1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Yang JL, Ma JJ, Qu TY, Dai Q, Leng J, Fang L, Wu J, Li YJ, Yu HF. Glycolysis-related lncRNA FTX upregulates YAP1 to facilitate colorectal cancer progression via sponging miR-215-3p. Sci Rep 2025; 15:9929. [PMID: 40121300 PMCID: PMC11929783 DOI: 10.1038/s41598-025-94638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Increased evidence reveals that glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNA FTX in energy metabolism and cancer progression remain unclear. In this study we aim to show that lncRNA FTX was significantly upregulated in cancer tissues and serum of CRC patients and CRC cell lines. Function study indicated that it could promote aerobic glycolysis, cell proliferation, migration and invasion in colorectal cancer cells. Further mechanistic studies showed, lncRNA FTX was found to function as a sponge for miR-215-3p, which reduced the ability of miR-215-3p to repress the YAP1 oncoprotein. Additionally, a negative correlation was observed between lncRNA FTX and miR-215-3p expression, and the knockdown of lncRNA FTX or miR-215-3p overexpression yielded opposite effects. In conclusion, this study demonstrates that FTX could directly combine with miR-215-3p as a competitive endogenous RNA, thus promoting the aerobic glycolysis and progression of CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Jin-Lan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing-Jing Ma
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Tian-Yin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing Leng
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Lin Fang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ya-Jun Li
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Huang-Fei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China.
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
3
|
Gondal MN, Farooqi HMU. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Noncoding RNA 2025; 11:24. [PMID: 40126348 PMCID: PMC11932299 DOI: 10.3390/ncrna11020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in colorectal cancer (CRC) development and progression. Recent developments in single-cell transcriptome profiling methods have revealed surprising levels of expression variability among seemingly homogeneous cells, suggesting the existence of many more cell types than previously estimated. This review synthesizes recent advances in ncRNA research in CRC, emphasizing single-cell bioinformatics approaches for their analysis. We explore computational methods and tools used for ncRNA identification, characterization, and functional prediction in CRC, with a focus on single-cell RNA sequencing (scRNA-seq) data. The review highlights key bioinformatics strategies, including sequence-based and structure-based approaches, machine learning applications, and multi-omics data integration. We discuss how these computational techniques can be applied to analyze differential expression, perform functional enrichment, and construct regulatory networks involving ncRNAs in CRC. Additionally, we examine the role of bioinformatics in leveraging ncRNAs as diagnostic and prognostic biomarkers for CRC. We also discuss recent scRNA-seq studies revealing ncRNA heterogeneity in CRC. This review aims to provide a comprehensive overview of the current state of single-cell bioinformatics in ncRNA CRC research and outline future directions in this rapidly evolving field, emphasizing the integration of computational approaches with experimental validation to advance our understanding of ncRNA biology in CRC.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, CA 92868, USA
| |
Collapse
|
4
|
Ma L, Liu X, Roopashree R, Kazmi SW, Jasim SA, Phaninder Vinay K, Fateh A, Yang F, Rajabivahid M, Dehghani-Ghorbi M, Akhavan R. Long non-coding RNAs (lncRNAs) in cancer development: new insight from STAT3 signaling pathway to immune evasion. Clin Exp Med 2025; 25:53. [PMID: 39932585 DOI: 10.1007/s10238-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 02/14/2025]
Abstract
Overcoming cancer and enhancing patient survival are becoming increasingly challenging due to the uncontrolled growth and metastasis of colorectal cancer cells. In order to provide effective cancer treatment and minimize the malignancy of cancer cells, it is necessary to understand how complex signaling networks contribute to their invasion and proliferation. The signal transducer and activator of transcription 3 (STAT3) is a promising target due to its involvement in various cellular functions, including apoptosis, immunosuppression, cell invasion, migration, and proliferation. Dysregulation of STAT3 signaling is associated with diseases, particularly colorectal cancer. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs, are essential for the progression, apoptosis, and metastasis of CRC as they regulate key signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a key function in regulating immune cells function through STAT3. In this study, we comprehensively reviewed the regulatory roles of different lncRNAs on STAT3 and the mutual effects of this pathway in various aspects of carcinogenesis, including proliferation, apoptosis, metastasis, drug resistance, and angiogenesis. Moreover, we investigate the effects of lncRNA/STAT3 axis on the function of different immune cells that play critical role in the tumor microenvironment.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 110000, China
| | - XuQing Liu
- Special Service Department, 923rd Hospital of The Joint Logistic Support Force of the Chinese Peoples Liberation Army (Geriatric Disease Area 2), Nanning, 530020, Guangxi, China
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | | | - K Phaninder Vinay
- Department of ECE, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ata Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fang Yang
- Department of Emergency, The Eighth Medical Center of PLA General Hospital, Beijing, 10091, China
| | - Mansour Rajabivahid
- Hematology Oncology Subspecialist, Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Elimam H, Eldeib MG, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elfar N, Abdel-Wahab MM, Zaki MB, Mohammed OA, Radwan AF, Abdel-Reheim MA, Moussa R, Doghish AS. Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1243-1263. [PMID: 39287672 DOI: 10.1007/s00210-024-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease's progression, and their potential applications in its management.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority, Ministry of Health and Population, Cairo, 11567, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
6
|
Saadh MJ, Hamid JA, H M, Kazmi SW, Ahmed MH, Sharma A, Kumar MR, Husseen B. STAT3-related lncRNAs in colorectal cancer progression; Special focus on immune cell's evasion. Pathol Res Pract 2025; 266:155810. [PMID: 39798234 DOI: 10.1016/j.prp.2025.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Colorectal cancer (CRC) is globally ranked as the third leading cause of cancer-related deaths in both men and women. There is an urgent need for novel biomarkers to facilitate early diagnosis and enhance patient care, thereby improving treatment response and reducing mortality rates. Signal transducer and activator of transcription 3 (STAT3) is essential for controlling the anti-tumor immune response since it is a hub for several oncogenic signaling pathways. In the tumor environment, STAT3 is widely overactivated in both malignant and non-cancerous cells. It is involved in suppressing the expression of critical immune activation regulators and encouraging the synthesis of immunosuppressive substances. Long noncoding RNAs (lncRNAs), a kind of non-coding RNA, are critical for CRC development, apoptosis, and metastasis because they influence important signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a significant role in modifying the TME and control the expression of important immunological checkpoints, such as PD-L1. Therefore, a comprehensive understanding of the regulatory roles of lncRNAs is crucial for identifying diagnostic, prognostic, and predictive biomarkers for CRC. Thus, the objective of the present review study is to provide a comprehensive overview of the interaction between the STAT3 signaling pathway and various lncRNAs, as well as their implications for apoptosis, metastasis, and immune evasion in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India.
| | | | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
7
|
Delle Cave D. Advances in Molecular Mechanisms and Therapeutic Strategies in Colorectal Cancer: A New Era of Precision Medicine. Int J Mol Sci 2025; 26:346. [PMID: 39796202 PMCID: PMC11719900 DOI: 10.3390/ijms26010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related morbidity and mortality worldwide [...].
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', National Research Council CNR, 80131 Naples, Italy
| |
Collapse
|
8
|
Korsgaard U, García-Rodríguez JL, Jakobsen T, Ahmadov U, Dietrich KG, Vissing SM, Paasch TP, Lindebjerg J, Kjems J, Hager H, Kristensen LS. The Transcriptional Landscape of Coding and Noncoding RNAs in Recurrent and Nonrecurrent Colon Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1424-1442. [PMID: 38704091 DOI: 10.1016/j.ajpath.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
A number of patients with colon cancer with local or local advanced disease suffer from recurrence and there is an urgent need for better prognostic biomarkers in this setting. Here, the transcriptomic landscape of mRNAs, long noncoding RNAs, snRNAs, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs, pseudogenes, and circular RNAs, as well as RNAs denoted as miscellaneous RNAs, was profiled by total RNA sequencing. In addition to well-known coding and noncoding RNAs, differential expression analysis also uncovered transcripts that have not been implicated previously in colon cancer, such as RNA5SP149, RNU4-2, and SNORD3A. Moreover, there was a profound global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in more advanced tumors. A global down-regulation of circular RNAs in tumors relative to normal tissues was observed, although only a few were expressed differentially between tumor stages. Many previously undescribed transcripts, including RNU6-620P, RNU2-20P, VTRNA1-3, and RNA5SP60, indicated strong prognostic biomarker potential in receiver operating characteristics analyses. In summary, this study unveiled numerous differentially expressed RNAs across various classes between recurrent and nonrecurrent colon cancer. Notably, there was a significant global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in advanced tumors. Many of these newly discovered candidates demonstrate a strong prognostic potential for stage II colon cancer.
Collapse
Affiliation(s)
- Ulrik Korsgaard
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | | | | | - Ulvi Ahmadov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Stine M Vissing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thea P Paasch
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan Lindebjerg
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
9
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
10
|
Zhang SY. Integrating disulfidptosis-related long noncoding RNAs in colorectal cancer prognosis: A path to precision medicine. World J Clin Oncol 2024; 15:664-666. [PMID: 38835842 PMCID: PMC11145959 DOI: 10.5306/wjco.v15.i5.664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs (lncRNAs) in the prognosis and therapeutic targeting of colorectal cancer (CRC). By evaluating recent research, including the pivotal study "Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes" by Wang et al, this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC. Highlighting the innovative methodologies and significant findings, I discuss the implications for patient survival, therapeutic response, and the potential of lncRNAs as biomarkers for precision medicine. The integration of bioinformatics, clinical databases, and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Shi-Yan Zhang
- Department of Clinical Laboratory, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding 355200, Fujian Province, China
| |
Collapse
|
11
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
13
|
Kamikokura M, Tange S, Nakase H, Tokino T, Idogawa M. Long Noncoding RNA RP11-278A23.1, a Potential Modulator of p53 Tumor Suppression, Contributes to Colorectal Cancer Progression. Cancers (Basel) 2024; 16:882. [PMID: 38473243 DOI: 10.3390/cancers16050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, many studies revealed that long noncoding RNAs (lncRNAs) play important roles in cancers. To identify lncRNAs contributing to colorectal cancers, we screened lncRNAs through expression and survival analyses in datasets from The Cancer Genome Atlas (TCGA). The screen revealed that RP11-278A23.1 expression is significantly increased in colorectal cancer tissues compared with normal tissues and that high RP11-278A23.1 expression correlates with poor prognosis. The knockdown of RP11-278A23.1 inhibited the growth of and promoted apoptosis in colorectal cancer cells. Next, to comprehensively examine differentially expressed genes after RP11-278A23.1 knockdown, RNA sequencing was performed in HCT116 cells. The expression of p21, a p53 target gene, was significantly upregulated, and the expression of several p53 target proapoptotic genes was also altered. RP11-278A23.1 knockdown increased p53 expression at the translational level but not at the transcriptional level. Interestingly, RP11-278A23.1 knockdown also altered the expression of these proapoptotic genes in DLD1 cells with mutated p53 and in p53-knockout HCT116 cells. These results suggest that RP11-278A23.1 modifies the expression of these apoptosis-related genes in p53-dependent and p53-independent manners. In summary, lncRNA RP11-278A23.1 contributes to colorectal cancer progression by promoting cell growth and inhibiting apoptosis, suggesting that this lncRNA may be a useful therapeutic target.
Collapse
Affiliation(s)
- Masayo Kamikokura
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
14
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Doghish AS, Zaki MB, Eldeib MG, Radwan AF, Moussa R, Abdel-Wahab MM, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elimam H. The potential relevance of long non-coding RNAs in colorectal cancer pathogenesis and treatment: A review focus on signaling pathways. Pathol Res Pract 2024; 253:155044. [PMID: 38141573 DOI: 10.1016/j.prp.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA's role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|