1
|
Kientega M, Clarkson CS, Traoré N, Hui TYJ, O'Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AMG, Brenas J, Miles A, Burt A, Diabaté A. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J 2024; 23:280. [PMID: 39285410 PMCID: PMC11406867 DOI: 10.1186/s12936-024-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso.
| | - Chris S Clarkson
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoul-Azize Millogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Institut des Sciences des Sociétés, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Patric Stephane Epopa
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Franck A Yao
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Jon Brenas
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair Miles
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
2
|
Hoek Spaans R, Mkumbwa A, Nasoni P, Jones CM, Stanton MC. Impact of four years of annually repeated indoor residual spraying (IRS) with Actellic 300CS on routinely reported malaria cases in an agricultural setting in Malawi. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002264. [PMID: 38656965 PMCID: PMC11042720 DOI: 10.1371/journal.pgph.0002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Indoor residual spraying (IRS) is one of the main vector control tools used in malaria prevention. This study evaluates IRS in the context of a privately run campaign conducted across a low-lying, irrigated, sugarcane estate from Illovo Sugar, in the Chikwawa district of Malawi. The effect of Actellic 300CS annual spraying over four years (2015-2018) was assessed using a negative binomial mixed effects model, in an area where pyrethroid resistance has previously been identified. With an unadjusted incidence rate ratio (IRR) of 0.38 (95% CI: 0.32-0.45) and an adjusted IRR of 0.50 (95% CI: 0.42-0.59), IRS has significantly contributed to a reduction in case incidence rates at Illovo, as compared to control clinics and time points outside of the six month protective period. This study shows how the consistency of a privately run IRS campaign can improve the health of employees. More research is needed on the duration of protection and optimal timing of IRS programmes.
Collapse
Affiliation(s)
- Remy Hoek Spaans
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - Christopher M. Jones
- Illovo Sugar Malawi, Nchalo, Malawi
- Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
| | | |
Collapse
|
3
|
Ferriss E, Chaponda M, Muleba M, Kabuya JB, Lupiya JS, Riley C, Winters A, Moulton LH, Mulenga M, Norris DE, Moss WJ. The Impact of Household and Community Indoor Residual Spray Coverage with Fludora Fusion in a High Malaria Transmission Setting in Northern Zambia. Am J Trop Med Hyg 2023; 109:248-257. [PMID: 37364860 PMCID: PMC10397455 DOI: 10.4269/ajtmh.22-0440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Zambia's National Malaria Elimination Program transitioned to Fludora Fusion in 2019 for annual indoor residual spraying (IRS) in Nchelenge District, an area with holoendemic malaria transmission. Previously, IRS was associated with reductions in parasite prevalence during the rainy season only, presumably because of insufficient residual insecticide longevity. This study assessed the impact of transitioning from Actellic 300CS to long-acting Fludora Fusion using active surveillance data from 2014 through 2021. A difference-in-differences analysis estimated changes in rainy season parasite prevalence associated with living in a sprayed house, comparing insecticides. The change in the 2020 to 2021 dry season parasite prevalence associated with living in a house sprayed with Fludora Fusion was also estimated. Indoor residual spraying with Fludora Fusion was not associated with decreased rainy season parasite prevalence compared with IRS with Actellic 300CS (ratio of prevalence ratios [PRs], 1.09; 95% CI, 0.89-1.33). Moreover, living in a house sprayed with either insecticide was not associated with decreased malaria risk (Actellic 300CS: PR, 0.97; 95% CI, 0.86-1.10; Fludora Fusion: rainy season PR, 1.06; 95% CI, 0.89-1.25; dry season PR, 1.21; 95% CI, 0.99-1.48). In contrast, each 10% increase in community IRS coverage was associated with a 4% to 5% reduction in parasite prevalence (rainy season: PR, 0.95; 95% CI, 0.92-0.97; dry season: PR, 0.96; 95% CI, 0.94-0.99), suggesting a community-level protective effect, and corroborating the importance of high-intervention coverage.
Collapse
Affiliation(s)
- Ellen Ferriss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | - Anna Winters
- Akros, Lusaka, Zambia
- University of Montana, Missoula, Montana
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Pfizer Canada, Quebec, Canada
| | - Modest Mulenga
- Directorate of Research and Postgraduate Studies, Lusaka Apex Medical University, Lusaka, Zambia
| | - Douglas E. Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - William J. Moss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
4
|
Hilton ER, Rabeherisoa S, Ramandimbiarijaona H, Rajaratnam J, Belemvire A, Kapesa L, Zohdy S, Dentinger C, Gandaho T, Jacob D, Burnett S, Razafinjato C. Using routine health data to evaluate the impact of indoor residual spraying on malaria transmission in Madagascar. BMJ Glob Health 2023; 8:e010818. [PMID: 37463785 PMCID: PMC10357738 DOI: 10.1136/bmjgh-2022-010818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs) are cornerstone malaria prevention methods in Madagascar. This retrospective observational study uses routine data to evaluate the impacts of IRS overall, sustained IRS exposure over multiple years and level of spray coverage (structures sprayed/found) in nine districts where non-pyrethroid IRS was deployed to complement standard pyrethroid ITNs from 2017 to 2020. METHODS Multilevel negative-binomial generalised linear models were fit to estimate the effects of IRS exposure overall, consecutive years of IRS exposure and spray coverage level on monthly all-ages population-adjusted malaria cases confirmed by rapid diagnostic test at the health facility level. The study period extended from July 2016 to June 2021. Facilities with missing data and non-geolocated communes were excluded. Facilities in IRS districts were matched with control facilities by propensity score analysis. Models were controlled for ITN survivorship, mass drug administration coverage, precipitation, enhanced vegetation index, seasonal effects and district. Predicted cases under a counterfactual no IRS scenario and number of cases averted by IRS were estimated using the fitted models. RESULTS Exposure to IRS overall reduced case incidence by an estimated 30.3% from 165.8 cases per 1000 population (95% CI=139.7 to 196.7) under a counterfactual no IRS scenario, to 114.3 (95% CI=96.5 to 135.3) over 12 months post-IRS campaign in nine districts. A third year of IRS reduced malaria cases 30.9% more than a first year (incidence rate ratio (IRR)=0.578, 95% CI=0.578 to 0.825, p<0.001) and 26.7% more than a second year (IRR=0.733, 95% CI=0.611 to 0.878, p=0.001). There was no significant difference between the first and second year (p>0.05). Coverage of 86%-90% was associated with a 19.7% reduction in incidence (IRR=0.803, 95% CI=0.690 to 0.934, p=0.005) compared with coverage ≤85%, although these results were not robust to sensitivity analysis. CONCLUSION This study demonstrates that non-pyrethroid IRS appears to substantially reduce malaria incidence in Madagascar and that sustained implementation of IRS over three years confers additional benefits.
Collapse
Affiliation(s)
| | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Herizo Ramandimbiarijaona
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Julie Rajaratnam
- Center for Digital and Data Excellence, PATH, Seattle, Washington, USA
| | - Allison Belemvire
- US Agency for International Development, US President's Malaria Initiative, Washington, District of Columbia, USA
| | - Laurent Kapesa
- US Agency for International Development, US President's Malaria Initiative, Antananarivo, Madagascar
| | - Sarah Zohdy
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Catherine Dentinger
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Timothee Gandaho
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Djenam Jacob
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Sarah Burnett
- PMI VectorLink Project, PATH, Washington, District of Columbia, USA
| | - Celestin Razafinjato
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| |
Collapse
|
5
|
Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, Sinyolo A, Hamainza B, Chanda E, Fillinger U, Mutero CM. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia. Malar J 2023; 22:95. [PMID: 36927373 PMCID: PMC10018844 DOI: 10.1186/s12936-023-04489-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.
Collapse
Affiliation(s)
- Kochelani Saili
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Onyango P Sangoro
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Theresia E Nkya
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | | | | | - Andy Sinyolo
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Zhou Y, Zhang WX, Tembo E, Xie MZ, Zhang SS, Wang XR, Wei TT, Feng X, Zhang YL, Du J, Liu YQ, Zhang X, Cui F, Lu QB. Effectiveness of indoor residual spraying on malaria control: a systematic review and meta-analysis. Infect Dis Poverty 2022; 11:83. [PMID: 35870946 PMCID: PMC9308352 DOI: 10.1186/s40249-022-01005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background Indoor residual spraying (IRS) is one of the key interventions recommended by World Health Organization in preventing malaria infection. We aimed to conduct a systematic review and meta-analysis of global studies about the impact of IRS on malaria control. Method We searched PubMed, Web of Science, Embase, and Scopus for relevant studies published from database establishment to 31 December 2021. Random-effects models were used to perform meta-analysis and subgroup analysis to pool the odds ratio (OR) and 95% confidence interval (CI). Meta-regression was used to investigate potential factors of heterogeneity across studies. Results Thirty-eight articles including 81 reports and 1,174,970 individuals were included in the meta-analysis. IRS was associated with lower rates of malaria infection (OR = 0.35, 95% CI: 0.27–0.44). The significantly higher effectiveness was observed in IRS coverage ≥ 80% than in IRS coverage < 80%. Pyrethroids was identified to show the greatest performance in malaria control. In addition, higher effectiveness was associated with a lower gross domestic product
as well as a higher coverage of IRS and bed net utilization. Conclusions IRS could induce a positive effect on malaria infection globally. The high IRS coverage and the use of pyrethroids are key measures to reduce malaria infection. More efforts should focus on increasing IRS coverage, developing more effective new insecticides against malaria, and using multiple interventions comprehensively to achieve malaria control goals. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01005-8.
Collapse
|
7
|
Opiyo M, Sherrard-Smith E, Malheia A, Nhacolo A, Sacoor C, Nhacolo A, Máquina M, Jamu L, Cuamba N, Bassat Q, Saúte F, Paaijmans K. Household modifications after the indoor residual spraying (IRS) campaign in Mozambique reduce the actual spray coverage and efficacy. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000227. [PMID: 36962153 PMCID: PMC10021718 DOI: 10.1371/journal.pgph.0000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Indoor residual spraying of insecticides (IRS) is a key malaria vector control strategy. Whilst human attitude towards IRS is monitored before or shortly after implementation, human activities leading to the modification of insecticide-treated walls post-IRS are not. This could inadvertently reduce the protective effects of IRS. We monitored the extent of modifications to the sprayed indoor wall surfaces by household owners for six months post-IRS campaigns in two districts targeted for malaria elimination in southern Mozambique. In parallel, we assessed building of any additional rooms onto compounds, and mosquito net use. We quantified the contribution of wall modifications, added rooms, prolonged spray campaigns, and product residual efficacies on actual IRS coverage and relative mosquito bite reduction, using a mechanistic approach. Household owners continually modified insecticide-treated walls and added rooms onto compounds. Household surveys in southern Mozambique showed frequent modification of indoor walls (0-17.2% of households modified rooms monthly) and/or added rooms (0-16.2% of households added rooms monthly). Actual IRS coverage reduced from an assumed 97% to just 39% in Matutuine, but only from 96% to 91% in Boane, translating to 43% and 5.8% estimated increases in relative daily mosquito bites per person. Integrating post-IRS knowledge, attitude, and practice (KAP) surveys into programmatic evaluations to capture these modification and construction trends can help improve IRS program efficiency and product assessment.
Collapse
Affiliation(s)
- Mercy Opiyo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ariel Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Luis Jamu
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelson Cuamba
- National Malaria Control Programme of Mozambique (NMCP), Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Quique Bassat
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Krijn Paaijmans
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
8
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to prevent malaria transmission. Both interventions use insecticides to kill mosquitoes that bite and rest indoors. Adding IRS to ITNs may improve malaria control simply because two interventions can be better than one. Furthermore, IRS may improve malaria control where ITNs are failing due to insecticide resistance. Pyrethroid insecticides are the predominant class of insecticide used for ITNs, as they are more safe than other insecticide classes when in prolonged contact with human skin. While many mosquito populations have developed some resistance to pyrethroid insecticides, a wider range of insecticides can be used for IRS. This review is an update of the previous Cochrane 2019 edition. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL; MEDLINE; and five other databases for records from 1 January 2000 to 8 November 2021, on the basis that ITN programmes did not begin to be implemented as policy before the year 2000. SELECTION CRITERIA We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. We included studies with at least 50% ITN ownership (defined as the proportion of households owning one or more ITN) in both study arms. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide, 'pyrethroid-like' and 'non-pyrethroid-like'; the latter could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the studies to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Eight cRCTs (10 comparisons), one CBA, and one ITS study, all conducted since 2008 in sub-Saharan Africa, met our inclusion criteria. The primary vectors in all sites were mosquitoes belonging to the Anopheles gambiae s.l. complex species; five studies in Benin, Mozambique, Ghana, Sudan, and Tanzania also reported the vector Anopheles funestus. Five cRCTs and both quasi-experimental design studies used insecticides with targets different to pyrethroids (two used bendiocarb, three used pirimiphos-methyl, and one used propoxur. Each of these studies were conducted in areas where the vectors were described as resistant or highly resistant to pyrethroids. Two cRCTs used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids. The remaining cRCT used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second year). Indoor residual spraying using 'non-pyrethroid-like' insecticides Six studies were included (four cRCTs, one CBA, and one ITS). Our main analysis for prevalence excluded a study at high risk of bias due to repeated sampling of the same population. This risk did not apply to other outcomes. Overall, the addition of IRS reduced malaria parasite prevalence (RR 0.61, 95% CI 0.42 to 0.88; 4 cRCTs, 16,394 participants; high-certainty evidence). IRS may also reduce malaria incidence on average (rate ratio 0.86, 95% CI 0.61 to 1.23; 4 cRCTs, 323,631 child-years; low-certainty evidence) but the effect was absent in two studies. Subgroup analyses did not explain the qualitative heterogeneity between studies. One cRCT reported no effect on malaria incidence or parasite prevalence in the first year, when a pyrethroid-like insecticide was used for IRS, but showed an effect on both outcomes in the second year, when a non-pyrethroid-like IRS was used. The addition of IRS may also reduce anaemia prevalence (RR 0.71, 95% CI 0.38 to 1.31; 3 cRCTs, 4288 participants; low-certainty evidence). Four cRCTs reported the impact of IRS on entomological inoculation rate (EIR), with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Studies also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to differences in the reported data. Three studies measured the prevalence of pyrethroid resistance before and after IRS being introduced: there was no difference detected, but these data are limited. Indoor residual spraying using 'pyrethroid-like' insecticides Adding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on EIR were limited so no conclusion was made (very low-certainty evidence). AUTHORS' CONCLUSIONS in communities using ITNs, the addition of IRS with 'non-pyrethroid-like' insecticides was associated with reduced malaria prevalence. Malaria incidence may also be reduced on average, but there was unexplained qualitative heterogeneity, and the effect may therefore not be observed in all settings. When using 'pyrethroid-like' insecticides, there was no detectable additional benefit of IRS in communities using ITNs.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nancy Medley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leslie Choi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
9
|
Sangoro OP, Fillinger U, Saili K, Nkya TE, Marubu R, Masaninga F, Trigo SC, Tarumbwa C, Hamainza B, Baltazar C, Mberikunashe J, Chisanga B, Menale K, Chanda E, Mutero CM. Evaluating the efficacy, impact, and feasibility of community-based house screening as a complementary malaria control intervention in southern Africa: a study protocol for a household randomized trial. Trials 2021; 22:883. [PMID: 34872600 PMCID: PMC8646012 DOI: 10.1186/s13063-021-05768-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Concerted effort to control malaria has had a substantial impact on the transmission of the disease in the past two decades. In areas where reduced malaria transmission is being sustained through insecticide-based vector control interventions, primarily long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), non-insecticidal complementary tools will likely be needed to push towards malaria elimination. Once interruption in local disease transmission is achieved, insecticide-based measures can be scaled down gradually and eventually phased out, saving on costs of sustaining control programs and mitigating any unintended negative health and environmental impacts posed by insecticides. These non-insecticidal methods could eventually replace insecticidal methods of vector control. House screening, a non-insecticidal method, has a long history in malaria control, but is still not widely adopted in sub-Saharan Africa. This study aims to add to the evidence base for this intervention in low transmission settings by assessing the efficacy, impact, and feasibility of house screening in areas where LLINs are conventionally used for malaria control. METHODS A two-armed, household randomized clinical trial will be conducted in Mozambique, Zambia, and Zimbabwe to evaluate whether combined the use of house screens and LLINs affords better protection against clinical malaria in children between 6 months and 13 years compared to the sole use of LLINs. Eight hundred households will be enrolled in each study area, where 400 households will be randomly assigned the intervention, house screening, and LLINs while the control households will be provided with LLINs only. Clinical malaria incidence will be estimated by actively following up one child from each household for 6 months over the malaria transmission season. Cross-sectional parasite prevalence will be estimated by testing all participating children for malaria parasites at the beginning and end of each transmission season using rapid diagnostic tests. CDC light traps and pyrethrum spray catches (PSC) will be used to sample adult mosquitoes and evaluate the impact of house screening on indoor mosquito density, species distribution, and sporozoite rates. DISCUSSION This study will contribute epidemiological data on the impact of house screening on malaria transmission and assess the feasibility of its implementation on a programmatic scale. TRIAL REGISTRATION ClinicalTrials.gov PACTR202008524310568 . Registered on August 11, 2020.
Collapse
Affiliation(s)
- Onyango P Sangoro
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Kochelani Saili
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | | | | | | | | | | | - Brian Chisanga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Social Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Kassie Menale
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Ngwej LM, Mashat EM, Mukeng CK, Mundongo HT, Malonga FK, Kashala JCK, Bangs MJ. Variable residual activity of K-Othrine® PolyZone and Actellic® 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo. Malar J 2021; 20:358. [PMID: 34461898 PMCID: PMC8406736 DOI: 10.1186/s12936-021-03892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone—KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS—ACS) applied at 1 g ai/m2. Methods Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in ‘natural’ house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h. Results Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor. Conclusion KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Emmanuel M Mashat
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Henri T Mundongo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo.,Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
11
|
Chaccour C, Zulliger R, Wagman J, Casellas A, Nacima A, Elobolobo E, Savaio B, Saifodine A, Fornadel C, Richardson J, Candrinho B, Robertson M, Saute F. Incremental impact on malaria incidence following indoor residual spraying in a highly endemic area with high standard ITN access in Mozambique: results from a cluster-randomized study. Malar J 2021; 20:84. [PMID: 33568137 PMCID: PMC7877039 DOI: 10.1186/s12936-021-03611-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Attaining the goal of reducing the global malaria burden is threatened by recent setbacks in maintaining the effectiveness of vector control interventions partly due to the emergence of pyrethroid resistant vectors. One potential strategy to address these setbacks could be combining indoor residual spraying (IRS) with non-pyrethroids and standard insecticide-treated nets (ITNs). This study aimed to provide evidence on the incremental epidemiological benefit of using third-generation IRS product in a highly endemic area with high ITN ownership. Methods A cluster-randomized, open-label, parallel-arms, superiority trial was conducted in the Mopeia district in Zambezia, Mozambique from 2016 to 2018. The district had received mass distribution of alphacypermethrin ITNs two years before the trial and again mid-way. 86 clusters were defined, stratified and randomized to receive or not receive IRS with pirimiphos-methyl (Actellic®300 CS). Efficacy of adding IRS was assessed through malaria incidence in a cohort of children under five followed prospectively for two years, enhanced passive surveillance at health facilities and by community health workers, and yearly cross-sectional surveys at the peak of the transmission season. Findings A total of 1536 children were enrolled in the cohort. Children in the IRS arm experienced 4,801 cases (incidence rate of 3,532 per 10,000 children-month at risk) versus 5,758 cases in the no-IRS arm (incidence rate of 4,297 per 10,000 children-month at risk), resulting in a crude risk reduction of 18% and an incidence risk ratio of 0.82 (95% CI 0.79–0.86, p-value < 0.001). Facility and community passive surveillance showed a malaria incidence of 278 per 10,000 person-month in the IRS group (43,974 cases over 22 months) versus 358 (95% CI 355–360) per 10,000 person-month at risk in the no-IRS group (58,030 cases over 22 months), resulting in an incidence rate ratio of 0.65 (95% CI 0.60–0.71, p < 0.001). In the 2018 survey, prevalence in children under five in the IRS arm was significantly lower than in the no-IRS arm (OR 0.54, 95% CI, 0.31–0.92, p = 0.0241). Conclusion In a highly endemic area with high ITN access and emerging pyrethroid resistance, adding IRS with pirimiphos-methyl resulted in significant additional protection for children under five years of age. Trial registration: ClinicalTrials.gov identifier NCT02910934, registered 22 September 2016, https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| | - Rose Zulliger
- President's Malaria Initiative, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | | | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Amilcar Nacima
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- President's Malaria Initiative, United States Agency for International Development, Maputo, Mozambique
| | | | | | | | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
12
|
Nice J, Nahusenay H, Eckert E, Eisele TP, Ashton RA. Estimating malaria chemoprevention and vector control coverage using program and campaign data: A scoping review of current practices and opportunities. J Glob Health 2020; 10:020413. [PMID: 33110575 PMCID: PMC7568932 DOI: 10.7189/jogh.10.020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accurate estimation of intervention coverage is a vital component of malaria program monitoring and evaluation, both for process evaluation (how well program targets are achieved), and impact evaluation (whether intervention coverage had an impact on malaria burden). There is growing interest in maximizing the utility of program data to generate interim estimates of intervention coverage in the periods between large-scale cross-sectional surveys (the gold standard). As such, this study aimed to identify relevant concepts and themes that may guide future optimization of intervention coverage estimation using routinely collected data, or data collected during and following intervention campaigns, with a particular focus on strategies to define the denominator. METHODS We conducted a scoping review of current practices to estimate malaria intervention coverage for insecticide-treated nets (ITNs); indoor residual spray (IRS); intermittent preventive treatment in pregnancy (IPTp); mass drug administration (MDA); and seasonal malaria chemoprevention (SMC) interventions; case management was excluded. Multiple databases were searched for relevant articles published from January 1, 2015 to June 1, 2018. Additionally, we identified and included other guidance relevant to estimating population denominators, with a focus on innovative techniques. RESULTS While program data have the potential to provide intervention coverage data, there are still substantial challenges in selecting appropriate denominators. The review identified a lack of consistency in how coverage was defined and reported for each intervention type, with denominator estimation methods not clearly or consistently reported, and denominator estimates rarely triangulated with other data sources to present the feasible range of denominator values and consequently the range of likely coverage estimates. CONCLUSIONS Though household survey-based estimates of intervention coverage remain the gold standard, efforts should be made to further standardize practices for generating interim measurements of intervention coverage from program data, and for estimating and reporting population denominators. This includes fully describing any projections or adjustments made to existing census or population data, exploring opportunities to validate available data by comparing with other sources, and explaining how the denominator has been restricted (or not) to reflect exclusion criteria.
Collapse
Affiliation(s)
- Johanna Nice
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Honelgn Nahusenay
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Erin Eckert
- U.S. President's Malaria Initiative, United States Agency for International Development, Washington, D.C., USA
- RTI International, Washington, D.C., USA
| | - Thomas P Eisele
- Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Ruth A Ashton
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Zinszer K, Charland K, Vahey S, Jahagirdar D, Rek JC, Arinaitwe E, Nankabirwa J, Morrison K, Sadoine ML, Tutt-Guérette MA, Staedke SG, Kamya MR, Greenhouse B, Rodriguez-Barraquer I, Dorsey G. The Impact of Multiple Rounds of Indoor Residual Spraying on Malaria Incidence and Hemoglobin Levels in a High-Transmission Setting. J Infect Dis 2020; 221:304-312. [PMID: 31599325 DOI: 10.1093/infdis/jiz453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is widely used as a vector control measure, although there are conflicting findings of its effectiveness in reducing malaria incidence. The objective of this study was to estimate the effect of multiple IRS rounds on malaria incidence and hemoglobin levels in a cohort of children in rural southeastern Uganda. METHODS The study was based upon a dynamic cohort of children aged 0.5-10 years enrolled from August 2011 to June 2017 in Nagongera Subcounty. Confirmed malaria infections and hemoglobin levels were recorded over time for each participant. After each of 4 rounds of IRS, malaria incidence, hemoglobin levels, and parasite density were evaluated and compared with pre-IRS levels. Analyses were carried out at the participant level while accounting for repeated measures and clustering by household. RESULTS Incidence rate ratios comparing post-IRS to pre-IRS incidence rates for age groups 0-3, 3-5, and 5-11 were 0.108 (95% confidence interval [CI], .078-.149), 0.173 (95% CI, .136-.222), and 0.226 (95% CI, .187-.274), respectively. The mean hemoglobin levels significantly increased from 11.01 (pre-IRS) to 12.18 g/dL (post-IRS). CONCLUSIONS Our study supports the policy recommendation of IRS usage in a stable and perennial transmission area to rapidly reduce malaria transmission.
Collapse
Affiliation(s)
- Kate Zinszer
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Katia Charland
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Vahey
- Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Deepa Jahagirdar
- Institute for Health Metrics and Evaluation, Seattle, Washington, USA
| | - John C Rek
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | | | - Margaux L Sadoine
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Marc-Antoine Tutt-Guérette
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Combining next-generation indoor residual spraying and drug-based malaria control strategies: observational evidence of a combined effect in Mali. Malar J 2020; 19:293. [PMID: 32799873 PMCID: PMC7429948 DOI: 10.1186/s12936-020-03361-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ségou Region in central Mali is an area of high malaria burden with seasonal transmission. The region reports high access to and use of long-lasting insecticidal nets (LLINs), though the principal vector, Anopheles gambiae, is resistant to pyrethroids. From 2011 until 2016, several high-burden districts of Ségou also received indoor residual spraying (IRS), though in 2014 concerns about pyrethroid resistance prompted a shift in IRS products to a micro-encapsulated formulation of the organophosphate insecticide pirimiphos-methyl. Also in 2014, the region expanded a pilot programme to provide seasonal malaria chemoprevention (SMC) to children aged 3-59 months in two districts. The timing of these decisions presented an opportunity to estimate the impact of both interventions, deployed individually and in combination, using quality-assured passive surveillance data. METHODS A non-randomized, quasi-experimental time series approach was used to analyse monthly trends in malaria case incidence at the district level. Districts were stratified by intervention status: an SMC district, an IRS district, an IRS + SMC district, and control districts that received neither IRS nor SMC in 2014. The numbers of positive rapid diagnostic test (RDT +) results reported at community health facilities were aggregated and epidemiological curves showing the incidence of RDT-confirmed malaria cases per 10,000 person-months were plotted for the total all-ages and for the under 5 year old (u5) population. The cumulative incidence of RDT + malaria cases observed from September 2014 to February 2015 was calculated in each intervention district and compared to the cumulative incidence reported from the same period in the control districts. RESULTS Cumulative peak-transmission all-ages incidence was lower in each of the intervention districts compared to the control districts: 16% lower in the SMC district; 28% lower in the IRS district; and 39% lower in the IRS + SMC district. The same trends were observed in the u5 population: incidence was 15% lower with SMC, 48% lower with IRS, and 53% lower with IRS + SMC. The SMC-only intervention had a more moderate effect on incidence reduction initially, which increased over time. The IRS-only intervention had a rapid, comparatively large impact initially that waned over time. The impact of the combined interventions was both rapid and longer lasting. CONCLUSION Evaluating the impact of IRS with an organophosphate and SMC on reducing incidence rates of passive RDT-confirmed malaria cases in Ségou Region in 2014 suggests that combining the interventions had a greater effect than either intervention used individually in this high-burden region of central Mali with pyrethroid-resistant vectors and high rates of household access to LLINs.
Collapse
|
15
|
Chanda J, Saili K, Phiri F, Stevenson JC, Mwenda M, Chishimba S, Mulube C, Mambwe B, Lungu C, Earle D, Bennett A, Eisele TP, Kamuliwo M, Steketee RW, Keating J, Miller JM, Sikaala CH. Pyrethroid and Carbamate Resistance in Anopheles funestus Giles along Lake Kariba in Southern Zambia. Am J Trop Med Hyg 2020; 103:90-97. [PMID: 32618244 PMCID: PMC7416976 DOI: 10.4269/ajtmh.19-0664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas data on insecticide resistance and its underlying mechanisms exist for parts of Zambia, data remain limited in the southern part of the country. This study investigated the status of insecticide resistance, metabolic mechanisms, and parasite infection in Anopheles funestus along Lake Kariba in southern Zambia. Indoor-resting mosquitoes were collected from 20 randomly selected houses within clusters where a mass drug administration trial was conducted and raised to F1 progeny. Non–blood-fed 2- to 5-day-old female An. funestus were exposed to WHO insecticide-impregnated papers with 0.05% deltamethrin, 0.1% bendiocarb, 0.25% pirimiphos-methyl, or 4% dichloro-diphenyl-trichloroethane (DDT). In separate assays, An. funestus were pre-exposed to piperonyl butoxide (PBO) to determine the presence of monooxygenases. Wild-caught An. funestus that had laid eggs for susceptibility assays were screened for circumsporozoite protein of Plasmodium falciparum by ELISA, and sibling species were identified by polymerase chain reaction. Anopheles funestus showed resistance to deltamethrin and bendiocarb but remained susceptible to pirimiphos-methyl and DDT. The pre-exposure of An. funestus to PBO restored full susceptibility to deltamethrin but not to bendiocarb. The overall sporozoite infection rate in An. funestus populations was 5.8%. Detection of pyrethroid and carbamate resistance in An. funestus calls for increased insecticide resistance monitoring to guide planning and selection of effective insecticide resistance management strategies. To prevent the development of resistance and reduce the underlying vectorial capacity of mosquitoes in areas targeted for malaria elimination, an effective integrated vector management strategy is needed.
Collapse
Affiliation(s)
- Javan Chanda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Kochelani Saili
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Foustina Phiri
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Macha Research Trust, Choma, Zambia
| | - Mulenga Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Sandra Chishimba
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Christopher Lungu
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Duncan Earle
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Mulakwa Kamuliwo
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | | | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Chadwick H Sikaala
- SADC Malaria Elimination Eight Secretariat, Windhoek, Namibia.,National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| |
Collapse
|
16
|
N’Dri BP, Heitz-Tokpa K, Chouaïbou M, Raso G, Koffi AJ, Coulibaly JT, Yapi RB, Müller P, Utzinger J. Use of Insecticides in Agriculture and the Prevention of Vector-Borne Diseases: Population Knowledge, Attitudes, Practices and Beliefs in Elibou, South Côte d'Ivoire. Trop Med Infect Dis 2020; 5:tropicalmed5010036. [PMID: 32121510 PMCID: PMC7157594 DOI: 10.3390/tropicalmed5010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
People’s knowledge, attitudes, practices and beliefs (KAPB) pertaining to malaria are generally well described. However, little is known about population knowledge and awareness of insecticide resistance in malaria vectors. The aim of this study was to investigate KAPB related to insecticide resistance in malaria vectors due to the use of insecticides in agriculture and the prevention against mosquitoes. In mid-2017, we carried out a cross-sectional survey in Elibou, South Côte d’Ivoire, employing a mixed methods approach. Quantitative data were obtained with a questionnaire addressed to household heads. Interviews were conducted with key opinion leaders, including village chiefs, traditional healers, heads of health centres and pesticide sellers. Focus group discussions were conducted with youth and elders. A total of 203 individuals participated in the questionnaire survey (132 males, 65%). We found that people had good knowledge about malaria and mosquitoes transmitting the disease, while they felt that preventing measures were ineffective. Pesticides were intensively used by farmers, mainly during the rainy season. Among the pesticides used, insecticides and herbicides were most commonly used. While there was poor knowledge about resistance, the interviewees stated that insecticides were not killing the mosquitoes anymore. The main reason given was that insecticides were diluted by the manufacturers as a marketing strategy to sell larger quantities. More than a third of the farmers used agricultural pesticides for domestic purposes to kill weeds or mosquitoes. We observed a misuse of pesticides among farmers, explained by the lack of specific training. In the community, long-lasting insecticidal nets were the most common preventive measure against malaria, followed by mosquito coils and insecticide sprays. The interviewees felt that the most effective way of dealing with insecticide resistance was to combine at least two preventive measures. In conclusion, population attitudes and practices related to insecticides used in agriculture and the prevention against mosquitoes could lead to resistance in malaria vectors, while people’s knowledge about insecticide resistance was limited. There is a need to raise awareness in communities about the presence of resistance in malaria vectors and to involve them in resistance management.
Collapse
Affiliation(s)
- Bédjou P. N’Dri
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (G.R.); (J.T.C.); (P.M.); (J.U.)
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
- Correspondence: ; Tel.: +41-77-987-3278 or +225-5227-6117
| | - Kathrin Heitz-Tokpa
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
| | - Mouhamadou Chouaïbou
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7508, USA
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (G.R.); (J.T.C.); (P.M.); (J.U.)
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
| | - Amoin J. Koffi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
| | - Jean T. Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (G.R.); (J.T.C.); (P.M.); (J.U.)
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770 Abidjan 22, Côte d’Ivoire
| | - Richard B. Yapi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire; (M.C.); (A.J.K.); (R.B.Y.)
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, BP V 18 Bouaké 01, Côte d’Ivoire
| | - Pie Müller
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (G.R.); (J.T.C.); (P.M.); (J.U.)
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (G.R.); (J.T.C.); (P.M.); (J.U.)
- Department of Epidemiology and Public Health, University of Basel, P.O. Box, CH-4003 Basel, Switzerland;
| |
Collapse
|
17
|
Jumbam DT, Stevenson JC, Matoba J, Grieco JP, Ahern LN, Hamainza B, Sikaala CH, Chanda-Kapata P, Cardol EI, Munachoonga P, Achee NL. Knowledge, attitudes and practices assessment of malaria interventions in rural Zambia. BMC Public Health 2020; 20:216. [PMID: 32050923 PMCID: PMC7017631 DOI: 10.1186/s12889-020-8235-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Despite rapid upscale of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), malaria remains a major source of morbidity and mortality in Zambia. Uptake and utilization of these and novel interventions are often affected by knowledge, attitudes and practices (KAP) amongst persons living in malaria-endemic areas. The aims of this study were to assess malaria KAP of primary caregivers and explore trends in relation to ITN use, IRS acceptance and mosquito density in two endemic communities in Luangwa and Nyimba districts, Zambia. METHODS A cohort of 75 primary caregivers were assessed using a cross-sectional, forced-choice malaria KAP survey on ITN use, IRS acceptance and initial perception of a novel spatial repellent (SR) product under investigation. Entomological sampling was performed in participant homes using CDC Miniature Light Traps to relate indoor mosquito density with participant responses. RESULTS Ninety-nine percent of participants cited bites of infected mosquitoes as the route of malaria transmission although other routes were also reported including drinking dirty water (64%) and eating contaminated food (63%). All caregivers agreed that malaria was a life-threatening disease with the majority of caregivers having received malaria information from health centers (86%) and community health workers (51%). Cumulatively, self-reported mosquito net use was 67%. Respondents reportedly liked the SR prototype product but improvements on color, shape and size were suggested. Overall, 398 mosquitoes were captured from light-trap collections, including 49 anophelines and 349 culicines. Insecticide treated nets use was higher in households from which at least one mosquito was captured. CONCLUSIONS The current study identified misconceptions in malaria transmission among primary caregivers indicating remaining knowledge gaps in educational campaigns. Participant responses also indicated a misalignment between a low perception of IRS efficacy and high stated acceptance of IRS, which should be further examined to better understand uptake and sustainability of other vector control strategies. While ITNs were found to be used in study households, misperceptions between presence of mosquitoes and bite protection practices did exist. This study highlights the importance of knowledge attitudes and practice surveys, with integration of entomological sampling, to better guide malaria vector control product development, strategy acceptance and compliance within endemic communities.
Collapse
Affiliation(s)
- Desmond T. Jumbam
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Jennifer C. Stevenson
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
- Macha Research Trust, Choma, Zambia
| | | | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Lacey N. Ahern
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Busiku Hamainza
- National Malaria Control Centre, Ministry of Health, Lusaka, Zambia
| | | | | | - Esther I. Cardol
- Macha Research Trust, Choma, Zambia
- Radboud University, Nijmegen, Netherlands
| | | | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| |
Collapse
|
18
|
Sahu SS, Thankachy S, Dash S, Nallan K, Swaminathan S, Kasinathan G, Purushothaman J. Evaluation of long-lasting indoor residual spraying of deltamethrin 62.5 SC-PE against malaria vectors in India. Malar J 2020; 19:19. [PMID: 31937301 PMCID: PMC6961237 DOI: 10.1186/s12936-020-3112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deltamethrin 62.5 polymer-enhanced suspension concentrate (SC-PE) is one of the World Health Organization-approved insecticides for indoor residual spraying and was recommended to evaluate its residual activity for determination of appropriate spray cycles in different eco-epidemiologic settings. In the current study, efficacy of deltamethrin 62.5 SC-PE was evaluated against vectors of malaria and its impact on malaria incidence in a Plasmodium falciparum hyper-endemic area in Koraput district, Odisha State, India. METHODS The trial had two comparable arms, arm 1 with residual spraying of deltamethrin 62.5 SC-PE and arm 2 with deltamethrin 2.5% WP (positive control). Comparative assessment of the impact of each intervention arm on entomological (density, parity, infection and human blood index), epidemiological (malaria incidence) parameters, residual efficacy and adverse effects were evaluated. RESULTS Both the arms were comparable in terms of entomological and epidemiological parameters. While, deltamethrin 62.5 SC-PE was found to be effective for 150 days in mud and wood surfaces and 157 days in cement surfaces; deltamethrin 2.5% was effective only for 105 days on mud surfaces and 113 days on cement and wood surfaces. CONCLUSIONS Deltamethrin 62.5 SC-PE had prolonged killing effectiveness up to 5 months. Hence, one round of IRS with deltamethrin 62.5 SC-PE would be sufficient to cover two existing malaria peak transmission seasons (July-August and October-November) in many parts of India.
Collapse
Affiliation(s)
- Sudhansu Sekhar Sahu
- Indian Council of Medical Research-Vector Control Research Centre, Puducherry, India.
| | - Sonia Thankachy
- Indian Council of Medical Research-Vector Control Research Centre, Puducherry, India
| | - Smrutidhara Dash
- Indian Council of Medical Research-Vector Control Research Centre, Puducherry, India
| | - Krishnamoorthy Nallan
- Indian Council of Medical Research-Vector Control Research Centre, Puducherry, India
| | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to control malaria vectors. Both strategies use insecticides to kill mosquitoes that bite and rest indoors. For ITNs, the World Health Organization (WHO) only recommended pyrethroids until 2018, but mosquito vectors are becoming resistant to this insecticide. For IRS, a range of insecticides are recommended. Adding IRS to ITNs may improve control, simply because two interventions may be better than one; it may improve malaria control where ITNs are failing due to pyrethroid resistance; and it may slow the emergence and spread of pyrethroid resistance. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; Embase; LILACS; the WHO International Clinical Trials Registry Platform; ClinicalTrials.gov; and the ISRCTN registry up to 18 March 2019. SELECTION CRITERIA Cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-and-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide: 'non-pyrethroid-like', as this could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the trials to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Six cRCTs (eight comparisons) met our inclusion criteria conducted since 2008 in sub-Saharan Africa. Malaria transmission in all sites was from mosquitoes belonging to the Anopheles gambiae s.l. complex species; two trials in Benin and Tanzania also reported the vector Anopheles funestus. Three trials used insecticide with targets different to pyrethroids (two used bendiocarb and one used pirimiphos-methyl); two trials used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids; and one trial used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second-year). ITN usage was greater than 50% in three trials, and less than 50% in the remainder.Indoor residual spraying using 'non-pyrethroid-like' insecticides Adding IRS with a non-pyrethroid-like insecticide had mixed results. Overall, we do not know if the addition of IRS impacted on malaria incidence (rate ratio 0.93, 95% CI 0.46 to 1.86; 2 cRCTs, 566 child-years; very low-certainty evidence); it may have reduced malaria parasite prevalence (0.67, 95% CI 0.35 to 1.28; 5 comparisons from 4 cRCTs, 10,440 participants; low-certainty evidence); and it may have reduced the prevalence of anaemia (RR CI 0.46, 95% 0.18 to 1.20; 3 comparisons from 2 cRCTs, 2026 participants; low-certainty evidence). Three trials reported the impact on EIR, with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Trials also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to unreported data. ITN usage did not explain the variation in malaria outcomes between different studies. One trial reported no effect on malaria incidence or parasite prevalence in the first year, when the insecticide used for IRS had the same target as pyrethroids, but showed an effect on both outcomes in the second year, when the insecticide was replaced by one with a different target.Two trials measured the prevalence of pyrethroid resistance before and after IRS being introduced: no difference was detected, but these data are limited.Indoor residual spraying using 'pyrethroid-like' insecticidesAdding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on the entomological inoculation rate (EIR) were limited, and therefore we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). AUTHORS' CONCLUSIONS Four trials have evaluated adding IRS using 'non-pyrethroid-like' insecticides in communities using ITNs. Some of these trials showed effects, and others did not. Three trials have evaluated adding IRS using 'pyrethroid-like' insecticides in communities using ITNs, and these studies did not detect an additional effect of the IRS. Given the wide geographical variety of malaria endemicities, transmission patterns, and insecticide resistance, we need to be cautious with inferences to policy from the limited number of trials conducted to date, and to develop relevant further research to inform decisions.
Collapse
Affiliation(s)
- Leslie Choi
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | - Joseph Pryce
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | - Paul Garner
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | | |
Collapse
|
20
|
Acheson ES, Kerr JT. Nets versus spraying: A spatial modelling approach reveals indoor residual spraying targets Anopheles mosquito habitats better than mosquito nets in Tanzania. PLoS One 2018; 13:e0205270. [PMID: 30356290 PMCID: PMC6200228 DOI: 10.1371/journal.pone.0205270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022] Open
Abstract
The global implementation of malaria interventions has averted hundreds of millions of clinical malaria cases in the last decade. This study assesses predicted Anopheles mosquito distributions across the United Republic of Tanzania before large-scale insecticide-treated net (ITN) rollouts and indoor residual spraying (IRS) initiatives to determine whether mosquito net usage by children under the age of five and IRS are targeted to areas where historical evidence indicates mosquitoes thrive. Demographic and Health Surveys data from 2011–2012 and 2015–2016 include detailed measurements of mosquito net and IRS use across Tanzania. Anopheline data are far less intensively collected, but we constructed a Maxent-built baseline mosquito habitat suitability (MHS) map (AUC = 0.872) with Tanzanian Anopheles occurrence records from 1999–2003. This MHS model was tested against independently-observed georeferenced Plasmodium falciparum cases from the Malaria Atlas Project, with ~87% of cases from 1999–2003 (n = 107) and ~84% of cases from 1985–2012 (n = 919) occurring in areas of high predicted suitability for mosquitoes. We compared the validated MHS with subsequent malaria interventions using mixed effects logistic regression. Specifically, we assessed whether Anopheles habitat suitability related to the frequency that ≥1 child in a household reportedly slept under a mosquito net when that intervention later became widely available, and whether IRS was reportedly applied to dwellings over a one-year period. There was no evidence that mosquito net use the night before the survey related to MHS from 2011–2012 and marginally significant evidence (p<0.05) from 2015–2016 (β = 1.466, 95% C.I. = 0.848–2.103, marginal R2 = 0.020, respectively). However, the likelihood of IRS treatments rose relatively strongly in the 12 months prior to both surveys (β = 13.466, 95% C.I. = 10.488–16.456, marginal R2 = 0.144, and β = 6.817, 95% C.I. = 5.439–8.303, marginal R2 = 0.136, respectively). IRS treatments have therefore been targeted more effectively than mosquito nets toward areas where anopheline habitat suitability was previously found to be high.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | | |
Collapse
|
21
|
Chinula D, Hamainza B, Chizema E, Kavishe DR, Sikaala CH, Killeen GF. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 2018; 11:544. [PMID: 30305147 PMCID: PMC6180389 DOI: 10.1186/s13071-018-3121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background Across most of sub-Saharan Africa, malaria is transmitted by mosquitoes from the Anopheles gambiae complex, comprising seven morphologically indistinguishable but behaviourally-diverse sibling species with ecologically-distinct environmental niches. Anopheles gambiae and An. arabiensis are the mostly widely distributed major malaria vectors within the complex, while An. quadriannulatus is sparsely distributed. Methods Indoor residual spraying (IRS) with the organophosphate pirimiphos-methyl (PM) was conducted four times between 2011 and 2017 in the Luangwa Valley, south-east Zambia. Anopheles mosquitoes were repeatedly collected indoors by several experiments with various objectives conducted in this study area from 2010 onwards. Indoor mosquito collection methods included human landing catches, Centres for Disease Control and Prevention miniature light traps and back pack aspirators. Anopheles gambiae complex mosquitoes were morphologically identified to species level using taxonomic keys, and to molecular level by polymerase chain reaction. These multi-study data were collated so that time trends in the species composition of this complex could be assessed. Results The proportion of indoor An. gambiae complex accounted for by An. quadriannulatus declined from 95.1% to 69.7% following two application PM-IRS rounds with an emulsifiable concentrate formulation from 2011 to 2013, while insecticidal net utilisation remained consistently high throughout that period. This trend continued after two further rounds of PM-IRS with a longer-lasting capsule suspension formulation in 2015 and 2016/2017, following which An. quadriannulatus accounted for only 4.5% of the complex. During the same time interval there was a correspondingly steady rise in the proportional contribution of An. arabiensis to the complex, from 3.9 to 95.1%, while the contribution of nominate An. gambiae remained stable at ≤ 0.9%. Conclusion It seems likely that An. arabiensis is not only more behaviourally resilient against IRS than An. gambiae, but also than An. quadriannulatus populations exhibiting indoor-feeding, human-feeding and nocturnal behaviours that are unusual for this species. Routine, programmatic entomological monitoring of dynamic vector population guilds will be critical to guide effective selection and deployment of vector control interventions, including supplementary measures to tackle persisting vectors of residual malaria transmission like An. arabiensis.
Collapse
Affiliation(s)
- Dingani Chinula
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia. .,Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L35QA, United Kingdom.
| | - Busiku Hamainza
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Deogratius R Kavishe
- Ifakara Health Institute, Kiko Avenue, Environmental Health and Ecological Sciences Department, PO Box 53, Ifakara, United Republic of Tanzania
| | - Chadwick H Sikaala
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Gerry F Killeen
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L35QA, United Kingdom.,Ifakara Health Institute, Kiko Avenue, Environmental Health and Ecological Sciences Department, PO Box 53, Ifakara, United Republic of Tanzania
| |
Collapse
|
22
|
Stelmach R, Colaço R, Lalji S, McFarland D, Reithinger R. Cost-Effectiveness of Indoor Residual Spraying of Households with Insecticide for Malaria Prevention and Control in Tanzania. Am J Trop Med Hyg 2018; 99:627-637. [PMID: 30014819 PMCID: PMC6169190 DOI: 10.4269/ajtmh.17-0537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 05/17/2018] [Indexed: 10/28/2022] Open
Abstract
Using a decision-tree approach, we examined the cost-effectiveness of indoor residual spraying (IRS) of households with insecticide combined with insecticide-treated bed net (ITN) distribution (IRS + ITN), compared with ITN distribution alone in the programmatic context of mainland Tanzania. The primary outcome of our model was the expected economic cost to society per case of malaria averted in children ≤ 5 years of age. Indoor residual spraying of households with insecticide data came from a program implemented in northwest Tanzania from 2008 to 2012; all other data originated from the published literature. Through sensitivity and scenario analyses, the model also examined the effects of variations in insecticide resistance, malaria prevalence, and different IRS modalities. In the base case, IRS + ITN is expected to be more expensive and more effective than the ITN-only intervention (incremental cost-effectiveness ratio [ICER]: $152.36). The number of IRS rounds, IRS insecticide costs, ITN use, malaria prevalence, and the probability that a child develops symptoms following infection drove the interventions' cost-effectiveness. Compared with universal spraying, targeted spraying is expected to lead to a higher number of malaria cases per person targeted (0.211-0.256 versus 0.050-0.076), but the incremental cost per case of malaria averted is expected to be lower (ICER: $41.70). In a scenario of increasing pyrethroid resistance, the incremental expected cost per case of malaria averted is expected to increase compared with the base case (ICER: $192.12). Tanzania should pursue universal IRS only in those regions that report high malaria prevalence. If the cost per case of malaria averted of universal IRS exceeds the willingness to pay, targeted spraying could provide an alternative, but may result in higher malaria prevalence.
Collapse
Affiliation(s)
- Rachel Stelmach
- RTI International, Washington, District of Columbia
- IMA World Health, Dar es Salaam, Tanzania
| | | | - Shabbir Lalji
- RTI International, Dar es Salaam, Tanzania
- IMA World Health, Dar es Salaam, Tanzania
| | | | - Richard Reithinger
- RTI International, Washington, District of Columbia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Benelli G. Managing mosquitoes and ticks in a rapidly changing world - Facts and trends. Saudi J Biol Sci 2018; 26:921-929. [PMID: 31303820 PMCID: PMC6600734 DOI: 10.1016/j.sjbs.2018.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 02/08/2023] Open
Abstract
Vector-borne diseases transmitted by mosquitoes and ticks are on the rise. The effective and sustainable control of these arthropod vectors is a puzzling challenge for public health worldwide. In the present review, I attempted to provide a concise and updated overview of the current mosquito and tick research scenario. The wide array of control tools recently developed has been considered, with special reference to those approved by the World Health Organization Vector Control Advisory Group (WHO VCAG), as well as novel ones with an extremely promising potential to be exploited in vector control programs. Concerning mosquitoes, a major focus has been given on genetically modified vectors, eave tubes, attractive toxic sugar baits (ATSB) and biocontrol agents. Regarding ticks, the recent development of highly effective repellents and acaricides (including nanoformulated ones) as well as behavior-based control tools, has been highlighted. In the second part of the review, key research questions about biology and control of mosquitoes and ticks have been critically formulated. A timely research agenda outlining hot issues to be addressed in mosquito and tick research is provided. Overall, it is expected that the present review will contribute to boost research and applications on successful mosquito and tick control strategies, along with an improved knowledge of their biology and ecology.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.,The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
24
|
Chinula D, Sikaala CH, Chanda-Kapata P, Hamainza B, Zulu R, Reimer L, Chizema E, Kiware S, Okumu FO, Killeen G. Wash-resistance of pirimiphos-methyl insecticide treatments of window screens and eave baffles for killing indoor-feeding malaria vector mosquitoes: an experimental hut trial, South East of Zambia. Malar J 2018; 17:164. [PMID: 29653593 PMCID: PMC5899344 DOI: 10.1186/s12936-018-2309-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/04/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The effectiveness of long-lasting insecticidal-treated nets (LLINs) and indoor residual spraying (IRS) for malaria control is threatened by resistance to commonly used pyrethroid insecticides. Rotations, mosaics, combinations, or mixtures of insecticides from different complementary classes are recommended by the World Health Organization (WHO) for mitigating against resistance, but many of the alternatives to pyrethroids are prohibitively expensive to apply in large national IRS campaigns. Recent evaluations of window screens and eave baffles (WSEBs) treated with pirimiphos-methyl (PM), to selectively target insecticides inside houses, demonstrated malaria vector mortality rates equivalent or superior to IRS. However, the durability of efficacy when co-applied with polyacrylate-binding agents (BA) remains to be established. This study evaluated whether WSEBs, co-treated with PM and BA have comparable wash resistance to LLINs and might therefore remain insecticidal for years rather than months. METHODS WHO-recommended wire ball assays of insecticidal efficacy were applied to polyester netting treated with or without BA plus 1 or 2 g/sq m PM. They were then tested for insecticidal efficacy using fully susceptible insectary-reared Anopheles gambiae mosquitoes, following 0, 5, 10, 15, then 20 washes as per WHO-recommended protocols for accelerated ageing of LLINs. This was followed by a small-scale field trial in experimental huts to measure malaria vector mortality achieved by polyester netting WSEBs treated with BA and 2 g/sq m PM after 0, 10 and then 20 standardized washes, alongside recently applied IRS using PM. RESULTS Co-treatment with BA and either dosage of PM remained insecticidal over 20 washes in the laboratory. In experimental huts, WSEBs treated with PM plus BA consistently killed similar proportions of Anopheles arabiensis mosquitoes to PM-IRS (both consistently ≥ 94%), even after 20 washes. CONCLUSION Co-treating WSEBs with both PM and BA results in wash-resistant insecticidal activity comparable with LLINs. Insecticide treatments for WSEBs may potentially last for years rather than months, therefore, reducing insecticide consumption by an order of magnitude relative to IRS. However, durability of WSEBs will still have to be assessed in real houses under representative field conditions of exposure to wear and tear, sunlight and rain.
Collapse
Affiliation(s)
- Dingani Chinula
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
| | - Chadwick H Sikaala
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | | | - Busiku Hamainza
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Reuben Zulu
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, PO Box 32509, Lusaka, Zambia
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
- School of Public Health, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gerry Killeen
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Kiko Avenue, PO Box 53, Ifakara, United Republic of Tanzania
| |
Collapse
|
25
|
Chaccour CJ, Alonso S, Zulliger R, Wagman J, Saifodine A, Candrinho B, Macete E, Brew J, Fornadel C, Kassim H, Loch L, Sacoor C, Varela K, Carty CL, Robertson M, Saute F. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol. BMJ Glob Health 2018; 3:e000610. [PMID: 29564161 PMCID: PMC5859815 DOI: 10.1136/bmjgh-2017-000610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 11/03/2022] Open
Abstract
Background Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6-59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. Trial registration number NCT02910934.
Collapse
Affiliation(s)
- Carlos J Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sergi Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Rose Zulliger
- President's Malaria Initiative and Malaria Branch, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | | | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Joe Brew
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Christen Fornadel
- President's Malaria Initiative, US Agency for International Development, Washington DC, USA
| | - Hidayat Kassim
- Direcção Provincial de Saúde Zambézia, Quelimane, Mozambique
| | - Lourdes Loch
- Abt Associates, PMI-AIRS Mozambique, Maputo, Mozambique
| | | | | | | | - Molly Robertson
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,PATH, Washington DC, USA
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
26
|
Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, Diallo D, Saibu A, Richardson JH, Kone D, Fomba S, Bernson J, Steketee R, Slutsker L, Robertson M. An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012-2015. Malar J 2018; 17:19. [PMID: 29316917 PMCID: PMC5761159 DOI: 10.1186/s12936-017-2168-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ségou Region in Central Mali is an area of high malaria burden with seasonal transmission, high access to and use of long-lasting insecticidal nets (LLINs), and resistance to pyrethroids and DDT well documented in Anopheles gambiae s.l. (the principal vector of malaria in Mali). Ségou has recently received indoor residual spraying (IRS) supported by Mali’s collaboration with the US President’s Malaria Initiative/Africa Indoor Residual Spraying programme. From 2012 to 2015, two different non-pyrethroid insecticides: bendiocarb in 2012 and 2013 and pirimiphos-methyl in 2014 and 2015, were used for IRS in two districts. This report summarizes the results of observational analyses carried out to assess the impact of these IRS campaigns on malaria incidence rates reported through local and district health systems before and after spraying. Methods A series of retrospective time series analyses were performed on 1,382,202 rapid diagnostic test-confirmed cases of malaria reported by district routine health systems in Ségou Region from January 2012 to January 2016. Malaria testing, treatment, surveillance and reporting activities remained consistent across districts and years during the study period, as did LLIN access and use estimates as well as An. gambiae s.l. insecticide resistance patterns. Districts were stratified by IRS implementation status and all-age monthly incidence rates were calculated and compared across strata from 2012 to 2014. In 2015 a regional but variable scale-up of seasonal malaria chemoprevention complicated the region-wide analysis; however IRS operations were suspended in Bla District that year so a difference in differences approach was used to compare 2014 to 2015 changes in malaria incidence at the health facility level in children under 5-years-old from Bla relative to changes observed in Barouéli, where IRS operations were consistent. Results During 2012–2014, rapid reductions in malaria incidence were observed during the 6 months following each IRS campaign, though most of the reduction in cases (70% of the total) was concentrated in the first 2 months after each campaign was completed. Compared to non-IRS districts, in which normal seasonal patterns of malaria incidence were observed, an estimated 286,745 total fewer cases of all-age malaria were observed in IRS districts. The total cost of IRS in Ségou was around 9.68 million USD, or roughly 33.75 USD per case averted. Further analysis suggests that the timing of the 2012–2014 IRS campaigns (spraying in July and August) was well positioned to maximize public health impact. Suspension of IRS in Bla District after the 2014 campaign resulted in a 70% increase in under-5-years-old malaria incidence rates from 2014 to 2015, significantly greater (p = 0.0003) than the change reported from Barouéli District, where incidence rates remained the same. Conclusions From 2012 to 2015, the annual IRS campaigns in Ségou are associated with several hundred thousand fewer cases of malaria. This work supports the growing evidence that shows that IRS with non-pyrethroid insecticides is a wise public health investment in areas with documented pyrethroid resistance, high rates of LLIN coverage, and where house structures and population densities are appropriate. Additionally, this work highlights the utility of quality-assured and validated routine surveillance and well defined observational analyses to rapidly assess the impact of malaria control interventions in operational settings, helping to empower evidence-based decision making and to further grow the evidence base needed to better understand when and where to utilize new vector control tools as they become available. Electronic supplementary material The online version of this article (10.1186/s12936-017-2168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Diakalkia Kone
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | - Seydou Fomba
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | | | | | | | | |
Collapse
|
27
|
Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation. Proc Natl Acad Sci U S A 2017; 114:E11267-E11275. [PMID: 29229808 PMCID: PMC5748194 DOI: 10.1073/pnas.1713814114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Emerging insecticide resistance in malaria vectors could presage a catastrophic rebound in malaria morbidity and mortality. In areas of moderate levels of resistance to pyrethroids, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) with a carbamate insecticide were significantly more effective than IRS with pyrethroid insecticide. The impact on the effectiveness of LLINs could not be quantified. The incremental cost of using a carbamate insecticide to which vectors are susceptible was US $0.65 per person protected per year, which is considered acceptable by international standards. While the WHO recommends that different interventions, where possible, should use different insecticide classes, these data alone should not be used as the basis for a policy change in vector control interventions. Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.
Collapse
|
28
|
Sweileh WM, Sawalha AF, Al-Jabi SW, Zyoud SH, Shraim NY, Abu-Taha AS. A bibliometric analysis of literature on malaria vector resistance: (1996 - 2015). Global Health 2016; 12:76. [PMID: 27884199 PMCID: PMC5123357 DOI: 10.1186/s12992-016-0214-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emergence of insecticide resistance in malaria vectors is a real threat to future goals of elimination and control of malaria. Therefore, the objective of this study was to assess research trend on insecticide resistance of Anopheles mosquito. In specific, number of publications, countries, institutions, and authors' research profile, citation analysis, international collaborations, and impact of journals publishing documents on insecticide resistance will be presented. It was conducted via Scopus search engine which was used to retrieve relevant data. Keywords used were based on literature available on this topic. The duration of study was set from 1996-2015. RESULTS A total of 616 documents, mainly as original research articles (n = 569; 92.37%) were retrieved. The average number of citations per article was 26.36. Poisson log-linear regression analysis indicated that there was a 6.00% increase in the number of publications for each extra article on pyrethroid resistance. A total of 82 different countries and 1922 authors participated in publishing retrieved articles. The United Kingdom (UK) ranked first in number of publications followed by the United States of America (USA) and France. The top ten productive countries included seven African countries. The UK had collaborations mostly with Benin (relative link strength = 46). A total of 1817 institution/ organizations participated in the publication of retrieved articles. The most active institution/ organization was Liverpool School of Tropical Medicine. Retrieved articles were published in 134 different scientific peer reviewed journals. The journal that published most on this topic was Malaria Journal (n = 101; 16.4%). Four of the top active authors were from South Africa and two were from the UK. Three of the top ten cited articles were published in Insect Molecular Biology journal. Six articles were about pyrethroid resistance and at least two were about DDT resistance. CONCLUSION Publications on insecticide resistance in malaria vector has gained momentum in the past decade. International collaborations enhanced the knowledge about the situation of vector resistance in countries with endemic malaria. Molecular biology of insecticide resistance is the key issue in understanding and overcoming this emerging problems.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Ansam F. Sawalha
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Sa’ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Naser Y. Shraim
- Department of Pharmaceutical Chemistry and Technology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Adham S. Abu-Taha
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| |
Collapse
|
29
|
Muhindo MK, Kakuru A, Natureeba P, Awori P, Olwoch P, Ategeka J, Nayebare P, Clark TD, Muehlenbachs A, Roh M, Mpeka B, Greenhouse B, Havlir DV, Kamya MR, Dorsey G, Jagannathan P. Reductions in malaria in pregnancy and adverse birth outcomes following indoor residual spraying of insecticide in Uganda. Malar J 2016; 15:437. [PMID: 27566109 PMCID: PMC5002129 DOI: 10.1186/s12936-016-1489-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Background Indoor residual spraying of insecticide (IRS) is a key intervention for reducing the burden of malaria in Africa. However, data on the impact of IRS on malaria in pregnancy and birth outcomes is limited. Methods An observational study was conducted within a trial of intermittent preventive therapy during pregnancy in Tororo, Uganda. Women were enrolled at 12–20 weeks of gestation between June and October 2014, provided with insecticide-treated bed nets, and followed through delivery. From December 2014 to February 2015, carbamate-containing IRS was implemented in Tororo district for the first time. Exact spray dates were collected for each household. The exposure of interest was the proportion of time during a woman’s pregnancy under protection of IRS, with three categories of protection defined: no IRS protection, >0–20 % IRS protection, and 20–43 % IRS protection. Outcomes assessed included malaria incidence and parasite prevalence during pregnancy, placental malaria, low birth weight (LBW), pre-term delivery, and fetal/neonatal deaths. Results Of 289 women followed, 134 had no IRS protection during pregnancy, 90 had >0–20 % IRS protection, and 65 had >20–43 % protection. During pregnancy, malaria incidence (0.49 vs 0.10 episodes ppy, P = 0.02) and parasite prevalence (20.0 vs 8.9 %, P < 0.001) were both significantly lower after IRS. At the time of delivery, the prevalence of placental parasitaemia was significantly higher in women with no IRS protection (16.8 %) compared to women with 0–20 % (1.1 %, P = 0.001) or >20–43 % IRS protection (1.6 %, P = 0.006). Compared to women with no IRS protection, those with >20–43 % IRS protection had a lower risk of LBW (20.9 vs 3.1 %, P = 0.002), pre-term birth (17.2 vs 1.5 %, P = 0.006), and fetal/neonatal deaths (7.5 vs 0 %, P = 0.03). Conclusion In this setting, IRS was temporally associated with lower malaria parasite prevalence during pregnancy and at delivery, and improved birth outcomes. IRS may represent an important tool for combating malaria in pregnancy and for improving birth outcomes in malaria-endemic settings. Trial Registration Current Controlled Trials Identifier NCT02163447 Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1489-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary K Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Paul Natureeba
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Patricia Awori
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Ategeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Tamara D Clark
- Department of Medicine, University of California, San Francisco, USA
| | | | - Michelle Roh
- Department of Medicine, University of California, San Francisco, USA
| | - Betty Mpeka
- Uganda Indoor Residual Spraying Phase II Project, Abt Associates, Inc, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, USA
| | - Diane V Havlir
- Department of Medicine, University of California, San Francisco, USA
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | | |
Collapse
|
30
|
Kanyangarara M, Mamini E, Mharakurwa S, Munyati S, Gwanzura L, Kobayashi T, Shields T, Mullany LC, Mutambu S, Mason PR, Curriero FC, Moss WJ. Reduction in Malaria Incidence following Indoor Residual Spraying with Actellic 300 CS in a Setting with Pyrethroid Resistance: Mutasa District, Zimbabwe. PLoS One 2016; 11:e0151971. [PMID: 27018893 PMCID: PMC4809594 DOI: 10.1371/journal.pone.0151971] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 12/04/2022] Open
Abstract
Background More than half of malaria cases in Zimbabwe are concentrated in Manicaland Province, where seasonal malaria epidemics occur despite intensified control strategies. Recently, high levels of pyrethroid and carbamate resistance were detected in Anopheles funestus, the major malaria vector in eastern Zimbabwe. In response, a single round of indoor residual spraying (IRS) using pirimiphos-methyl (an organophosphate) was implemented in four high burden districts of Manicaland Province from November 1, 2014 to December 19, 2014. The objective of this study was to evaluate the effect of this programmatic switch in insecticides on malaria morbidity reported from health care facilities in Mutasa District, one of the worst affected districts in Manicaland Province. Methods The number of weekly malaria cases for each health facility 24 months prior to the 2014 IRS campaign and in the subsequent high transmission season were obtained from passive case surveillance. Environmental variables were extracted from remote-sensing data sources and linked to each health care facility. Negative binomial regression was used to model the weekly number of malaria cases, adjusted for seasonality and environmental variables. Results From December 2012 to May 2015, 124,206 malaria cases were reported from 42 health care facilities in Mutasa District. Based on a higher burden of malaria, 20 out of 31 municipal wards were sprayed in the district. Overall, 87.3% of target structures were sprayed and 92.1% of the target population protected. During the 6 months after the 2014 IRS campaign, a period when transmission would have otherwise peaked, the incidence of malaria was 38% lower than the preceding 24 months at health facilities in the sprayed wards. Conclusions Pirimiphos-methyl had a measurable impact on malaria incidence and is an effective insecticide for the control of An. funestus in eastern Zimbabwe.
Collapse
Affiliation(s)
- Mufaro Kanyangarara
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Edmore Mamini
- Biomedical Research Training Institute, Harare, Zimbabwe
| | | | - Shungu Munyati
- Biomedical Research Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research Training Institute, Harare, Zimbabwe
- Department of Medical Laboratory Sciences, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Luke C. Mullany
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Susan Mutambu
- National Institute of Health Research, Harare, Zimbabwe
| | - Peter R. Mason
- Biomedical Research Training Institute, Harare, Zimbabwe
| | - Frank C. Curriero
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | |
Collapse
|