1
|
Vanachayangkul P, Kodchakorn C, Ta-aksorn W, Im-erbsin R, Tungtaeng A, Tipthara P, Tarning J, Lugo-Roman LA, Wojnarski M, Vesely BA, Kobylinski KC. Safety, pharmacokinetics, and potential neurological interactions of ivermectin, tafenoquine, and chloroquine in Rhesus macaques. Antimicrob Agents Chemother 2024; 68:e0018124. [PMID: 38742896 PMCID: PMC11620492 DOI: 10.1128/aac.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.
Collapse
Affiliation(s)
- Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanikarn Kodchakorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Im-erbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anchalee Tungtaeng
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A. Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
2
|
Madu UL, Ogundeji AO, Pohl CH, Albertyn J, Sebolai OM. Primaquine, an antimalarial drug that controls the growth of cryptococcal cells. J Mycol Med 2023; 33:101361. [PMID: 36812704 DOI: 10.1016/j.mycmed.2023.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
INTRODUCTION The treatment of Cryptococcus neoformans with fluconazole and amphotericin B is, at times, characterised by clinical failure. Therefore, this study sought to re-purpose primaquine (PQ) as an anti-Cryptococcus compound. METHOD The susceptibility profile of some cryptococcal strains towards PQ was determined using EUCAST guidelines, and PQ's mode of action was examined. In the end, the ability of PQ to enhance in vitro macrophage phagocytosis was also assessed. RESULTS We show that PQ had a significant inhibitory effect on the metabolic activity of all tested cryptococcal strains, with 60 µM, defined as MIC50 in this preliminary study, as it reduced the metabolic activity by more than 50%. Moreover, at this concentration, the drug was able to affect mitochondrial function adversely, as treated cells displayed significant (p < 0.05) loss of mitochondrial membrane potential, cytochrome c (cyt c) leakage and overproduction of reactive oxygen species (ROS) when compared to non-treated cells. It is our reasoned summation that the produced ROS targeted the cell walls and cell membranes, inducing observable ultrastructural changes and a significant (p < 0.05) increase in membrane permeability when compared to non-treated cells. Concerning the PQ effect on macrophages, it was noted that it significantly (p < 0.05) enhanced macrophage phagocytic efficiency compared to non-treated macrophages. CONCLUSION This preliminary study highlights the potential of PQ to inhibit the in vitro growth of cryptococcal cells. Moreover, PQ could control the proliferation of cryptococcal cells inside macrophages, which they often manipulate in a Trojan horse-like manner.
Collapse
Affiliation(s)
- Uju L Madu
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Adepemi O Ogundeji
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa.
| |
Collapse
|
3
|
Markus MB. Safety and Efficacy of Tafenoquine for Plasmodium vivax Malaria Prophylaxis and Radical Cure: Overview and Perspectives. Ther Clin Risk Manag 2021; 17:989-999. [PMID: 34526770 PMCID: PMC8435617 DOI: 10.2147/tcrm.s269336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
This article is inter alia a brief, first-stop guide to possible adverse events (AEs) associated with tafenoquine (TQ) intake. Safety and efficacy findings for TQ in Plasmodium vivax malaria prophylaxis and radical cure are summarized and some of the latest TQ-related studies (published in 2020 and 2021) are highlighted. In addition, little-known biological and other matters concerning malaria parasites and 8-aminoquinoline (8-AQ) drug action are discussed and some correct terminology pertinent to malaria is explained.
Collapse
Affiliation(s)
- Miles B Markus
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Transplacental Transfer of Primaquine and Neurobehavioral Development of Prenatally Exposed Rats. J Toxicol 2021; 2021:7392606. [PMID: 34257648 PMCID: PMC8253635 DOI: 10.1155/2021/7392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/19/2021] [Indexed: 12/03/2022] Open
Abstract
Primaquine (PQ) not only eliminates P. falciparum gametocytes but also kills liver dormant forms of P. vivax and P. ovale. Owing to these unique therapeutic properties, it is an essential drug. Although PQ has been used for over 70 years, its toxicological database has gaps such as the absence of studies on its reproductive and developmental toxicity and kinetics in pregnancy. This study investigated the transplacental transfer of PQ and the effects of intrauterine exposure on the postnatal growth, survival, and neurobehavioral development of the offspring. PQ kinetics and transplacental transfer were investigated in rats treated orally (40 mg.kg·bw−1) on gestation day (GD) 21. PQ was analyzed by high-performance liquid chromatography with diode array ultraviolet detection. To evaluate effects of intrauterine exposure on postnatal development, dams were treated orally with PQ (20 mg.kg·bw−1·d−1) or water (controls) on GD 0–21. Postnatal survival, body weight gain, somatic maturation, and reflex acquisition were evaluated. The open field test (OF) was conducted on PND 25. PQ concentration in the fetal plasma was nearly half that in maternal plasma. Except for increase in pregnancy loss, no effects of PQ were noted at term pregnancy and first days of life. Prenatal PQ did not affect postnatal weight gain nor did it impair somatic and neurologic development of the offspring. Pups born to PQ-treated dams showed reduced exploration and enhanced emotionality in the OF. PQ given in pregnancy, at doses greater than those recommended for malaria therapy, may affect pup postnatal survival and emotional behavior.
Collapse
|
5
|
Christensen SB. Natural Products That Changed Society. Biomedicines 2021; 9:biomedicines9050472. [PMID: 33925870 PMCID: PMC8146924 DOI: 10.3390/biomedicines9050472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Until the end of the 19th century all drugs were natural products or minerals. During the 19th century chemists succeeded in isolating pure natural products such as quinine, morphine, codeine and other compounds with beneficial effects. Pure compounds enabled accurate dosing to achieve serum levels within the pharmacological window and reproducible clinical effects. During the 20th and the 21st century synthetic compounds became the major source of drugs. In spite of the impressive results achieved within the art of synthetic chemistry, natural products or modified natural products still constitute almost half of drugs used for treatment of cancer and diseases like malaria, onchocerciasis and lymphatic filariasis caused by parasites. A turning point in the fight against the devastating burden of malaria was obtained in the 17th century by the discovery that bark from trees belonging to the genus Cinchona could be used for treatment with varying success. However isolation and use of the active principle, quinine, in 1820, afforded a breakthrough in the treatment. In the 20th century the synthetic drug chloroquine severely reduced the burden of malaria. However, resistance made this drug obsolete. Subsequently artemisinin isolated from traditional Chinese medicine turned out to be an efficient antimalarial drug overcoming the problem of chloroquine resistance for a while. The use of synthetic analogues such as chloroquine or semisynthetic drugs such as artemether or artesunate further improved the possibilities for healing malaria. Onchocerciasis (river blindness) made life in large parts of Africa and South America miserable. The discovery of the healing effects of the macrocyclic lactone ivermectin enabled control and partly elimination of the disease by annual mass distribution of the drug. Also in the case of ivermectin improved semisynthetic derivatives have found their way into the clinic. Ivermectin also is an efficient drug for treatment of lymphatic filariasis. The serendipitous discovery of the ability of the spindle toxins to control the growth of fast proliferating cancer cells armed physicians with a new efficient tool for treatment of some cancer diseases. These possibilities have been elaborated through preparation of semisynthetic analogues. Today vincristine and vinblastine and semisynthetic analogues are powerful weapons against cancer diseases.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Maier JD, Siegfried S, Gültekin N, Stanga Z, Baird JK, Grobusch MP, Schlagenhauf P. Efficacy and safety of tafenoquine for malaria chemoprophylaxis (1998-2020): A systematic review and meta-analysis. Travel Med Infect Dis 2020; 39:101908. [PMID: 33227500 DOI: 10.1016/j.tmaid.2020.101908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND In 2018, tafenoquine was approved for malaria chemoprophylaxis. We evaluated all available data on the safety and efficacy of tafenoquine chemoprophylaxis. METHODS This systematic review followed the PRISMA guidelines and was registered on PROSPERO (CRD42019123839). We searched PubMed, Embase, Scopus, CINAHL and Cochrane databases. Two authors (JDM, PS) screened all papers. RESULTS We included 44 papers in the qualitative and 9 in the quantitative analyses. These 9 randomized, controlled trials included 2495 participants, aged 12-60 years with 27.3% women. Six studies were conducted in Plasmodium spp.-endemic regions; two were human infection studies. 200 mg weekly tafenoquine and higher dosages lead to a significant reduction of Plasmodium spp. infection compared to placebo and were comparable to 250 mg mefloquine weekly with a protective efficacy between 77.9 and 100% or a total risk ratio of 0.22 (95%-CI: 0.07-0.73; p = 0.013) in favour of tafenoquine. Adverse events (AE) were comparable in frequency and severity between tafenoquine and comparator arms. One study reported significantly more gastrointestinal events in tafenoquine users (p ≤ 0.001). Evidence of increased, reversible, asymptomatic vortex keratopathy in subjects with prolonged tafenoquine exposures was found. A single, serious event of decreased macular sensitivity occurred. CONCLUSION This systematic review and meta-analysis of trials of G6PD-normal adults show that weekly tafenoquine 200 mg is well tolerated and effective as malaria chemoprophylaxis focusing primarily on Plasmodium falciparum but also on Plasmodium vivax. Our safety analysis is limited by heterogenous methods of adverse events reporting. Further research is indicated on the use of tafenoquine in diverse traveller populations.
Collapse
Affiliation(s)
- Julian D Maier
- University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Hirschengraben 84, 8001, Zurich, Switzerland
| | - Sandra Siegfried
- University of Zurich, Biostatistics Department at Epidemiology, Biostatistics and Prevention Institute, Switzerland
| | - Nejla Gültekin
- Centre of Competence for Military and Disaster Medicine, Federal Department of Defence, Civil Protection and Sport DDPS, Swiss Armed Forces, Medical Services, Ittigen, Switzerland
| | - Zeno Stanga
- Centre of Competence for Military and Disaster Medicine, Federal Department of Defence, Civil Protection and Sport DDPS, Swiss Armed Forces, Medical Services, Ittigen, Switzerland
| | - J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centres, Amsterdam Public Health, Amsterdam Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia Schlagenhauf
- University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Hirschengraben 84, 8001, Zurich, Switzerland.
| |
Collapse
|
7
|
Thome R, Casella G, Lotfi N, Ishikawa LWL, Wang Q, Ciric B, Zhang GX, Rostami A. Primaquine elicits Foxp3 + regulatory T cells with a superior ability to limit CNS autoimmune inflammation. J Autoimmun 2020; 114:102505. [PMID: 32595012 DOI: 10.1016/j.jaut.2020.102505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory conditions where inflammatory CD4+ T cells play a major role. Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells suppress inflammation and an increase in their numbers and activity is beneficial for MS and EAE. However, studies have shown that Treg cells can transdifferentiate to pathogenic Th17 cells under inflammatory conditions. Drugs that stimulate Treg cell induction and their resistance to inflammatory stimuli are necessary to develop effective therapies to treat MS. Here, we show that primaquine (PQ), an anti-malarial drug, suppresses EAE through the stimulation of Foxp3+ Treg cells. PQ-elicited Treg cells are refractory to inflammatory stimuli and suppress EAE. Additionally, PQ-elicited Foxp3+ Treg cells were more efficient in suppressing the proliferation of responder cells compared to PBS-elicited Treg cells. Although PQ does not directly induce Foxp3+ Treg cell differentiation from naïve T cells, it modulated dendritic cells (DCs) to induce Foxp3+ Treg cells in an indoleamine 2,3 dioxygenase (IDO)-dependent manner. Together, our results show that PQ elicits Foxp3+ Treg cells with a superior suppressive activity to reduce EAE. PQ has the potential as a safe and effective treatment for MS and other CNS autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Rodolfo Thome
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Giacomo Casella
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Noushin Lotfi
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Qing Wang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Duparc S, Chalon S, Miller S, Richardson N, Toovey S. Neurological and psychiatric safety of tafenoquine in Plasmodium vivax relapse prevention: a review. Malar J 2020; 19:111. [PMID: 32169086 PMCID: PMC7071640 DOI: 10.1186/s12936-020-03184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tafenoquine is an 8-aminoquinoline anti-malarial drug recently approved as a single-dose (300 mg) therapy for Plasmodium vivax relapse prevention, when co-administered with 3-days of chloroquine or other blood schizonticide. Tafenoquine 200 mg weekly after a loading dose is also approved as travellers' prophylaxis. The development of tafenoquine has been conducted over many years, using various dosing regimens in diverse populations. METHODS This review brings together all the preclinical and clinical data concerning tafenoquine central nervous system safety. Data were assembled from published sources. The risk of neuropsychiatric adverse events (NPAEs) with single-dose tafenoquine (300 mg) in combination with chloroquine to achieve P. vivax relapse prevention is particularly examined. RESULTS There was no evidence of neurotoxicity with tafenoquine in preclinical animal models. In clinical studies in P. vivax relapse prevention, nervous system adverse events, mainly headache and dizziness, occurred in 11.4% (36/317) of patients with tafenoquine (300 mg)/chloroquine versus 10.2% (19/187) with placebo/chloroquine; and in 15.5% (75/483) of patients with tafenoquine/chloroquine versus 13.3% (35/264) with primaquine (15 mg/day for 14 days)/chloroquine. Psychiatric adverse events, mainly insomnia, occurred in 3.8% (12/317) of patients with tafenoquine/chloroquine versus 2.7% (5/187) with placebo/chloroquine; and in 2.9% (14/483) of patients with tafenoquine/chloroquine versus 3.4% (9/264) for primaquine/chloroquine. There were no serious or severe NPAEs observed with tafenoquine (300 mg)/chloroquine in these studies. CONCLUSIONS The risk:benefit of single-dose tafenoquine/chloroquine in P. vivax relapse prevention is favourable in the presence of malaria, with a low risk of NPAEs, similar to that seen with chloroquine alone or primaquine/chloroquine.
Collapse
Affiliation(s)
- Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland.
| | - Stephan Chalon
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland
| | | | | | - Stephen Toovey
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland.,Pegasus Research, London, UK
| |
Collapse
|
9
|
Val F, Costa FT, King L, Brito-Sousa JD, Bassat Q, Monteiro WM, Siqueira AM, Luzzatto L, Lacerda MV. Tafenoquine for the prophylaxis, treatment and elimination of malaria: eagerness must meet prudence. Future Microbiol 2019; 14:1261-1279. [PMID: 31596137 DOI: 10.2217/fmb-2019-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria puts more than 3 billion people at risk of infection and causes high morbidity and mortality. Plasmodium vivax forms hypnozoites, which may initiate recurrences, even in the absence of reinfection or superinfection. Until recently, the only drug available for eliminating hypnozoites was primaquine (PQ), which, given its short half-life, requires a relatively long course of treatment. Tafenoquine (TQ) is a PQ analog with a longer half-life. This enables radical cure of malaria with a single dose and overcomes adherence issues associated with PQ, thereby increasing effectiveness in real-life settings. Clinical studies have provided sound evidence for TQ's safety and efficacy against malaria, which recently led to its approval by the US FDA. Here, we review aspects of TQ, including how to avoid hemolytic anemia in G6PD deficient patients. We believe that TQ promises to be a major advance toward malaria elimination.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil
| | - Fabio Tm Costa
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Liam King
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose D Brito-Sousa
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, 08036, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, CP 1929, Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, 08950, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Lucio Luzzatto
- Department of Hematology & Blood Transfusion, Muhimbili University of Health & Allied Sciences, Dar-es-Salaam, Tanzania
| | - Marcus Vg Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas e Maria Deane, FIOCRUZ-AM, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
10
|
Todorov AR, Aikonen S, Muuronen M, Helaja J. Visible-Light-Photocatalyzed Reductions of N-Heterocyclic Nitroaryls to Anilines Utilizing Ascorbic Acid Reductant. Org Lett 2019; 21:3764-3768. [PMID: 31066563 PMCID: PMC6750875 DOI: 10.1021/acs.orglett.9b01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A photoreductive
protocol utilizing [Ru(bpy)3]2+ photocatalyst,
blue light LEDs, and ascorbic acid (AscH2) has been developed
to reduce nitro N-heteroaryls to the corresponding
anilines. Based on experimental and computational results and previous
studies, we propose that the reaction proceeds via proton-coupled
electron transfer between AscH2, photocatalyst, and the
nitro N-heteroaryl. The method offers a green catalytic procedure
to reduce, e.g., 4-/8-nitroquinolines to the corresponding aminoquinolines,
substructures present in important antimalarial drugs.
Collapse
Affiliation(s)
- Aleksandar R Todorov
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Santeri Aikonen
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Mikko Muuronen
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Juho Helaja
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| |
Collapse
|