1
|
Djigo OKM, Gomez N, Ould Ahmedou Salem MS, Basco L, Ould Mohamed Salem Boukhary A, Briolant S. Performance of a Commercial Multiplex Allele-Specific Polymerase Chain Reaction Kit to Genotype African-Type Glucose-6-Phosphate Dehydrogenase Deficiency. Am J Trop Med Hyg 2023; 108:449-455. [PMID: 36535256 PMCID: PMC9896312 DOI: 10.4269/ajtmh.21-1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
8-Aminoquinoline antimalarial drugs (primaquine, tafenoquine) are required for complete cure of Plasmodium vivax malaria, but they are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the absence of spectrophotometry, which is a gold standard for measuring G6PD activity, G6PD genotyping is one of the alternatives to establish a database and distribution map of G6PD enzyme deficiency in Mauritania, which has become a new epicenter of P. vivax malaria in West Africa. The aim of our study was to assess the performance of multiplex allele-specific polymerase chain reaction (PCR) (African-type Diaplex C™ G6PD kit) against PCR-restriction fragment length polymorphism and sequencing. Of 146 mutations associated with G6PD A- genotypes in 177 blood samples from Mauritanian patients, all but two samples were identified correctly using multiplex allele-specific PCR (100% sensitivity and 99% specificity; "almost perfect agreement" between allele-specific PCR and PCR-restriction fragment length polymorphism/sequencing, with a kappa coefficient of 0.977). Despite a suboptimal PCR protocol for dried blood spots and the inability of the commercial assay to predict unequivocally the G6PD enzyme level in heterozygous females, the African-type Diaplex C™ G6PD genotyping kit seemed to be a valuable screening tool for male subjects and for research purposes in resource-limited countries where spectrophotometer and DNA sequencing are not available.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Nicolas Gomez
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Leonardo Basco
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
2
|
Dieng MM, Diawara A, Manikandan V, Tamim El Jarkass H, Sermé SS, Sombié S, Barry A, Coulibaly SA, Diarra A, Drou N, Arnoux M, Yousif A, Tiono AB, Sirima SB, Soulama I, Idaghdour Y. Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nat Commun 2020; 11:5093. [PMID: 33037226 PMCID: PMC7547729 DOI: 10.1038/s41467-020-18915-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
The mechanisms behind the ability of Plasmodium falciparum to evade host immune system are poorly understood and are a major roadblock in achieving malaria elimination. Here, we use integrative genomic profiling and a longitudinal pediatric cohort in Burkina Faso to demonstrate the role of post-transcriptional regulation in host immune response in malaria. We report a strong signature of miRNA expression differentiation associated with P. falciparum infection (127 out of 320 miRNAs, B-H FDR 5%) and parasitemia (72 miRNAs, B-H FDR 5%). Integrative miRNA-mRNA analysis implicates several infection-responsive miRNAs (e.g., miR-16-5p, miR-15a-5p and miR-181c-5p) promoting lymphocyte cell death. miRNA cis-eQTL analysis using whole-genome sequencing data identified 1,376 genetic variants associated with the expression of 34 miRNAs (B-H FDR 5%). We report a protective effect of rs114136945 minor allele on parasitemia mediated through miR-598-3p expression. These results highlight the impact of post-transcriptional regulation, immune cell death processes and host genetic regulatory control in malaria.
Collapse
Affiliation(s)
- Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Hala Tamim El Jarkass
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nizar Drou
- Bioinformatics Core, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ayman Yousif
- Bioinformatics Core, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Djigo OKM, Bollahi MA, Hasni Ebou M, Ould Ahmedou Salem MS, Tahar R, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A. Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania. PLoS One 2019; 14:e0220977. [PMID: 31525211 PMCID: PMC6746352 DOI: 10.1371/journal.pone.0220977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is recommended by the World Health Organization (WHO) for radical treatment of Plasmodium vivax malaria. This drug is known to provoke acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to lack of data on G6PD deficiency, the use of primaquine has been limited in Africa. In the present study, G6PD deficiency was investigated in blood donors of various ethnic groups living in Nouakchott, a P. vivax endemic area in Mauritania. Methodology/Principal findings Venous blood samples from 443 healthy blood donors recruited at the National Transfusion Center in Nouakchott were screened for G6PD activity using the CareStart G6PD deficiency rapid diagnostic test. G6PD allelic variants were investigated using DiaPlexC G6PD genotyping kit that detects African (A-) and Mediterranean (B-) variants. Overall, 50 of 443 (11.3%) individuals (49 [11.8%] men and 1 [3.7%] woman) were phenotypically deficient. Amongst men, Black Africans had the highest prevalence of G6PD deficiency (15 of 100 [15%]) and White Moors the lowest (10 of 168, [5.9%]). The most commonly observed G6PD allelic variants among 44 tested G6PD-deficient men were the African variant A- (202A/376G) in 14 (31.8%), the Mediterranean variant B- (563T) in 13 (29.5%), and the Betica-Selma A- (376G/968C) allelic variant in 6 (13.6%). The Santamaria A- variant (376G/542T) and A variant (376G) were observed in only one and two individuals, respectively. None of the expected variants was observed in 8 (18.2%) of the tested phenotypically G6PD-deficient men. Conclusion This is the first published data on G6PD deficiency in Mauritanians. The prevalence of phenotypic G6PD deficiency was relatively high (11.3%). It was mostly associated with either African or Mediterranean variants, in agreement with diverse Arab and Black African origins of the Mauritanian population.
Collapse
Affiliation(s)
- Oum kelthoum Mamadou Djigo
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | | | - Moina Hasni Ebou
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Rachida Tahar
- UMR 216 MERIT, IRD, Faculté de Pharmacie, Univ. Paris Descartes, Paris, France
| | - Hervé Bogreau
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- * E-mail:
| |
Collapse
|
4
|
Grignard L, Mair C, Curry J, Mahey L, Bastiaens GJH, Tiono AB, Okebe J, Coulibaly SA, Gonçalves BP, Affara M, Ouédraogo A, Bougouma EC, Sanou GS, Nébié I, Lanke KHW, Sirima SB, d'Alessandro U, Clark TG, Campino S, Bousema T, Drakeley C. Bead-based assays to simultaneously detect multiple human inherited blood disorders associated with malaria. Malar J 2019; 18:14. [PMID: 30665411 PMCID: PMC6341711 DOI: 10.1186/s12936-019-2648-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (G6PDd), haemoglobin C (HbC) and S (HbS) are inherited blood disorders (IBD) common in populations in malaria endemic areas. All are associated to some degree with protection against clinical malaria whilst additionally G6PDd is associated with haemolysis following treatment with 8-aminoquinolines. Measuring the prevalence of these inherited blood disorders in affected populations can improve understanding of disease epidemiology. Current methodologies in epidemiological studies commonly rely on individual target amplification and visualization; here a method is presented to simultaneously detect the polymorphisms and that can be expanded to include other single nucleotide polymorphisms (SNPs) of interest. METHODS Human DNA from whole blood samples was amplified in a novel, multiplex PCR reaction and extended with SNP-specific probes in an allele specific primer extension (ASPE) to simultaneously detect four epidemiologically important human markers including G6PD SNPs (G202A and A376G) and common haemoglobin mutations (HbS and HbC). The products were hybridized to magnetic beads and the median fluorescence intensity (MFI) was read on MAGPIX® (Luminex corp.). Genotyping data was compared to phenotypical data generated by flow cytometry and to established genotyping methods. RESULTS Seventy-five samples from Burkina Faso (n = 75/78, 96.2%) and 58 samples from The Gambia (n = 58/61, 95.1%) had a G6PD and a HBB genotype successfully assigned by the bead-based assay. Flow cytometry data available for n = 61 samples further supported the concordance between % G6PD normal/deficient cells and genotype. CONCLUSIONS The bead based assay compares well to alternative measures of genotyping and phenotyping for G6PD. The screening is high throughput, adaptable to inclusion of multiple targets of interest and easily standardized.
Collapse
Affiliation(s)
- Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | - Catherine Mair
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Guide J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Disease Control & Elimination Theme, Medical Research Council Unit at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sam A Coulibaly
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Muna Affara
- Disease Control & Elimination Theme, Medical Research Council Unit at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Alphonse Ouédraogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C Bougouma
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Guillaume S Sanou
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kjerstin H W Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sodiomon B Sirima
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Umberto d'Alessandro
- Disease Control & Elimination Theme, Medical Research Council Unit at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Avalos S, Mejia RE, Banegas E, Salinas C, Gutierrez L, Fajardo M, Galo S, Pinto A, Mejia A, Fontecha G. G6PD deficiency, primaquine treatment, and risk of haemolysis in malaria-infected patients. Malar J 2018; 17:415. [PMID: 30409136 PMCID: PMC6225638 DOI: 10.1186/s12936-018-2564-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/01/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The incidence of malaria in the Americas has decreased markedly in recent years. Honduras and the other countries of Mesoamerica and the island of Hispaniola have set the goal of eliminating native malaria by the year 2020. To achieve this goal, Honduras has recently approved national regulations to expand the possibilities of a shortened double dose primaquine (PQ) treatment for vivax malaria. Considering this new shortened anti-malarial treatment, the high frequency of G6PDd genotypes in Honduras, and the lack of routinely assessment of the G6PD deficiency status, this study aimed at investigating the potential association between the intake of PQ and haemolysis in malaria-infected G6PDd subjects. METHODS This was a prospective cohort and open-label study. Participants with malaria were recruited. Plasmodium vivax infection was treated with 0.25 mg/kg of PQ daily for 14 days. Safety and signs of haemolysis were evaluated by clinical criteria and laboratory values before and during the 3rd and 7th day of PQ treatment. G6PD status was assessed by a rapid test (CareStart™) and two molecular approaches. RESULTS Overall 55 participants were enrolled. The frequency of G6PD deficient genotypes was 7/55 (12.7%), where 5/7 (71.4%) were hemizygous A- males and 2/7 (28.6%) heterozygous A- females. Haemoglobin concentrations were compared between G6PD wild type (B) and G6PDd A- subjects, showing a significant difference between the means of both groups in the 3rd and 7th days. Furthermore, a statistically significant difference was evident in the change in haemoglobin concentration between the 3rd day and the 1st day for both genotypes, but there was no statistical difference for the change in haemoglobin concentration between the 7th day and the 1st day. Besides these changes in the haemoglobin concentrations, none of the patients showed signs or symptoms associated with severe haemolysis, and none needed to be admitted to a hospital for further medical attention. CONCLUSIONS The findings support that the intake of PQ during 14 days of treatment against vivax malaria is safe in patients with a class III variant of G6PDd. In view of the new national regulations in the shortened treatment of vivax malaria for 7 days, it is advisable to be alert of potential cases of severe haemolysis that could occur among G6PD deficient hemizygous males with a class II mutation such as the Santamaria variant, previously reported in the country.
Collapse
Affiliation(s)
- Sara Avalos
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Rosa E Mejia
- Pan American Health Organization, Tegucigalpa, Honduras
| | - Engels Banegas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Cesar Salinas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Lester Gutierrez
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Marcela Fajardo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Suzeth Galo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Angel Mejia
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras.
| |
Collapse
|
6
|
de Oliveira HSS, da Silva ANLM, Andrade GB, Gaia KC, Costa GDLC, dos Santos ÂKCR, Guerreiro JF. Molecular genotyping of G6PD mutations and Duffy blood group in Afro-descendant communities from Brazilian Amazon. Genet Mol Biol 2018; 41:758-765. [PMID: 30508000 PMCID: PMC6415611 DOI: 10.1590/1678-4685-gmb-2017-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) and Duffy-negative blood group are two red blood cells variants that confer protection against malaria. In this study, the distribution of the most common G6PD variants (G6PD*A-, GGPD*A and G6PD Mediterranean) and the major alleles of the Duffy blood group (FY*A, FY*B and FY*BES) were investigated in an Afro-descendant population from state of Pará, Brazilian Amazon. G6PD variants and Duffy blood group alleles were determined by TaqMan SNP genotyping assay. Overall, molecular genotyping revealed the presence of G6PD variants in 126 (24%) of the individuals studied (5% male and 19% female), and frequencies of the G6PD*A- and G6PD*A alleles were 0.061 and 0.104, respectively. Duffy blood group genotyping showed that 24.3% of people were Duffy-negative and 41.3% were heterozygous for FY*BES. The frequency of allele FY*BES was 41.0%. The results emphasize the need to monitor G6PD deficiency for the use of primaquine in the routine care of the Afro-descendant communities of the Trombetas, Erepecuru and Cumná rivers, evaluating the risks of hemolytic crisis in case of recurrence of malaria in the region. In addition, the possible greater protection against malaria conferred by these erythrocyte polymorphisms deserves to be better investigated and explored among these Afro-descendants.
Collapse
Affiliation(s)
- Haiala S. Silva de Oliveira
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Aylla N. Lima Martins da Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela Barreto Andrade
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Karoline Coelho Gaia
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Greice de Lemos Cardoso Costa
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
7
|
Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis 2018; 12:e0006230. [PMID: 29672516 PMCID: PMC5908060 DOI: 10.1371/journal.pntd.0006230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Primaquine is the only available antimalarial drug that kills dormant liver stages of Plasmodium vivax and Plasmodium ovale malarias and therefore prevents their relapse (‘radical cure’). It is also the only generally available antimalarial that rapidly sterilises mature P. falciparum gametocytes. Radical cure requires extended courses of primaquine (usually 14 days; total dose 3.5–7 mg/kg), whereas transmissibility reduction in falciparum malaria requires a single dose (formerly 0.75 mg/kg, now a single low dose [SLD] of 0.25 mg/kg is recommended). The main adverse effect of primaquine is dose-dependent haemolysis in glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common human enzymopathy. X-linked mutations conferring varying degrees of G6PD deficiency are prevalent throughout malaria-endemic regions. Phenotypic screening tests usually detect <30% of normal G6PD activity, identifying nearly all male hemizygotes and female homozygotes and some heterozygotes. Unfortunately, G6PD deficiency screening is usually unavailable at point of care, and, as a consequence, radical cure is greatly underused. Both haemolytic risk (determined by the prevalence and severity of G6PD deficiency polymorphisms) and relapse rates vary, so there has been considerable uncertainty in both policies and practices related to G6PD deficiency testing and use of primaquine for radical cure. Review of available information on the prevalence and severity of G6PD variants together with countries’ policies for the use of primaquine and G6PD deficiency testing confirms a wide range of practices. There remains lack of consensus on the requirement for G6PD deficiency testing before prescribing primaquine radical cure regimens. Despite substantially lower haemolytic risks, implementation of SLD primaquine as a P. falciparum gametocytocide also varies. In Africa, a few countries have recently adopted SLD primaquine, yet many with areas of low seasonal transmission do not use primaquine as an antimalarial at all. Most countries that recommended the higher 0.75 mg/kg single primaquine dose for falciparum malaria (e.g., most countries in the Americas) have not changed their recommendation. Some vivax malaria–endemic countries where G6PD deficiency testing is generally unavailable have adopted the once-weekly radical cure regimen (0.75 mg/kg/week for 8 weeks), known to be safer in less severe G6PD deficiency variants. There is substantial room for improvement in radical cure policies and practices.
Collapse
Affiliation(s)
- Judith Recht
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Overlap Extension Barcoding for the Next Generation Sequencing and Genotyping of Plasmodium falciparum in Individual Patients in Western Kenya. Sci Rep 2017; 7:41108. [PMID: 28117350 PMCID: PMC5259759 DOI: 10.1038/srep41108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Large-scale molecular epidemiologic studies of Plasmodium falciparum parasites have provided insights into parasite biology and transmission, can identify the spread of drug resistance, and are useful in assessing vaccine targets. The polyclonal nature infections in high transmission settings is problematic for traditional genotyping approaches. Next-generation sequencing (NGS) approaches to parasite genotyping allow sensitive detection of minority variants, disaggregation of complex parasite mixtures, and scalable processing of large samples sets. Therefore, we designed, validated, and applied to field parasites an approach that leverages sequencing of individually barcoded samples in a multiplex manner. We utilize variant barcodes, invariant linker sequences and modular template-specific primers to allow for the simultaneous generation of high-dimensional sequencing data of multiple gene targets. This modularity permits a cost-effective and reproducible way to query many genes at once. In mixtures of reference parasite genomes, we quantitatively detected unique haplotypes comprising as little as 2% of a polyclonal infection. We applied this genotyping approach to field-collected parasites collected in Western Kenya in order to simultaneously obtain parasites genotypes at three unlinked loci. In summary, we present a rapid, scalable, and flexible method for genotyping individual parasites that enables molecular epidemiologic studies of parasite evolution, population structure and transmission.
Collapse
|
9
|
Céspedes-Garro C, Naranjo MEG, Rodrigues-Soares F, LLerena A, Duconge J, Montané-Jaime LK, Roblejo H, Fariñas H, Campos MDLA, Ramírez R, Serrano V, Villagrán CI, Peñas-LLedó EM. Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics 2016; 17:1707-1724. [PMID: 27633613 DOI: 10.2217/pgs-2016-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The present review was aimed at analyzing the pharmacogenetic scientific activity in Central America and the Caribbean. MATERIALS & METHODS A literature search for pharmacogenetic studies in each country of the region was conducted on three databases using a list of the most relevant pharmacogenetic biomarkers including 'phenotyping probe drugs' for major drug metabolizing enzymes. The review included 132 papers involving 47 biomarkers and 35,079 subjects (11,129 healthy volunteers and 23,950 patients). RESULTS The country with the most intensive pharmacogenetic research was Costa Rica. The most studied medical therapeutic area was oncology, and the most investigated biomarkers were CYP2D6 and HLA-A/B. Conclusion: Research activity on pharmacogenetics in Central American and the Caribbean populations is limited or absent. Therefore, strategies to promote effective collaborations, and foster interregional initiatives and research efforts among countries from the region could help for the rational clinical implementation of pharmacogenetics and personalized medicine.
Collapse
Affiliation(s)
- Carolina Céspedes-Garro
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, Genetics Section, School of Biology, University of Costa Rica, San José, Costa Rica
| | - María-Eugenia G Naranjo
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Fernanda Rodrigues-Soares
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Jorge Duconge
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Pharmaceutical Sciences Department, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Lazara K Montané-Jaime
- Pharmacology Unit Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of West Indies, St Augustine, Trinidad & Tobago
| | - Hilda Roblejo
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, National Center of Medical Genetics, Havana, Cuba
| | - Humberto Fariñas
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - María de Los A Campos
- Secretaría Ejecutiva del Consejo de Ministros de Salud de Centroamérica y República Dominicana, Ciudad Merliot, El Salvador
| | - Ronald Ramírez
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Medicina, UNAN Universidad Autónoma Nacional de Nicaragua, León, Nicaragua
| | - Víctor Serrano
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,CIIMET Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de Medicina, Universidad de Panamá, Panamá, Panamá
| | - Carmen I Villagrán
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Ciencias Médicas, Dirección de Investigación, Universidad de San Carlos de Guatemala, Guatemala
| | - Eva M Peñas-LLedó
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| |
Collapse
|
10
|
Valencia SH, Ocampo ID, Arce-Plata MI, Recht J, Arévalo-Herrera M. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia. Malar J 2016; 15:291. [PMID: 27225440 PMCID: PMC4880879 DOI: 10.1186/s12936-016-1343-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucose 6-phosphate dehydrogenase (G6PD) is an enzyme involved in prevention of cellular oxidative damage, particularly protecting erythrocytes from haemolysis. An estimated 400 million people present variable degrees of inherited G6PD deficiency (G6PDd) which puts them at risk for developing haemolysis triggered by several risk factors including multiple drugs and certain foods. Primaquine (PQ) is a widely used anti-malarial drug that can trigger haemolysis in individuals with G6PDd. Intensification of malaria control programmes worldwide and particularly malaria elimination planning in some regions recommend a more extensive use of PQ and related drugs in populations with different G6PDd prevalence. This a preliminary study to assess the prevalence of G6PDd in representative malaria endemic areas of Colombia by measuring G6PD phonotype and genotypes. METHODS Volunteers (n = 426) from four malaria endemic areas in Colombia (Buenaventura, Tumaco, Tierralta and Quibdo) were enrolled. Blood samples were drawn to evaluate G6PD enzymatic activity by using a quantitative G6PD test and a subset of samples was analysed by PCR-RFLP to determine the frequency of the three most common G6PD genotypic variants: A-, A+ and Mediterranean. RESULTS A total of 28 individuals (6.56 %) displayed either severe or intermediate G6PDd. The highest prevalence (3.51 %) was in Buenaventura, whereas G6PDd prevalence was lower (<1 %) in Tierralta and Quibdo. G6PD A alleles were the most frequent (15.23 %) particularly in Buenaventura and Tumaco. Overall, a high frequency of G6PD A- genotype, followed by A+ genotype was found in the analysed population. CONCLUSIONS G6PDd based on enzymatic activity as well as G6PD A allelic variants were found in malaria-endemic populations on the Pacific coast of Colombia, where most of malaria cases are caused by Plasmodium vivax infections. These infections are treated for 14 days with PQ, however there are no official reports of PQ-induced haemolytic crises. Further assessment of G6PDd prevalence in malaria endemic areas in Colombia is crucial in view of possible mass drug administration for malaria elimination in these regions, as well as implementation of appropriate G6PDd diagnostic methods.
Collapse
Affiliation(s)
- Sócrates Herrera Valencia
- />Caucaseco Scientific Research Center/Malaria Vaccine and Drug Development Center, Carrera 37 2B No. 5 E-08, Edificio de profesionales Bambú, Cali, Colombia
- />Centro Latino Americano de Investigación en Malaria (CLAIM), Cali, Colombia
| | - Iván Darío Ocampo
- />Caucaseco Scientific Research Center/Malaria Vaccine and Drug Development Center, Carrera 37 2B No. 5 E-08, Edificio de profesionales Bambú, Cali, Colombia
- />Centro Latino Americano de Investigación en Malaria (CLAIM), Cali, Colombia
| | - María Isabel Arce-Plata
- />Caucaseco Scientific Research Center/Malaria Vaccine and Drug Development Center, Carrera 37 2B No. 5 E-08, Edificio de profesionales Bambú, Cali, Colombia
- />Centro Latino Americano de Investigación en Malaria (CLAIM), Cali, Colombia
| | - Judith Recht
- />Caucaseco Scientific Research Center/Malaria Vaccine and Drug Development Center, Carrera 37 2B No. 5 E-08, Edificio de profesionales Bambú, Cali, Colombia
| | - Myriam Arévalo-Herrera
- />Caucaseco Scientific Research Center/Malaria Vaccine and Drug Development Center, Carrera 37 2B No. 5 E-08, Edificio de profesionales Bambú, Cali, Colombia
- />Facultad de Salud, Universidad del Valle, Cali, Colombia
| |
Collapse
|
11
|
Vizzi E, Bastidas G, Hidalgo M, Colman L, Pérez HA. Prevalence and molecular characterization of G6PD deficiency in two Plasmodium vivax endemic areas in Venezuela: predominance of the African A-(202A/376G) variant. Malar J 2016; 15:19. [PMID: 26753754 PMCID: PMC4710037 DOI: 10.1186/s12936-015-1069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency causes acute haemolytic anaemia triggered by oxidative drugs such as primaquine (PQ), used for Plasmodium vivax malaria radical cure. However, in many endemic areas of vivax malaria, patients are treated with PQ without any evaluation of their G6PD status. METHODS G6PD deficiency and its genetic heterogeneity were evaluated in northeastern and southeastern areas from Venezuela, Cajigal (Sucre state) and Sifontes (Bolívar state) municipalities, respectively. Blood samples from 664 randomly recruited unrelated individuals were screened for G6PD activity by a quantitative method. Mutation analysis for exons 4-8 of G6PD gen was performed on DNA isolated from G6PD-deficient (G6PDd) subjects through PCR-RFLP and direct DNA sequencing. RESULTS Quantitative biochemical characterization revealed that overall 24 (3.6%) subjects were G6PDd (average G6PD enzyme activity 4.5 ± 1.2 U/g Hb, moderately deficient, class III), while DNA analysis showed one or two mutated alleles in 19 of them (79.2%). The G6PD A-(202A/376G) variant was the only detected in 17 (70.8%) individuals, 13 of them hemizygous males and four heterozygous females. Two males carried only the 376A → G mutation. No other mutation was found in the analysed exons. CONCLUSIONS The G6PDd prevalence was as low as that one shown by nearby countries. This study contributes to the knowledge of the genetic background of Venezuelan population, especially of those living in malaria-endemic areas. Despite the high degree of genetic mixing described for Venezuelan population, a net predominance of the mild African G6PD A-(202A/376G) variant was observed among G6PDd subjects, suggesting a significant flow of G6PD genes from Africa to Americas, almost certainly introduced through African and/or Spanish immigrants during and after the colonization. The data suggest that 1:27 individuals of the studied population could be G6PDd and therefore at risk of haemolysis under precipitating factors. Information about PQ effect on G6PDd individuals carrying mild variant is limited, but since the regimen of 45 mg weekly dose for prevention of malaria relapse does not seem to be causing clinically significant haemolysis in people having the G6PD A-variant, a reasoned weighing of risk-benefit for its use in Venezuela should be done, when implementing public health strategies of control and elimination.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
| | - Gilberto Bastidas
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Edo. Carabobo, Venezuela.
| | - Mariana Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
| | - Laura Colman
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
| | - Hilda A Pérez
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas, 1020-A, Venezuela.
| |
Collapse
|