumatoid arthritis (RA), an autoimmune inflammatory disease, leads to the destruction of the articular cartilage and bone. A member of the tumor necrosis factor superfamily, Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) has been shown to correlate with the pathogenesis of RA. METHODS We used cDNA microarray analysis to compare the expression of genes in rheumatoid fibroblast-like synoviocytes with and without LIGHT stimulation. RESULTS Significant changes in gene expression (P-values < 0.05 and fold change ≥ 2.0) were associated mainly with biological function categories of glycoprotein, glycosylation site as N-linked, plasma membrane part, integral to plasma membrane, intrinsic to plasma membrane, signal, plasma membrane, signal peptide, alternative splicing, and topological domain as extracellular. CONCLUSIONS Our results indicate that LIGHT may regulate the expression in RA-FLS of genes which are important in the differentiation of several cell types and in cellular functions.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
8
|
Zhang L, Liu J, Wang H, Xu Z, Wang Y, Chen Y, Peng H. MYH16 upregulation is associated with lung adenocarcinoma aggressiveness and immune infiltration. J Biochem Mol Toxicol 2023; 37:e23490. [PMID: 37589445 DOI: 10.1002/jbt.23490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Myosin heavy chain 16 (MYH16) may significantly affect cell cycle progression. Nevertheless, there is a lack of evidence about the clinical relevance of MYH16 upregulation in pan cancers, including lung adenocarcinoma (LUAD). MYH16 expression patterns were evaluated in various bioinformatics databases using The Cancer Genome Atlas data set. Clinical and pathological factor data were employed to risk-stratify patients. The Kaplan-Meier plotter approach was used to estimate survival rates. Tumor immune infiltration was explored via the TIMER tool, and gene set enrichment analysis (GSEA) was used to identify the pathways involved in MYH16 upregulation. The results showed that MYH16 was abnormally upregulated in pan cancers, including LUAD. MYH16 expression induction in LUAD was found to be related to the tumor stage. Furthermore, MYH16 upregulation was correlated with LUAD development and worse overall survival, particularly in women. Notably, MYH16 overexpression in LUAD tissues corresponded to the amount of immune infiltration in the tumor. Additionally, univariate Cox hazard regression analysis revealed that MYH16 may be an independent prognostic indicator for LUAD. Furthermore, a nomogram was constructed according to MYH16 expression and clinical characteristics. BMP6 expression deficiency may be a key factor contributing to MYH16 upregulation in LUAD. Finally, GSEA demonstrated that MYH16 might mediate meiosis and gene silencing through RNA signaling pathways. This study, for the first time, showed that MYH16 upregulation in LUAD is associated with various risk factors, increased cancer aggressiveness, enhanced infiltration of tumor immune cells, and reduced survival rates.
Collapse
Affiliation(s)
- Libin Zhang
- Thoracic Surgery Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming City, Yunnan Province, China
| | - Jun Liu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yang Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yun Chen
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| |
Collapse
|
9
|
Kim JY, Lee Y, Dho SH, Park HJ, Kim DM, Lim JC, Kim SM, Kim LK. Integrative analysis of circular RNA regulatory network in papillary thyroid carcinoma. Am J Cancer Res 2023; 13:4446-4465. [PMID: 37818060 PMCID: PMC10560948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of endocrine cancer worldwide. Generally, PTC has an excellent prognosis; however, lymph node metastases and recurrences occur frequently. Over the last decade, circular RNAs (circRNAs), a large class of noncoding RNAs (ncRNAs), have emerged as key regulators of various tumor progression pathways. Here, we aimed to identify novel circRNAs as PTC biomarkers. Differentially expressed circRNAs and mRNAs were analyzed using public datasets from the Gene Expression Omnibus and Cancer Genome Atlas. In addition, we screened for target miRNAs using online prediction databases. Based on these results, we established a circRNA-miRNA-mRNA regulatory network associated with PTC, in which protein-protein interaction networks led to the identification of hub genes. Functional enrichment and survival analyses were performed to gain insights into the biological mechanisms of circRNA involvement. As a result, we found that two circRNAs (hsa_circ_0041829 and has_circ_0092299), four miRNAs (miR-369, miR-486, miR-574, and miR-665), and nine hub genes (BBC3, E2F1, FYN, MAG, SDC1, SDC3, SNAP25, TK1, and TYMS) play significant roles in PTC progression. This study provides a novel framework for understanding the roles of circRNA-miRNA-mediated gene regulation in PTC. It also introduces potential therapeutic targets and prognostic biomarkers, which may serve as a basis for developing targeted therapeutic interventions for PTC.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Yeongun Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - So Hee Dho
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Da-Mi Kim
- Radioisotope Research Division, Korea Atomic Energy Research InstituteDaejeon, Republic of Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Korea Atomic Energy Research InstituteDaejeon, Republic of Korea
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| |
Collapse
|
10
|
Zhang J, Hou S, Chi XQ, Shan HF, Li XW, Zhang QJ, Wang JL, Kang CB. Role of SNAP25 on the occurrence and development of eosinophilic gastritis. Medicine (Baltimore) 2023; 102:e34377. [PMID: 37478220 PMCID: PMC10662829 DOI: 10.1097/md.0000000000034377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Eosinophilic gastritis is characterized by gastrointestinal symptoms accompanied by peripheral eosinophilia. This study aims to explore the association between eosinophilic gastritis and Synaptosome Associated Protein 25 (SNAP25), and provide a new direction for the diagnosis and treatment of eosinophilic gastritis. GSE54043 was downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened. The functions of common DEGs were annotated by Database for Annotation, Visualization and Integrated Discovery and Metascape. The protein-protein interaction network of common DEGs was obtained by Search Tool for the Retrieval of Interacting Genes and visualized by Cytoscape. Significant modules were identified from the protein-protein interaction network. A total of 186 patients with eosinophilic gastritis were recruited. The clinical data were recorded and the expression levels of CPE, SST, PCSK2, SNAP25, and SYT4 were detected. Pearson chi-square test and Spearman correlation coefficient were used to analyze the relationship between eosinophilic gastritis and related parameters. Univariate and multivariate Logistic regression were used for further analysis. 353 DEGs were presented. The top 10 genes screened by cytoHubb were shown, and Veen diagram figured out 5 mutual genes. Pearson's chi-square test showed that SNAP25 (P < .001) was significantly associated with eosinophilic gastritis. Spearman correlation coefficient showed a significant correlation between eosinophilic gastritis and SNAP25 (ρ = -0.569, P < .001). Univariate logistic regression analysis showed that SNAP25 (OR = 0.046, 95% CI: 0.018-0.116, P < .001) was significantly associated with eosinophilic gastritis. Multivariate logistic regression analysis showed that SNAP25 (OR = 0.024, 95% CI: 0.007-0.075, P < .001) was significantly associated with eosinophilic gastritis. The low expression of SNAP25 gene in eosinophilic gastritis is associated with a higher risk of eosinophilic gastritis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-qian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hai-feng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-wei Li
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-jun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin-lei Wang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chun-bo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
12
|
A radiation resistance related index for biochemical recurrence and tumor immune environment in prostate cancer patients. Comput Biol Med 2022; 146:105711. [PMID: 35701253 DOI: 10.1016/j.compbiomed.2022.105711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/08/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To establish and verify a novel radiation resistance related index for predicting biochemical recurrence and tumor immune environment in prostate cancer (PCa) patients. MATERIALS AND METHODS The transcriptome information of PCa were obtained from GEO and TCGA portal. We identified radiation resistance related genes (RRGs) between radioresistant and radiosensitive PCa cells. We conducted multivariate Cox analysis to construct a novel radiation resistance related index for predicting biochemical recurrence (BCR)-free survival (BCRFS). Internal and external validations were conducted. Preliminary experimental verifications were performed. RESULTS We identified 194 differentially expressed RRGs and three radiation resistance related molecular clusters for PCa. Moreover, we established a novel radiation resistance related index and succeeded in conducting internal and external validations. High-risk populations meant significantly worse BCRFS in training, testing and validating cohort. The area under receiver operating characteristic curve were 0.809, 0.698, and 0.712 in training, testing, and validating cohort. The immune microenvironment was significantly different between high and low-risk score patients. Preliminary experiment identified and validated three potential biomarkers related to radiation resistance (ZNF695, TM4SF19, CCDC3) of PCa. CONCLUSIONS This study successfully established and verified a novel radiation resistance related index, which had an excellent performance in predicting BCR and tumor immune microenvironment in patients with PCa.
Collapse
|
13
|
Prediction of Response to Radiotherapy by Characterizing the Transcriptomic Features in Clinical Tumor Samples across 15 Cancer Types. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5443709. [PMID: 35586092 PMCID: PMC9110128 DOI: 10.1155/2022/5443709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Purpose Radiotherapy (RT) is one of the major cancer treatments. However, the responses to RT vary among individual patients, partly due to the differences of the status of gene expression and mutation in tumors of patients. Identification of patients who will benefit from RT will improve the efficacy of RT. However, only a few clinical biomarkers were currently used to predict RT response. Our aim is to obtain gene signatures that can be used to predict RT response by analyzing the transcriptome differences between RT responder and nonresponder groups. Materials and Methods We obtained transcriptome data of 1664 patients treated with RT from the TCGA database across 15 cancer types. First, the genes with a significant difference between RT responder (R group) and nonresponder groups (PD group) were identified, and the top 100 genes were used to build the gene signatures. Then, we developed the predictive model based on binary logistic regression to predict patient response to RT. Results We identified a series of differentially expressed genes between the two groups, which are involved in cell proliferation, migration, invasion, EMT, and DNA damage repair pathway. Among them, MDC1, UCP2, and RBM45 have been demonstrated to be involved in DNA damage repair and radiosensitivity. Our analysis revealed that the predictive model was highly specific for distinguishing the R and PD patients in different cancer types with an area under the curve (AUC) ranging from 0.772 to 0.972. It also provided a more accurate prediction than that from a single-gene signature for the overall survival (OS) of patients. Conclusion The predictive model has a potential clinical application as a biomarker to help physicians create optimal treatment plans. Furthermore, some of the genes identified here may be directly involved in radioresistance, providing clues for further studies on the mechanism of radioresistance.
Collapse
|