1
|
Fambirai T, Chimbari M, Mhindu T. Factors associated with contracting border malaria: A systematic and meta-analysis. PLoS One 2025; 20:e0310063. [PMID: 39752437 PMCID: PMC11698403 DOI: 10.1371/journal.pone.0310063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 01/06/2025] Open
Abstract
Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria. We conducted a systematic and meta-analysis review to characterise and establish pooled effect sizes of the factors associated with the occurrence of border malaria. An exhaustive search was done in EBSCOHost (Medline Full Text), Health Source, Google Scholar, Regional Office for Africa Library, African Index Medicus, and PubMed databases. A total of 847 articles were identified from the search and after screening for quality and eligibility, twelve (12) articles were included in the review. Pooled odds ratios, inverse variance statistic (I2), Luis Furuya-Kanamori (LFK) index, and forest plot were computed. Findings from this study suggest night outdoor activities (POR 2.87 95% CI, 1.17 7,01), engaging in forestry activities (POR 2.76 95% CI, 2.08 3.67), working in mines (POR 197 95% CI, 175 22171), access to poor housing structure (POR 3.42 95% CI, 2.14 5.46), and cross-border movement (POR 50.86 95% CI, 12.88 200.85) none use of insecticide-treated nets (POR 5.09 95% CI, 2.44 10.63) were all significantly associated with contracting malaria within border regions. The use of insecticide-treated nets (ITN) (POR 0.61 95% CI, 0.50 0.76) and indoor residual spraying (IRS) (POR 0.61 95% CI, 0.47 0.79) were protective. Risk factors for border malaria are comparable to non-border malaria. Effective border malaria control requires an integrated and targeted approach that addresses socio-economic, environmental, and behavioural drivers. Established vector control interventions remain protective and should be sustained to mitigate the border malaria burden effectively. Novel strategies should be developed to address the unique challenge of cross-border human population movement underpinned by robust regional, bilateral, and multi-sectoral collaborative initiatives.
Collapse
Affiliation(s)
- Tichaona Fambirai
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Tafadzwa Mhindu
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Ferriss E, Mharakurwa S, Munyati S, Gwanzura L, Hast MA, Moulton LH, Wesolowski A, Moss WJ. Malaria Transmission at The Zimbabwe-Mozambique Border: An Observational Study of Parasitemia by Travel History and Household Location. Am J Trop Med Hyg 2024; 111:35-42. [PMID: 38772357 PMCID: PMC11229651 DOI: 10.4269/ajtmh.23-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
Cross-border human population movement contributes to malaria transmission in border regions, impeding national elimination. However, its impact in low-to-moderate transmission settings is not well characterized. This community-based study in Mutasa District, Zimbabwe, estimated the association of parasite prevalence with self-reported overnight travel to Mozambique and household distance to the border from 2012-2020. A fully adjusted Poisson regression model with robust variance estimation was fit using active surveillance data. The population attributable fraction of parasite prevalence from overnight travel was also estimated. The relative risk of testing positive for malaria by rapid diagnostic test declined 14% (prevalence ratio [PR] = 0.86, 95% CI = 0.81-0.92) per kilometer from the border up to 12 km away. Travel to Mozambique was associated with a 157% increased risk (PR = 2.57, 95% CI = 1.38-4.78), although only 5.8% of cases were attributable to overnight travel (95% CI = -1.1% to 12.7%), reflecting infrequent overnight trips (1.3% of visits). This study suggests that transmission in eastern Zimbabwe is driven by increasingly conducive social or environmental conditions approaching the border and low levels of importation from overnight travel. Although day trips to Mozambique during peak biting hours were not assessed, the contribution of such trips to ongoing transmission may be significant. Future malaria control efforts should prioritize high coverage of existing interventions and continued support for community health workers and health facilities at the border, which provide free case management.
Collapse
Affiliation(s)
- Ellen Ferriss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research and Training Institute, Harare, Zimbabwe
- University of Zimbabwe, Harare, Zimbabwe
| | - Marisa A. Hast
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - William J. Moss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Munhenga G, Oliver SV, Lobb LN, Mazarire TT, Sekgele W, Mashatola T, Mabaso N, Dlamini DM, Zulu M, Moletsane F, Letinić BD, Zawada J, Burke A, Matamba A, Brooke BD. Malaria risk and receptivity: Continuing development of insecticide resistance in the major malaria vector Anopheles arabiensis in northern KwaZulu-Natal, South Africa. S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Malaria incidence in South Africa is highest in the three endemic provinces: KwaZulu-Natal, Mpumalanga and Limpopo. The contribution to malaria transmission by several mosquito species, variation in their resting behaviours and low levels of insecticide resistance makes it necessary to periodically monitor Anopheles species assemblages and resistance phenotypes in vector populations. The aim of this study was therefore to assess Anopheles species assemblage in northern KwaZulu-Natal and to collect insecticide susceptibility data for An. arabiensis, the primary vector of malaria in that province. Anopheles specimens were collected from Mamfene, Jozini, northern KwaZulu-Natal from November 2019 to April 2021. Progeny of wild-collected An. arabiensis females were used for standard insecticide susceptibility tests and synergist bioassays. Anopheles arabiensis contributed 85.6% (n=11 062) of the total catches. Samples for subsequent insecticide susceptibility bioassays were selected from 212 An. arabiensis families. These showed low-level resistance to DDT, permethrin, deltamethrin, and bendiocarb, as well as full susceptibility to pirimiphos-methyl. Synergist bioassays using piperonyl butoxide and triphenyl phosphate suggest oxygenase-based pyrethroid and esterase-mediated sequestration of bendiocarb. These low levels of resistance are unlikely to be operationally significant at present. It is concluded that northern KwaZulu-Natal Province remains receptive to malaria transmission despite ongoing control and elimination interventions. This is due to the perennial presence of the major vector An. arabiensis and other secondary vector species. The continued detection of low-frequency insecticide resistance phenotypes in An. arabiensis is cause for concern and requires periodic monitoring for changes in resistance frequency and intensity.
Collapse
Affiliation(s)
- Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Leanne N. Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Theresa T. Mazarire
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Windy Sekgele
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thabo Mashatola
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nondumiso Mabaso
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Dumsani M. Dlamini
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Malibongwe Zulu
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fortunate Moletsane
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Blaženka D. Letinić
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashley Burke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Avhatakali Matamba
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Chanda J, Saili K, Phiri F, Stevenson JC, Mwenda M, Chishimba S, Mulube C, Mambwe B, Lungu C, Earle D, Bennett A, Eisele TP, Kamuliwo M, Steketee RW, Keating J, Miller JM, Sikaala CH. Pyrethroid and Carbamate Resistance in Anopheles funestus Giles along Lake Kariba in Southern Zambia. Am J Trop Med Hyg 2020; 103:90-97. [PMID: 32618244 PMCID: PMC7416976 DOI: 10.4269/ajtmh.19-0664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas data on insecticide resistance and its underlying mechanisms exist for parts of Zambia, data remain limited in the southern part of the country. This study investigated the status of insecticide resistance, metabolic mechanisms, and parasite infection in Anopheles funestus along Lake Kariba in southern Zambia. Indoor-resting mosquitoes were collected from 20 randomly selected houses within clusters where a mass drug administration trial was conducted and raised to F1 progeny. Non–blood-fed 2- to 5-day-old female An. funestus were exposed to WHO insecticide-impregnated papers with 0.05% deltamethrin, 0.1% bendiocarb, 0.25% pirimiphos-methyl, or 4% dichloro-diphenyl-trichloroethane (DDT). In separate assays, An. funestus were pre-exposed to piperonyl butoxide (PBO) to determine the presence of monooxygenases. Wild-caught An. funestus that had laid eggs for susceptibility assays were screened for circumsporozoite protein of Plasmodium falciparum by ELISA, and sibling species were identified by polymerase chain reaction. Anopheles funestus showed resistance to deltamethrin and bendiocarb but remained susceptible to pirimiphos-methyl and DDT. The pre-exposure of An. funestus to PBO restored full susceptibility to deltamethrin but not to bendiocarb. The overall sporozoite infection rate in An. funestus populations was 5.8%. Detection of pyrethroid and carbamate resistance in An. funestus calls for increased insecticide resistance monitoring to guide planning and selection of effective insecticide resistance management strategies. To prevent the development of resistance and reduce the underlying vectorial capacity of mosquitoes in areas targeted for malaria elimination, an effective integrated vector management strategy is needed.
Collapse
Affiliation(s)
- Javan Chanda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Kochelani Saili
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Foustina Phiri
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Macha Research Trust, Choma, Zambia
| | - Mulenga Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Sandra Chishimba
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Christopher Lungu
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Duncan Earle
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Mulakwa Kamuliwo
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | | | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Chadwick H Sikaala
- SADC Malaria Elimination Eight Secretariat, Windhoek, Namibia.,National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| |
Collapse
|
6
|
Lukwa AT, Mawoyo R, Zablon KN, Siya A, Alaba O. Effect of malaria on productivity in a workplace: the case of a banana plantation in Zimbabwe. Malar J 2019; 18:390. [PMID: 31796071 PMCID: PMC6889674 DOI: 10.1186/s12936-019-3021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is known to contribute to reduction in productivity through absenteeism as worker-hours are lost thus impacting company productivity and performance. This paper analysed the impact of malaria on productivity in a banana plantation through absenteeism. Methods This study was carried out at Matanuska farm in Burma Valley, Zimbabwe. Raw data on absenteeism was obtained in retrospect from the Farm Manager. Malaria infection was detected using malaria Rapid Diagnostic Test. Measures of absence from work place were determined and included; incidence of absence (number of absentees divided by the total workforce), absence frequency (number of malaria spells), frequency rate (number of spells divided by the number of absentees), estimated duration of spells (number of days lost due to malaria), severity rate (number of days lost divided by number of spells), incapacity rate (number of days lost divided by the number of absentees), number of absent days (number of spells times the severity rate), number of scheduled working days (actual working days in 5 months multiplied by total number of employees), absenteeism rate. Results A total of 143 employees were followed up over a 5-month period. Malaria positivity was 21%, 31.5%, 44.8%, 35.7% and 12.6% for January 2014 to May 2014, respectively. One spell of absence [194 (86.6%)] was common followed by 2 spells of absence [30 (13.4%)] for all employees. Duration of spells of absence due to malaria ranged from 1.5 to 4.1 working-days, with general workers being the most affected. Incidence of absence was 143/155 (93.3%), with total of spells of absence of over a 5-month period totalling 224. The frequency rate of absenteeism was 1.6 with severity rate of absence being 2.4. and incapacity rate was 3.7. Conclusion Malaria contributes significantly to worker absenteeism. Employers, therefore, ought to put measures that protect workers from malaria infections. Protecting workers can be done through malaria educative campaigns, providing mosquito nets, providing insecticide-treated work suits, providing repellents and partnering with different ministries to ensure protection of workers from mosquito bites.
Collapse
Affiliation(s)
- Akim Tafadzwa Lukwa
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Richard Mawoyo
- Mutare Provincial Hospital, P. O. Box 30, Mutare, Zimbabwe
| | | | - Aggrey Siya
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Olufunke Alaba
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
7
|
Sande S, Zimba M, Nyasvisvo D, Mukuzunga M, Kooma EH, Mberikunashe J, Dube B. Getting ready for integrated vector management for improved disease prevention in Zimbabwe: a focus on key policy issues to consider. Malar J 2019; 18:322. [PMID: 31547828 PMCID: PMC6755700 DOI: 10.1186/s12936-019-2965-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022] Open
Abstract
Background This paper outlines Zimbabwe’s potential readiness in harnessing integrated vector management (IVM) strategy for enhanced control of vector-borne diseases. The objective is to provide guidance for the country in the implementation of the national IVM strategy in order to make improvements required in thematic areas of need. The paper also assesses the existing opportunities and gaps to promote and adopt the approach as a national policy. Main text Despite recent gains in combating vector-borne diseases, especially malaria, management of vector control programmes still remains insecticide-based and vertical in nature. Therefore, concerns have been raised on whether the current long-standing conventional vector control strategy still remains with sufficient action to continue to break the transmission cycle to the levels of elimination. This is so, given the continuous dwindling resources for vector control, changes in vector behaviour, the emergence of resistance to medicines and insecticides, climate change, environmental degradation, as well as diversity in ecology, breeding habitats, and community habits. Cognizant of all that, elements of a surveillance-driven IVM approach are rapidly needed to move vector control interventions a step further. These include advocacy, policy formulation, capacity building, public and private partnerships, community engagement, and increasingly basing decisions on local evidence. Understanding the existing opportunities and gaps, and the recognition that some elements of IVM are already imbedded in the current health programmes is important to encourage stakeholders to promptly support its implementation. Leveraging on the existing opportunities, combined with sufficient advocacy, IVM could easily be accepted by the Zimbabwe government as part of a wider integrated disease management strategy. The strategy could represent an excellent breakthrough to establish much needed intra and inter-sectoral dialogue, and coordination for improved vector-borne disease prevention. Conclusions After synthesis of the opportunities and challenges clearly presented, it was concluded that it is imperative for Zimbabwe to adopt and implement IVM strategy that is informed by work already done, while addressing the bottlenecks. The significance of refocusing for improved disease prevention that has the potential to accomplish elimination of not only malaria but all vector borne diseases much earlier than anticipated under the existing vector control system is underscored.
Collapse
Affiliation(s)
- Shadreck Sande
- Abt Associates Inc., Block 1 & 2 Westgate, Harare, Zimbabwe.
| | - Moses Zimba
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe
| | | | | | - Emmanuel H Kooma
- National Malaria Elimination Centre, Chainama Hospital, Great East Road, Lusaka, Zambia
| | - Joseph Mberikunashe
- Ministry of Health and Child Care, National Malaria Control Programme, Harare, Zimbabwe
| | - Busisani Dube
- Ministry of Health and Child Care, National Malaria Control Programme, Harare, Zimbabwe
| |
Collapse
|
8
|
Tugume A, Muneza F, Oporia F, Kiconco A, Kihembo C, Kisakye AN, Nsubuga P, Deogratias S, Yeka A. Effects and factors associated with indoor residual spraying with Actellic 300 CS on malaria morbidity in Lira District, Northern Uganda. Malar J 2019; 18:44. [PMID: 30791906 PMCID: PMC6383239 DOI: 10.1186/s12936-019-2681-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) with Actellic 300 CS was conducted in Lira District between July and August 2016. No formal assessment has been conducted to estimate the effect of spraying with Actellic 300 CS on malaria morbidity in the Ugandan settings. This study assessed malaria morbidity trends before and after IRS with Actellic 300 CS in Lira District in Northern Uganda. METHODS The study employed a mixed methods design. Malaria morbidity records from four health facilities were reviewed, focusing on 6 months before and after the IRS intervention. The outcome of interest was malaria morbidity defined as; proportion of outpatient attendance due to total malaria, proportion of outpatient attendance due to confirmed malaria and proportion of malaria case numbers confirmed by microscopy or rapid diagnostic test. Since malaria morbidity was based on count data, an ordinary Poisson regression model was used to obtain percentage point change (pp) in monthly malaria cases before and after IRS. A household survey was also conducted in 159 households to determine IRS coverage and factors associated with spraying. A modified Poisson regression model was fitted to determine factors associated with household spray status. RESULTS The proportion of outpatient attendance due to malaria dropped from 18.7% before spraying to 15.1% after IRS. The proportion of outpatient attendance due to confirmed malaria also dropped from 5.1% before spraying to 4.0% after the IRS intervention. There was a decreasing trend in malaria test positivity rate (TPR) for every unit increase in month after spraying. The decreasing trend in TPR was more prominent 5-6 months after the IRS intervention (Adj. pp = - 0.60, P-value = 0.015; Adj. pp = - 1.19, P-value < 0.001). The IRS coverage was estimated at 89.3%. Households of respondents who were formally employed or owned any form of business were more likely to be unsprayed; (APR = 5.81, CI 2.72-12.68); (APR = 3.84, CI 1.20-12.31), respectively. CONCLUSION Coverage of IRS with Actellic 300 CS was high and was associated with a significant decline in malaria related morbidity 6 months after spraying.
Collapse
Affiliation(s)
- Abdulaziz Tugume
- Department of Epidemiology and Biostatistics, College of Health Sciences, School of Public Health, Makerere University, P.O.BOX, 7072, Kampala, Uganda.
| | - Fiston Muneza
- Department of Epidemiology and Biostatistics, College of Health Sciences, School of Public Health, Makerere University, P.O.BOX, 7072, Kampala, Uganda
| | - Frederick Oporia
- Department of Disease Control and Environmental Health, College of Health Sciences, School of Public Health, Makerere University, Kampala, Uganda
| | - Arthur Kiconco
- Department of Disease Control and Environmental Health, College of Health Sciences, School of Public Health, Makerere University, Kampala, Uganda
| | | | - Angela Nakanwagi Kisakye
- Department of Health Policy Planning and Management, Makerere University School of Public Health, Kampala, Uganda.,African Field Epidemiology Network, Kampala, Uganda
| | | | - Sekimpi Deogratias
- Department of Disease Control and Environmental Health, College of Health Sciences, School of Public Health, Makerere University, Kampala, Uganda
| | - Adoke Yeka
- Department of Disease Control and Environmental Health, College of Health Sciences, School of Public Health, Makerere University, Kampala, Uganda
| |
Collapse
|
9
|
Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, Diallo D, Saibu A, Richardson JH, Kone D, Fomba S, Bernson J, Steketee R, Slutsker L, Robertson M. An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012-2015. Malar J 2018; 17:19. [PMID: 29316917 PMCID: PMC5761159 DOI: 10.1186/s12936-017-2168-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ségou Region in Central Mali is an area of high malaria burden with seasonal transmission, high access to and use of long-lasting insecticidal nets (LLINs), and resistance to pyrethroids and DDT well documented in Anopheles gambiae s.l. (the principal vector of malaria in Mali). Ségou has recently received indoor residual spraying (IRS) supported by Mali’s collaboration with the US President’s Malaria Initiative/Africa Indoor Residual Spraying programme. From 2012 to 2015, two different non-pyrethroid insecticides: bendiocarb in 2012 and 2013 and pirimiphos-methyl in 2014 and 2015, were used for IRS in two districts. This report summarizes the results of observational analyses carried out to assess the impact of these IRS campaigns on malaria incidence rates reported through local and district health systems before and after spraying. Methods A series of retrospective time series analyses were performed on 1,382,202 rapid diagnostic test-confirmed cases of malaria reported by district routine health systems in Ségou Region from January 2012 to January 2016. Malaria testing, treatment, surveillance and reporting activities remained consistent across districts and years during the study period, as did LLIN access and use estimates as well as An. gambiae s.l. insecticide resistance patterns. Districts were stratified by IRS implementation status and all-age monthly incidence rates were calculated and compared across strata from 2012 to 2014. In 2015 a regional but variable scale-up of seasonal malaria chemoprevention complicated the region-wide analysis; however IRS operations were suspended in Bla District that year so a difference in differences approach was used to compare 2014 to 2015 changes in malaria incidence at the health facility level in children under 5-years-old from Bla relative to changes observed in Barouéli, where IRS operations were consistent. Results During 2012–2014, rapid reductions in malaria incidence were observed during the 6 months following each IRS campaign, though most of the reduction in cases (70% of the total) was concentrated in the first 2 months after each campaign was completed. Compared to non-IRS districts, in which normal seasonal patterns of malaria incidence were observed, an estimated 286,745 total fewer cases of all-age malaria were observed in IRS districts. The total cost of IRS in Ségou was around 9.68 million USD, or roughly 33.75 USD per case averted. Further analysis suggests that the timing of the 2012–2014 IRS campaigns (spraying in July and August) was well positioned to maximize public health impact. Suspension of IRS in Bla District after the 2014 campaign resulted in a 70% increase in under-5-years-old malaria incidence rates from 2014 to 2015, significantly greater (p = 0.0003) than the change reported from Barouéli District, where incidence rates remained the same. Conclusions From 2012 to 2015, the annual IRS campaigns in Ségou are associated with several hundred thousand fewer cases of malaria. This work supports the growing evidence that shows that IRS with non-pyrethroid insecticides is a wise public health investment in areas with documented pyrethroid resistance, high rates of LLIN coverage, and where house structures and population densities are appropriate. Additionally, this work highlights the utility of quality-assured and validated routine surveillance and well defined observational analyses to rapidly assess the impact of malaria control interventions in operational settings, helping to empower evidence-based decision making and to further grow the evidence base needed to better understand when and where to utilize new vector control tools as they become available. Electronic supplementary material The online version of this article (10.1186/s12936-017-2168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Diakalkia Kone
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | - Seydou Fomba
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | | | | | | | | |
Collapse
|
10
|
Omondi S, Mukabana WR, Ochomo E, Muchoki M, Kemei B, Mbogo C, Bayoh N. Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya. Parasit Vectors 2017; 10:548. [PMID: 29110724 PMCID: PMC5674850 DOI: 10.1186/s13071-017-2489-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background The development and spread of resistance among local vectors to the major classes of insecticides used in Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) poses a major challenge to malaria vector control programs worldwide. The main methods of evaluating insecticide resistance in malaria vectors are the WHO tube bioassay and CDC bottle assays, with their weakness being determination of resistance at a fixed dose for variable populations. The CDC bottle assay using different insecticide dosages has proved applicable in ascertaining the intensity of resistance. Methods We determined the status and intensity of permethrin resistance and investigated the efficacy of commonly used LLINs (PermaNet® 2.0, PermaNet® 3.0 and Olyset®) against 3–5 day-old adult female Anopheles mosquitoes from four sub-counties; Teso, Bondo, Rachuonyo and Nyando in western Kenya. Knockdown was assessed to 4 doses of permethrin; 1× (21.5 μg/ml), 2× (43 μg/ml), 5× (107.5 μg/ml) and 10× (215 μg/ml) using CDC bottle assays. Results Mortality for 0.75% permethrin ranged from 23.5% to 96.1% in the WHO tube assay. Intensity of permethrin resistance was highest in Barkanyango Bondo, with 84% knockdown at the 30 min diagnostic time when exposed to the 10× dose. When exposed to the LLINs, mortality ranged between— 0–39% for Olyset®, 12–88% for PermaNet® 2.0 and 26–89% for PermaNet® 3.0. The efficacy of nets was reduced in Bondo and Teso. Results from this study show that there was confirmed resistance in all the sites; however, intensity assays were able to differentiate Bondo and Teso as the sites with the highest levels of resistance, which coincidentally were the two sub-counties with reduced net efficacy. Conclusions There was a reduced efficacy of nets in areas with high resistance portraying that at certain intensities of resistance, vector control using LLINs may be compromised. It is necessary to incorporate intensity assays in order to determine the extent of threat that resistance poses to malaria control. Electronic supplementary material The online version of this article (10.1186/s13071-017-2489-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seline Omondi
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya. .,Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya.
| | - Wolfgang Richard Mukabana
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.,Science for Health, P.O Box 44970-00100, Nairobi, Kenya
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Margaret Muchoki
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Brigid Kemei
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Charles Mbogo
- KEMRI-Centre for Geographic Medicine Research-Coast, P.O Box 230-80108, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Program, P.O Box 43640-00100, Nairobi, Kenya
| | - Nabie Bayoh
- US Centers for Disease Control and Prevention-Kenya, P.O Box 1578-40100, Kisumu, Kenya
| |
Collapse
|
11
|
Sande S, Zimba M, Mberikunashe J, Tangwena A, Chimusoro A. Progress towards malaria elimination in Zimbabwe with special reference to the period 2003-2015. Malar J 2017; 16:295. [PMID: 28738840 PMCID: PMC5525350 DOI: 10.1186/s12936-017-1939-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An intensive effort to control malaria in Zimbabwe has produced dramatic reductions in the burden of the disease over the past 13 years. The successes have prompted the Zimbabwe's National Malaria Control Programme to commit to elimination of malaria. It is critical to analyse the changes in the morbidity trends based on surveillance data, and scrutinize reorientation to strategies for elimination. METHODS This is a retrospective study of available Ministry of Health surveillance data and programme reports, mostly from 2003 to 2015. Malaria epidemiological data were drawn from the National Health Information System database. Data on available resources, malaria control strategies, morbidity and mortality trends were analysed, and opportunities for Zimbabwe malaria elimination agenda was perused. RESULTS With strong government commitment and partner support, the financial gap for malaria programming shrank by 91.4% from about US$13 million in 2012 to US$1 million in 2015. Vector control comprises indoor residual house spraying (IRS) and long-lasting insecticidal nets, and spray coverage increased from 28% in 2003 to 95% in 2015. Population protected by IRS increased also from 20 to 96% for the same period. In 2009, diagnostics improved from clinical to parasitological confirmation either by rapid diagnostic tests or microscopy. Artemisinin-based combination therapy was used to treat malaria following chloroquine resistance in 2000, and sulfadoxine-pyrimethamine in 2004. In 2003, there were 155 malaria cases per 1000 populations reported from all health facilities throughout the country. The following decade witnessed a substantial decline in cases to only 22 per 1000 populations in 2012. A resurgence was reported in 2013 (29/1000) and 2014 (39/1000), thereafter morbidity declined to 29 cases per 1000 populations, only to the same level as in 2013. Overall, morbidity declined by 81% from 2003 to 2015. Inpatient malaria deaths per 100,000 populations doubled in 4 years, from 2/100,000 to 4/100,000 populations in 2012-2015 respectively. Twenty of the 47 moderate to high burdened districts were upgraded from control to malaria pre-elimination between 2012 and 2015. CONCLUSIONS A significant progress to reduce malaria transmission in Zimbabwe has been made. While a great potential and opportunities to eliminate malaria in the country exist, elimination is not a business as usual approach. Instead, it needs an improved, systematic and new programmatic strategy supported strongly by political will, sustained funding, good leadership, community engagement, and a strong monitoring and evaluation system all year round until the cessation of local transmission.
Collapse
Affiliation(s)
- Shadreck Sande
- Abt Associates Inc., Block 1 & 2 Westgate, Harare, Zimbabwe
| | - Moses Zimba
- Department of Biological Science, University of Zimbabwe, Harare, Zimbabwe
| | - Joseph Mberikunashe
- Ministry of Health and Child Care, National Malaria Control Programme, Harare, Zimbabwe
| | - Andrew Tangwena
- Ministry of Health and Child Care, National Malaria Control Programme, Harare, Zimbabwe
| | | |
Collapse
|
12
|
Kohl A, Pondeville E, Schnettler E, Crisanti A, Supparo C, Christophides GK, Kersey PJ, Maslen GL, Takken W, Koenraadt CJM, Oliva CF, Busquets N, Abad FX, Failloux AB, Levashina EA, Wilson AJ, Veronesi E, Pichard M, Arnaud Marsh S, Simard F, Vernick KD. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathog Glob Health 2016; 110:164-72. [PMID: 27677378 PMCID: PMC5072118 DOI: 10.1080/20477724.2016.1211475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.
Collapse
Affiliation(s)
- Alain Kohl
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Emilie Pondeville
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Esther Schnettler
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Andrea Crisanti
- b Department of Life Sciences , Imperial College London , London , UK
| | - Clelia Supparo
- b Department of Life Sciences , Imperial College London , London , UK
| | | | - Paul J Kersey
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Gareth L Maslen
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Willem Takken
- d Laboratory of Entomology , Wageningen University and Research Centre , Wageningen , The Netherlands
| | | | - Clelia F Oliva
- e Polo d'Innovazione di Genomica, Genetica e Biologia , Perugia , Italy
| | - Núria Busquets
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - F Xavier Abad
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - Anna-Bella Failloux
- g Arboviruses and Insect Vectors Unit, Department of Virology , Institut Pasteur , Paris cedex 15 , France
| | - Elena A Levashina
- h Department of Vector Biology , Max-Planck-Institut für Infektionsbiologie, Campus Charité Mitte , Berlin , Germany
| | - Anthony J Wilson
- i Integrative Entomology Group, Vector-borne Viral Diseases Programme , The Pirbright Institute , Surrey , UK
| | - Eva Veronesi
- j Swiss National Centre for Vector Entomology, Institute of Parasitology , University of Zürich , Zürich , Switzerland
| | - Maëlle Pichard
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Sarah Arnaud Marsh
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Frédéric Simard
- l MIVEGEC "Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle" , UMR IRD224-CNRS5290-Université de Montpellier , Montpellier France
| | - Kenneth D Vernick
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France.,m CNRS Unit of Hosts, Vectors and Pathogens (URA3012) , Institut Pasteur , Paris cedex 15 , France
| |
Collapse
|
13
|
A review of new challenges and prospects for malaria elimination in Mutare and Mutasa Districts, Zimbabwe. Malar J 2016; 15:360. [PMID: 27411705 PMCID: PMC4944518 DOI: 10.1186/s12936-016-1415-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/04/2016] [Indexed: 11/11/2022] Open
Abstract
This review outlines and discusses the new challenges in malaria control and prospects for its elimination in Mutare and Mutasa Districts, Zimbabwe. The burden of malaria has declined significantly over the past 5 years in most regions in Zimbabwe, including Mutare and Mutasa Districts. The nationwide malaria reduction has been primarily linked to scaled-up vector control interventions and early diagnosis and treatment with effective anti-malarial medicines. The successes recorded have prompted Zimbabwe’s National Malaria Control Programme to commit to a global health agenda of eliminating malaria in all districts in the country. However, despite the decline in malaria burden in Mutare and Mutasa Districts, there is clear evidence of new challenges, including changes in vector behaviour, resistance to insecticides and anti-malarial medicines, invasion of new areas by vectors, vectors in various combination of sympatry, changes in vector proportions, outdoor malaria transmission, climate change and lack of meticulousness of spray operators. These new challenges are likely to retard the shift from malaria control to elimination in Mutare and Mutasa Districts.
Collapse
|