1
|
Doritchamou J, Nielsen MA, Chêne A, Viebig NK, Lambert LE, Sander AF, Semblat JP, Hundt S, Orr-Gonzalez S, Janitzek CM, Spiegel AJ, Clemmensen SB, Thomas ML, Nason MC, Snow-Smith M, Barnafo EK, Shiloach J, Chen BB, Nadakal S, Highsmith K, Ouahes T, Conteh S, Sharma A, Torano H, Butler B, Reiter K, Rausch KM, Scaria PV, Anderson C, Narum DL, Salanti A, Fried M, Theander TG, Gamain B, Duffy PE. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim (NY) 2023; 52:315-323. [PMID: 37932470 PMCID: PMC10689237 DOI: 10.1038/s41684-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Mikkel Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alicia J Spiegel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryonne Snow-Smith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Shiloach
- Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Nadakal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kendrick Highsmith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ankur Sharma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Torano
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Does Antibody Avidity to Plasmodium falciparum Merozoite Antigens Increase with Age in Individuals Living in Malaria-Endemic Areas? Infect Immun 2021; 89:IAI.00522-20. [PMID: 33722929 DOI: 10.1128/iai.00522-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
High-avidity antibodies (Abs) are acquired after a few Plasmodium falciparum infections in low transmission areas, but it remains unclear if Ab avidity to different merozoite antigens increases with age in individuals with persistent antigenemia and, if so, when a fully mature Ab response occurs. The study used plasma samples collected between 1996 and 1998 from 566 individuals aged 4 to 84 years in Simbok, Cameroon, where residents received an estimated 1.6 infectious mosquito bites/person/night. Plasma samples were examined for Ab levels (median fluorescence intensity [MFI]) and Ab avidity index (AI) (where AI = [MFI after treatment with 2 M NH4SCN/MFI without salt] × 100) using a bead-based multiplex immunoassay for recombinant AMA1, EBA-175, MSP1-42 (3D7, FVO), MSP2 (3D7, Fc27), and MSP3. Blood-smear positivity for P. falciparum declined with age from 54.3% at 4 to 5 years to 18% at 16 to 40 years and <11% at >40 years of age, although most individuals had submicroscopic parasitemia. Ab affinity maturation, based on age-related patterns of median AI, percentage of individuals with AI of ≥50, and strength of association between MFI and AI, occurred at different rates among the antigens; they developed rapidly before age 4 years for AMA1, increased gradually with age for EBA-175 and MSP1 until ∼16 to 25 years, but occurred negligibly for MSP2 and MSP3. In a hyperendemic area with perennial transmission, affinity maturation resulting in an increase in the proportion of high-avidity Abs occurred for some merozoite antigens, in parallel with a decline in malaria slide passivity, but not for others.
Collapse
|
3
|
Vanda K, Bobbili N, Matsunaga M, Chen JJ, Salanti A, Leke RFG, Taylor DW. The Development, Fine Specificity, and Importance of High-Avidity Antibodies to VAR2CSA in Pregnant Cameroonian Women Living in Yaoundé, an Urban City. Front Immunol 2021; 12:610108. [PMID: 33717094 PMCID: PMC7953046 DOI: 10.3389/fimmu.2021.610108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnant women infected with Plasmodium falciparum often produce antibodies (Abs) to VAR2CSA, a ligand that binds to placental chondroitin sulfate A causing placental malaria (PM). Antibodies to VAR2CSA are associated with improved pregnancy outcomes. Antibody avidity is a surrogate marker for the extent of maturation of the humoral immune response. Little is known about high avidity Abs to VAR2CSA for women living in urban African cities. Therefore, this study sought to determine: i) if high avidity Abs to full-length VAR2CSA (FV2) increase with gravidity in women in Yaoundé, Cameroon exposed to ~ 0.3-1.1 infectious mosquito bites per month, ii) if high avidity Abs to FV2 are directed against a specific region of VAR2CSA, and iii) if having high avidity Abs to FV2 improve pregnancy outcomes. Plasma samples collected at delivery from 695 women who had Abs to FV2 were evaluated. Ab levels and the Avidity Index (AI), defined as the percent Abs remaining bound to FV2 after incubation with 3M NH4SCN, were determined. Similar Ab levels to FV2 were present in women of all gravidities (G1 through 6+; p=0.80), except significantly lower levels were detected in PM−negative (PM−) primigravidae (p <0.001). Median Ab avidities increased between gravidity 1 and 2 (p<0.001) and remained stable thereafter (G3-G6+: p=0.51). These results suggest that B cell clonal expansion began during the first pregnancy, with clonal selection primarily occurring during the second. However, the majority of women (84%) had AI <35, a level of high avidity Abs previously reported to be associated with improved pregnancy outcomes. When plasma from 107 Cameroonian women was tested against 8 different regions of FV2, high avidity Abs were predominately restricted to DBL5 with median AI of 50 compared to AI <25 for the other domains. The only significance influence of high avidity Abs on pregnancy outcome was that babies born to mothers with AI above the median were 104 g heavier than babies born to women with AI below the median (p=0.045). These results suggest that a vaccine that boosts maturation of the immune response to VAR2CSA may be beneficial for women residing in urban areas.
Collapse
Affiliation(s)
- Koko Vanda
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Masako Matsunaga
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - John J Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Ali Salanti
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose F G Leke
- Faculty of Medicine and Biomedical Research, The Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
4
|
The immunoglobulin G antibody response to malaria merozoite antigens in asymptomatic children co-infected with malaria and intestinal parasites. PLoS One 2020; 15:e0242012. [PMID: 33170876 PMCID: PMC7654760 DOI: 10.1371/journal.pone.0242012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Co-infection with malaria and intestinal parasites is common in children in Africa and may affect their immune response to a malaria parasite infection. Prior studies suggest that co-infections may lead to increased susceptibility to malaria infection and disease severity; however, other studies have shown the reverse. Knowledge on how co-morbidities specifically affect the immune response to malaria antigens is limited. Therefore, this study sought to determine the prevalence of co-infection of malaria and intestinal parasites and its association with antibody levels to malaria merozoite antigens. Methods A cross sectional study was carried out in two villages with high transmission of malaria in Cameroon (Ngali II and Mfou) where mass drug administration (MDA) had been administered at ~6-month intervals (generally with albendazole or mebendazole). Children aged 1–15 years were enrolled after obtaining parental consent. A malaria rapid diagnostic test was used on site. Four (4) ml of peripheral blood was collected from each participant to determine Plasmodium falciparum infections by microscopy, haemoglobin levels and serology. Fresh stool samples were collected and examined by wet mount, Kato-Katz method and modified Ritchie concentration techniques. A Multiplex Analyte Platform assay was used to measure antibody levels. Results A total of 320 children were enrolled. The prevalence of malaria by blood smear was 76.3% (244/320) and prevalence of malaria and intestinal parasites was 16.9% (54/320). Malaria prevalence was highest in young children; whereas, intestinal parasites (IP+) were not present until after 3 years of age. All children positive for malaria had antibodies to MSP142, MSP2, MSP3 and EBA175. No difference in antibody levels in children with malaria-co infections compared to malaria alone were found, except for antibody levels to EBA-175 were higher in children co-infected with intestinal protozoa (p = 0.018), especially those with Entamoeba histolytica infections (p = 0.0026). Conclusion Antibody levels to EBA175 were significantly higher in children co-infected with malaria and E. histolytica compared to children infected with malaria alone. It is important to further investigate why and how the presence of these protozoans might modulate the immune response to malaria antigens.
Collapse
|
5
|
Gnidehou S, Yanow SK. VAR2CSA Antibodies in Non-Pregnant Populations. Trends Parasitol 2020; 37:65-76. [PMID: 33067131 DOI: 10.1016/j.pt.2020.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The Plasmodium falciparum protein VAR2CSA is a critical mediator of placental malaria, and VAR2CSA antibodies (IgGs) are important to protect pregnant women. Although infrequently detected outside pregnancy, VAR2CSA IgGs were reported in men and children from Colombia and Brazil and in select African populations. These findings raise questions about the specificity of VAR2CSA IgGs and the mechanisms by which they are acquired outside pregnancy. Here we review the data on VAR2CSA IgGs in men and children from different malaria-endemic regions. We discuss experimental factors that may affect interpretation of the serological data and consider the biological relevance of VAR2CSA IgGs in non-pregnant populations. We propose potential mechanisms for the acquisition of VARCSA IgGs outside of pregnancy. We identify knowledge gaps and research priorities.
Collapse
Affiliation(s)
- Sedami Gnidehou
- Campus Saint-Jean, University of Alberta, Edmonton, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Solomon A, Kahase D, Alemayhu M. Prevalence of placental malaria among asymptomatic pregnant women in Wolkite health center, Gurage zone, Southern Ethiopia. Trop Dis Travel Med Vaccines 2020; 6:20. [PMID: 33062290 PMCID: PMC7552502 DOI: 10.1186/s40794-020-00121-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Placental malaria (PM) is a major public health problem associated with adverse pregnancy outcomes such as low birth weight (LBW), preterm delivery and maternal anemia. The present study is aimed to determine the prevalence of placental malaria among asymptomatic pregnant women in Wolkite health center, Gurage zone, Southern Ethiopia. METHOD Facility-based cross-sectional study was carried out from June 2019 to August 2019. A total of 230 pregnant women were involved in the study where socio-demographic data, medical and obstetric history were collected using pretested structured questionnaires. Blood samples were collected at delivery from maternal capillary, placenta and umbilical cord for the detection of malarial parasite. Maternal hematocrit was determined to screen for anemia. RESULT In this study, the prevalence of placental malaria, peripheral malaria and umbilical cord malaria was 3.9% (9/230), 15.2% (35/230) and 2.6% (6/230) respectively. Plasmodium falciparum and Plasmodium vivax were detected by microscopy. All babies with positive umbilical cord blood films were born from a mother with placental malaria. Maternal anemia was recorded in 58.3% of the women. In univariate analysis, placental malaria was significantly associated with LBW (p < 0.001) unlike parity and maternal anemia. CONCLUSION Placental malaria among asymptomatic pregnant women is low in Wolkite health centre, Gurage zone in Southern Ethiopia. Moreover, placental malaria was strongly associated with LBW. Thus, further strengthening the existing prevention and control activities and screening of asymptomatic pregnant women as part of routine antenatal care service is very essential.
Collapse
Affiliation(s)
- Absra Solomon
- Department of Medical Laboratory Science, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| | - Daniel Kahase
- Department of Medical Laboratory Science, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| | - Mihret Alemayhu
- Department of Medical Laboratory Science, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| |
Collapse
|
7
|
Antibodies to full-length and the DBL5 domain of VAR2CSA in pregnant women after long-term implementation of intermittent preventive treatment in Etoudi, Cameroon. PLoS One 2020; 15:e0237671. [PMID: 32797068 PMCID: PMC7428160 DOI: 10.1371/journal.pone.0237671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022] Open
Abstract
In high malaria transmission settings, the use of sulfadoxine-pyrimethamine-based intermittent preventive treatment during pregnancy (IPTp-SP) has resulted in decreased antibody (Ab) levels to VAR2CSA. However, information of Ab levels in areas of low or intermediate malaria transmission after long-term implementation of IPTp-SP is still lacking. The present study sought to evaluate antibody prevalence and levels in women at delivery in Etoudi, a peri-urban area in the capital of Yaoundé, Cameroon, that is a relatively low-malaria transmission area. Peripheral plasma samples from 130 pregnant women were collected at delivery and tested for IgG to the full-length recombinant VAR2CSA (FV2) and its most immunogenic subdomain, DBL5. The study was conducted between 2013 and 2015, approximately ten years after implementation of IPTp-SP in Cameroon. About 8.6% of the women attending the clinic had placental malaria (PM). One, two or 3 doses of SP did not impact significantly on either the percentage of women with Ab to FV2 and DBL5 or Ab levels in Ab-positive women compared to women not taking SP. The prevalence of Ab to FV2 and DBL5 was only 36.9% and 36.1%, respectively. Surprisingly, among women who had PM at delivery, only 61.5% and 57.7% had Ab to FV2 and DBL5, respectively, with only 52.9% and 47.1% in PM-positive paucigravidae and 77.7% of multigravidae having Ab to both antigens. These results suggest that long-term implementation of IPTp-SP in a low-malaria transmission area results in few women having Ab to VAR2CSA.
Collapse
|
8
|
Generation of a Peptide Vaccine Candidate against Falciparum Placental Malaria Based on a Discontinuous Epitope. Vaccines (Basel) 2020; 8:vaccines8030392. [PMID: 32708370 PMCID: PMC7564767 DOI: 10.3390/vaccines8030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
In pregnant women, Plasmodium falciparum-infected red blood cells adhere to the placenta via the parasite protein VAR2CSA. Two vaccine candidates based on VAR2CSA are currently in clinical trials; however, these candidates failed to elicit strain-transcending antibody responses. We previously showed that a cross-reactive monoclonal antibody (3D10) raised against the P. vivax antigen PvDBP targets epitopes in VAR2CSA. We now aim to design a peptide vaccine against VAR2CSA based on the epitope that generated 3D10. We mapped the epitope to subdomain 1 (SD1) of PvDBP and identified a peptide that contained the minimal sequence. However, this peptide did not elicit cross-reactive VAR2CSA antibodies in mice. When tested against a broader, overlapping peptide array spanning SD1, 3D10 in fact recognized a discontinuous epitope consisting of three segments of SD1. These findings presented the challenge to generate this larger structural epitope as a synthetic peptide since it is stabilized by two pairs of disulfide bonds. We overcame this using a synthetic scaffold to conformationally constrain the SD1 peptide and coupled it to keyhole limpet hemocyanin (KLH). The SD1-KLH conjugate elicited antibodies in mice that cross-reacted with VAR2CSA. This strategy successfully recapitulated a discontinuous epitope with a synthetic peptide and represents the first heterologous vaccine candidate against VAR2CSA.
Collapse
|
9
|
Taylor DW, Bobbili N, Kayatani A, Tassi Yunga S, Kidima W, Leke RFG. Measuring antibody avidity to Plasmodium falciparum merozoite antigens using a multiplex immunoassay approach. Malar J 2020; 19:171. [PMID: 32357882 PMCID: PMC7195780 DOI: 10.1186/s12936-020-03243-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration. Methods The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to (i) identify the assay with the widest range of AI (discriminatory power), (ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and (iii) evaluate assay repeatability. Results Overall, 4 M GdHCl and 8 M urea were weaker chaotropes than 3 M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2 M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 1-year old infants in Cameroon showed that 2.1 M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8 M ± 0.23 M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2 M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.
Collapse
Affiliation(s)
- Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Alex Kayatani
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Samuel Tassi Yunga
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Winifrida Kidima
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Rose F G Leke
- Faculty of Medicine and Biomedical Sciences, The Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon
| |
Collapse
|
10
|
Cutts JC, Agius PA, Zaw Lin, Powell R, Moore K, Draper B, Simpson JA, Fowkes FJI. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med 2020; 18:14. [PMID: 31941488 PMCID: PMC6964062 DOI: 10.1186/s12916-019-1467-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In endemic areas, pregnant women are highly susceptible to Plasmodium falciparum malaria characterized by the accumulation of parasitized red blood cells (pRBC) in the placenta. In subsequent pregnancies, women develop protective immunity to pregnancy-associated malaria and this has been hypothesized to be due to the acquisition of antibodies to the parasite variant surface antigen VAR2CSA. In this systematic review we provide the first synthesis of the association between antibodies to pregnancy-specific P. falciparum antigens and pregnancy and birth outcomes. METHODS We conducted a systematic review and meta-analysis of population-based studies (published up to 07 June 2019) of pregnant women living in P. falciparum endemic areas that examined antibody responses to pregnancy-specific P. falciparum antigens and outcomes including placental malaria, low birthweight, preterm birth, peripheral parasitaemia, maternal anaemia, and severe malaria. RESULTS We searched 6 databases and identified 33 studies (30 from Africa) that met predetermined inclusion and quality criteria: 16 studies contributed estimates in a format enabling inclusion in meta-analysis and 17 were included in narrative form only. Estimates were mostly from cross-sectional data (10 studies) and were heterogeneous in terms of magnitude and direction of effect. Included studies varied in terms of antigens tested, methodology used to measure antibody responses, and epidemiological setting. Antibody responses to pregnancy-specific pRBC and VAR2CSA antigens, measured at delivery, were associated with placental malaria (9 studies) and may therefore represent markers of infection, rather than correlates of protection. Antibody responses to pregnancy-specific pRBC, but not recombinant VAR2CSA antigens, were associated with trends towards protection from low birthweight (5 studies). CONCLUSIONS Whilst antibody responses to several antigens were positively associated with the presence of placental and peripheral infections, this review did not identify evidence that any specific antibody response is associated with protection from pregnancy-associated malaria across multiple populations. Further prospective cohort studies using standardized laboratory methods to examine responses to a broad range of antigens in different epidemiological settings and throughout the gestational period, will be necessary to identify and prioritize pregnancy-specific P. falciparum antigens to advance the development of vaccines and serosurveillance tools targeting pregnant women.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Paul A Agius
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zaw Lin
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosanna Powell
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Kerryn Moore
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Bridget Draper
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Functional Antibodies against Placental Malaria Parasites Are Variant Dependent and Differ by Geographic Region. Infect Immun 2019; 87:IAI.00865-18. [PMID: 30988054 DOI: 10.1128/iai.00865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, Plasmodium falciparum-infected erythrocytes (IE) accumulate in the intervillous spaces of the placenta by binding to chondroitin sulfate A (CSA) and elicit inflammatory responses that are associated with poor pregnancy outcomes. Primigravidae lack immunity to IE that sequester in the placenta and thus are susceptible to placental malaria (PM). Women become resistant to PM over successive pregnancies as antibodies to placental IE are acquired. Here, we assayed plasma collected at delivery from Malian and Tanzanian women of different parities for total antibody levels against recombinant VAR2CSA antigens (FCR3 allele), and for surface reactivity and binding inhibition and opsonizing functional activities against IE using two CSA-binding laboratory isolates (FCR3 and NF54). Overall, antibody reactivity to VAR2CSA recombinant proteins and to CSA-binding IE was higher in multigravidae than in primigravidae. However, plasma from Malian gravid women reacted more strongly with FCR3 whereas Tanzanian plasma preferentially reacted with NF54. Further, acquisition of functional antibodies was variant dependent: binding inhibition of P. falciparum strain NF54 (P < 0.001) but not of the strain FCR3 increased significantly with parity, while only opsonizing activity against FCR3 (P < 0.001) increased significantly with parity. In addition, opsonizing and binding inhibition activities of plasma of multigravidae were significantly correlated in assays of FCR3 (r = 0.4, P = 0.01) but not of NF54 isolates; functional activities did not correlate in plasma from primigravidae. These data suggest that IE surface-expressed epitopes involved in each functional activity differ among P. falciparum strains. Consequently, geographic bias in circulating strains may impact antibody functions. Our study has implications for the development of PM vaccines aiming to achieve broad protection against various parasite strains.
Collapse
|
12
|
Berry AA, Gottlieb ER, Kouriba B, Diarra I, Thera MA, Dutta S, Coulibaly D, Ouattara A, Niangaly A, Kone AK, Traore K, Tolo Y, Mishcherkin V, Soisson L, Diggs CL, Blackwelder WC, Laurens MB, Sztein MB, Doumbo OK, Plowe CV, Lyke KE. Immunoglobulin G subclass and antibody avidity responses in Malian children immunized with Plasmodium falciparum apical membrane antigen 1 vaccine candidate FMP2.1/AS02 A. Malar J 2019; 18:13. [PMID: 30658710 PMCID: PMC6339315 DOI: 10.1186/s12936-019-2637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.
Collapse
Affiliation(s)
- Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric R Gottlieb
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Bourema Kouriba
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Issa Diarra
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Mahamadou A Thera
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Drissa Coulibaly
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Abdoulaye K Kone
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Karim Traore
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Youssouf Tolo
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Vladimir Mishcherkin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lorraine Soisson
- United States Agency for International Development, Washington, DC, USA
| | - Carter L Diggs
- United States Agency for International Development, Washington, DC, USA
| | - William C Blackwelder
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Fried M, Kurtis JD, Swihart B, Morrison R, Pond-Tor S, Barry A, Sidibe Y, Keita S, Mahamar A, Andemel N, Attaher O, Dembele AB, Cisse KB, Diarra BS, Kanoute MB, Narum DL, Dicko A, Duffy PE. Antibody levels to recombinant VAR2CSA domains vary with Plasmodium falciparum parasitaemia, gestational age, and gravidity, but do not predict pregnancy outcomes. Malar J 2018. [PMID: 29523137 PMCID: PMC5845157 DOI: 10.1186/s12936-018-2258-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Maternal malaria is a tropical scourge associated with poor pregnancy outcomes. Women become resistant to Plasmodium falciparum pregnancy malaria as they acquire antibodies to the variant surface antigen VAR2CSA, a leading vaccine candidate. Because malaria infection may increase VAR2CSA antibody levels and thereby confound analyses of immune protection, gravidity-dependent changes in antibody levels during and after infection, and the effect of VAR2CSA antibodies on pregnancy outcomes were evaluated. Methods Pregnant women enrolled in a longitudinal cohort study of mother-infant pairs in Ouelessebougou, Mali provided plasma samples at enrollment, gestational week 30–32, and delivery. Antibody levels to VAR2CSA domains were measured using a multiplex bead-based assay. Results Antibody levels to VAR2CSA were higher in multigravidae than primigravidae. Malaria infection was associated with increased antibody levels to VAR2CSA domains. In primigravidae but not in secundigravidae or multigravidae, antibodies levels sharply declined after an infection. A relationship between any VAR2CSA antibody specificity and protection from adverse pregnancy outcomes was not detected. Conclusions During malaria infection, primigravidae acquire short-lived antibodies. The lack of an association between VAR2CSA domain antibody reactivity and improved pregnancy outcomes suggests that the recombinant proteins may not present native epitopes targeted by protective antibodies. Electronic supplementary material The online version of this article (10.1186/s12936-018-2258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA.
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Bruce Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Youssoufa Sidibe
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Sekouba Keita
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Naissem Andemel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Adama B Dembele
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Kadidia B Cisse
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bacary S Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Moussa B Kanoute
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| |
Collapse
|
14
|
Siriwardhana C, Fang R, Salanti A, Leke RGF, Bobbili N, Taylor DW, Chen JJ. Statistical prediction of immunity to placental malaria based on multi-assay antibody data for malarial antigens. Malar J 2017; 16:391. [PMID: 28962616 PMCID: PMC5622501 DOI: 10.1186/s12936-017-2041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum infections are especially severe in pregnant women because infected erythrocytes (IE) express VAR2CSA, a ligand that binds to placental trophoblasts, causing IE to accumulate in the placenta. Resulting inflammation and pathology increases a woman’s risk of anemia, miscarriage, premature deliveries, and having low birthweight (LBW) babies. Antibodies (Ab) to VAR2CSA reduce placental parasitaemia and improve pregnancy outcomes. Currently, no single assay is able to predict if a woman has adequate immunity to prevent placental malaria (PM). This study measured Ab levels to 28 malarial antigens and used the data to develop statistical models for predicting if a woman has sufficient immunity to prevent PM. Methods Archival plasma samples from 1377 women were screened in a bead-based multiplex assay for Ab to 17 VAR2CSA-associated antigens (full length VAR2CSA (FV2), DBL 1-6 of the FCR3, 3D7 and 7G8 lines, ID1-ID2a (FCR3 and 3D7) and 11 antigens that have been reported to be associated with immunity to P. falciparum (AMA-1, CSP, EBA-175, LSA1, MSP1, MSP2, MSP3, MSP11, Pf41, Pf70 and RESA)). Ab levels along with clinical variables (age, gravidity) were used in the following seven statistical approaches: logistic regression full model, logistic regression reduced model, recursive partitioning, random forests, linear discriminant analysis, quadratic discriminant analysis, and support vector machine. Results The best and simplest model proved to be the logistic regression reduced model. AMA-1, MSP2, EBA-175, Pf41, and MSP11 were found to be the top five most important predictors for the PM status based on overall prediction performance. Conclusions Not surprising, significant differences were observed between PM positive (PM+) and PM negative (PM−) groups for Ab levels to the majority of malaria antigens. Individually though, these malarial antigens did not achieve reasonably high performances in terms of predicting the PM status. Utilizing multiple antigens in predictive models considerably improved discrimination power compared to individual assays. Among seven different classifiers considered, the reduced logistic regression model produces the best overall predictive performance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2041-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chathura Siriwardhana
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Rui Fang
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose G F Leke
- The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - John J Chen
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
15
|
Fonseca AM, Quinto L, Jiménez A, González R, Bardají A, Maculuve S, Dobaño C, Rupérez M, Vala A, Aponte JJ, Sevene E, Macete E, Menéndez C, Mayor A. Multiplexing detection of IgG against Plasmodium falciparum pregnancy-specific antigens. PLoS One 2017; 12:e0181150. [PMID: 28715465 PMCID: PMC5513451 DOI: 10.1371/journal.pone.0181150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 11/18/2022] Open
Abstract
Background Pregnant women exposed to Plasmodium falciparum generate antibodies against VAR2CSA, the parasite protein that mediates adhesion of infected erythrocytes to the placenta. There is a need of high-throughput tools to determine the fine specificity of these antibodies that can be used to identify immune correlates of protection and exposure. Here we aimed at developing a multiplex-immunoassay to detect antibodies against VAR2CSA antigens. Methods and findings We constructed two multiplex-bead arrays, one composed of 3 VAR2CSA recombinant-domains (DBL3X, DBL5Ɛ and DBL6Ɛ) and another composed of 46 new peptides covering VAR2CSA conserved and semi-conserved regions. IgG reactivity was similar in multiplexed and singleplexed determinations (Pearson correlation, protein array: R2 = 0.99 and peptide array: R2 = 0.87). IgG recognition of 25 out of 46 peptides and all recombinant-domains was higher in pregnant Mozambican women (n = 106) than in Mozambican men (n = 102) and Spanish individuals (n = 101; p<0.05). Agreement of IgG levels detected in cryopreserved plasma and in elutions from dried blood spots was good after exclusion of inappropriate filter papers. Under heterogeneous levels of exposure to malaria, similar seropositivity cutoffs were obtained using finite mixture models applied to antibodies measured on pregnant Mozambican women and average of antibodies measured on pregnant Spanish women never exposed to malaria. The application of the multiplex-bead array developed here, allowed the assessment of higher IgG levels and seroprevalences against VAR2CSA-derived antigens in women pregnant during 2003–2005 than during 2010–2012, in accordance with the levels of malaria transmission reported for these years in Mozambique. Conclusions The multiplex bead-based immunoassay to detect antibodies against selected 25 VAR2CSA new-peptides and recombinant-domains was successfully implemented. Analysis of field samples showed that responses were specific among pregnant women and dependent on the level of exposure to malaria. This platform provides a high-throughput approach to investigating correlates of protection and identifying serological markers of exposure for malaria in pregnancy.
Collapse
Affiliation(s)
- Ana Maria Fonseca
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Universidade do Porto, Porto, Portugal
| | - Llorenç Quinto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Raquel González
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Azucena Bardají
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Sonia Maculuve
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Maria Rupérez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - John J. Aponte
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Esperanza Sevene
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Eduardo Mondlane University, Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- * E-mail:
| |
Collapse
|
16
|
Antibody responses to the full-length VAR2CSA and its DBL domains in Cameroonian children and teenagers. Malar J 2016; 15:532. [PMID: 27814765 PMCID: PMC5097422 DOI: 10.1186/s12936-016-1585-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antigenic variation of Plasmodium falciparum erythrocyte membrane protein 1 is a key parasite mechanism for immune evasion and parasite survival. It is assumed that the number of parasites expressing the same var gene must reach high enough numbers before the host can produce detectable levels of antibodies (Ab) to the variant. VAR2CSA is a protein coded for by one of 60 var genes that is expressed on the surface of infected erythrocytes (IE) and mediates IE binding to the placenta. The idea that Ab to VAR2CSA are pregnancy-associated was challenged when VAR2CSA-specific Ab were reported in children and men. However, the frequency and conditions under which Ab to VAR2CSA are produced outside pregnancy is unclear. This study sought to determine frequency, specificity and level of Ab to VAR2CSA produced in children and whether children with hyperparasitaemia and severe malaria are more likely to produce Ab to VAR2CSA compared to healthy children. METHODS Antibody responses to a panel of recombinant proteins consisting of multiple VAR2CSA Duffy-binding-like domains (DBL) and full-length VAR2CSA (FV2) were characterized in 193 1-15 year old children from rural Cameroonian villages and 160 children with severe malaria from the city. RESULTS Low Ab levels to VAR2CSA were detected in children; however, Ab levels to FV2 in teenagers were rare. Children preferentially recognized DBL2 (56-70%) and DBL4 (50-60%), while multigravidae produced high levels of IgG to DBL3, DBL5 and FV2. Sixty-seven percent of teenage girls (n = 16/24) recognized ID1-ID2a region of VAR2CSA. Children with severe forms of malaria had significantly higher IgG to merozoite antigens (all p < 0.05), but not to VAR2CSA (all p > 0.05) when compared to the healthy children. CONCLUSION The study suggests that children, including teenage girls acquire Ab to VAR2CSA domains and FV2, but Ab levels are much lower than those needed to protect women from placental infections and repertoire of Ab responses to DBL domains is different from those in pregnant women. Interestingly, children with severe malaria did not have higher Ab levels to VAR2CSA compared to healthy children.
Collapse
|
17
|
Doritchamou JYA, Herrera R, Aebig JA, Morrison R, Nguyen V, Reiter K, Shimp RL, MacDonald NJ, Narum DL, Fried M, Duffy PE. VAR2CSA Domain-Specific Analysis of Naturally Acquired Functional Antibodies to Plasmodium falciparum Placental Malaria. J Infect Dis 2016; 214:577-86. [PMID: 27190180 DOI: 10.1093/infdis/jiw197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) that surface-express VAR2CSA and bind chondroitin sulfate A. The inflammatory response to placenta-sequestered parasites is associated with poor pregnancy outcomes, and protection may be mediated in part by VAR2CSA antibodies that block placental IE adhesion. METHODS In this study, we used a new approach to assess VAR2CSA domains for functional epitopes recognized by naturally acquired antibodies. Antigen-specific immunoglobulin (Ig) G targeting Duffy binding-like (DBL) domains from different alleles were sequentially purified from plasma pooled from multigravid women and then characterized using enzyme-linked immunosorbent assay, flow cytometry, and antiadhesion assays. RESULTS Different DBL domain-specific IgGs could react to homologous as well as heterologous antigens and parasites, suggesting that conserved epitopes are shared between allelic variants. Homologous blocking of IE binding was observed with ID1-DBL2-ID2a-, DBL4-, and DBL5-specific IgG (range, 42%-75%), whereas partial cross-inhibition activity was observed with purified IgG specific to ID1-DBL2-ID2a and DBL4 antigens. Plasma retained broadly neutralizing activity after complete depletion of these VAR2CSA specificities. CONCLUSIONS Broadly neutralizing antibodies of multigravidae are not depleted on VAR2CSA recombinant antigens, and hence development of VAR2CSA vaccines based on a single construct and variant might induce antibodies with limited broadly neutralizing activity.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Raul Herrera
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Joan A Aebig
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland MOMS Project, Seattle Biomedical Research Institute, Washington
| | - Vu Nguyen
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Karine Reiter
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Richard L Shimp
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| |
Collapse
|
18
|
Babakhanyan A, Ekali GL, Dent A, Kazura J, Nguasong JT, Fodjo BAY, Yuosembom EK, Esemu LF, Taylor DW, Leke RGF. Maternal Human Immunodeficiency Virus-Associated Hypergammaglobulinemia Reduces Transplacental Transfer of Immunoglobulin G to Plasmodium falciparum Antigens in Cameroonian Neonates. Open Forum Infect Dis 2016; 3:ofw092. [PMID: 28487863 PMCID: PMC4943556 DOI: 10.1093/ofid/ofw092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/06/2016] [Indexed: 11/14/2022] Open
Abstract
Background. Human immunodeficiency virus (HIV) infection reduces placental transfer of antibodies from mother to the fetus for many antigens; however, conflicting data exist for transfer of immunoglobulin G (IgG) to malarial antigens. The mechanism(s) underlying reduced placental transfer is unknown. Methods. Levels of maternal and cord total IgG, IgG subclasses, and cord-to-mother ratios (CMRs) were measured in 107 mother-cord pairs to 3 malarial antigens: circumsporozoite protein (CSP), apical membrane antigen 1 (AMA-1), merozoite surface protein 1 (MSP-1), and tetanus toxoid C-fragment (TTc). Results. Immunoglobulin G levels to CSP and TTc were lower in HIV+ mothers, and cord IgG to CSP, MSP-1, and TTc were significantly lower in neonates born to HIV+ mothers (all P values <.05). The prevalence of mothers with hypergammaglobulinemia was significantly higher among HIV+ women (68%) compared with HIV− mothers (8%) (P < .0001). Maternal hypergammaglobulinemia was associated with reduction in transplacental transfer of antibodies to CSP (P = .03), MSP-1 (P = .004), and TTc (P = .012), and CMRs <1 were found for MSP-1 (odds ratio [OR] = 6.5), TTc (OR = 4.95), and IgG1 to CSP (OR = 3.75, P = .025) in statistical models adjusted for maternal IgG. Conclusions. Data confirmed that HIV infections are associated with lower cord antibody levels to malarial antigens and that hypergammaglobulinemia may contribute to reduced antibody transfer.
Collapse
Affiliation(s)
- Anna Babakhanyan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu
| | - Gabriel Loni Ekali
- Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé 1, Cameroon
| | - Arlene Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - James Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - John Tamo Nguasong
- Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé 1, Cameroon
| | | | - Emile Keming Yuosembom
- Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé 1, Cameroon
| | - Livo Forgu Esemu
- Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé 1, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu
| | - Rose Gana Fomban Leke
- Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé 1, Cameroon
| |
Collapse
|