1
|
Machange JJ, Maasayi MS, Mundi J, Moore J, Muganga JB, Odufuwa OG, Moore SJ, Tenywa FC. Comparison of the Trapping Efficacy of Locally Modified Gravid Aedes Trap and Autocidal Gravid Ovitrap for the Monitoring and Surveillance of Aedes aegypti Mosquitoes in Tanzania. INSECTS 2024; 15:401. [PMID: 38921116 PMCID: PMC11204168 DOI: 10.3390/insects15060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The study assessed the trapping efficacy of locally modified (1) Gravid Aedes Trap (GAT) lined with insecticide-treated net (ITN) as a killing agent and (2) Autocidal Gravid Ovitrap (AGO) with sticky board in the semi-field system (SFS) and field setting. Fully balanced Latin square experiments were conducted to compare GAT lined with ITN vs. AGO, both with either yeast or grass infusion. Biogent-Sentinel (BGS) with BG-Lure and no CO2 was used as a standard trap for Aedes mosquitoes. In the SFS, GAT outperformed AGO in collecting both nulliparous (65% vs. 49%, OR = 2.22, [95% CI: 1.89-2.60], p < 0.001) and gravid mosquitoes (73% vs. 64%, OR = 1.67, [95% CI: 1.41-1.97], p < 0.001). Similar differences were observed in the field. Yeast and grass infusion did not significantly differ in trapping gravid mosquitoes (OR = 0.91, [95% CI: 0.77-1.07], p = 0.250). The use of ITN improved mosquito recapture from 11% to 70% in the SFS. The same trend was observed in the field. Yeast was chosen for further evaluation in the optimized GAT due to its convenience and bifenthrin net for its resistance management properties. Mosquito density was collected when using 4× GATs relative to BGS-captured gravid mosquitoes 64 vs. 58 (IRR = 0.82, [95% CI: 0.35-1.95], p = 0.658) and showed no density dependence. Deployment of multiple yeast-baited GAT lined with bifenthrin net is cost-effective (single GAT < $8) compared to other traps such as BGS ($160).
Collapse
Affiliation(s)
- Jane Johnson Machange
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Masudi Suleiman Maasayi
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - John Mundi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Joseph Barnabas Muganga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Olukayode G. Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sarah J. Moore
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Frank Chelestino Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Gleave K, Lees RS. Better methods, better data: landscaping the priorities for improving methodologies in vector control. Gates Open Res 2024; 8:27. [PMID: 39035850 PMCID: PMC11259587 DOI: 10.12688/gatesopenres.15399.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 07/23/2024] Open
Abstract
This article addresses the evolving challenges in evaluating insecticide-based tools for vector control. In response to the emergence of insecticide resistance in major malaria vectors, novel chemistries and products are coming to market, and there is a need to review the available testing methodologies. Commonly used methods for evaluating insecticides, such as the World Health Organization (WHO) cone bioassay, are inadequate for the diverse range of tools now available. Innovation to Impact (I2I) has studied the variability in laboratory methods, with the aim of identifying key factors that contribute to variation and providing recommendations to tighten up protocols. The I2I Methods Landscape is a living document which presents a review of existing methods for evaluating vector control tools, with the scope currently extending to insecticide-treated nets (ITNs) and indoor residual sprays (IRS). The review reveals a lack of validation for many commonly used vector control methods, highlighting the need for improved protocols to enhance reliability and robustness of the data that is generated to make decisions in product development, evaluation, and implementation. A critical aspect highlighted by this work is the need for tailored methods to measure endpoints relevant to the diverse modes of action of novel insecticides. I2I envisage that the Methods Landscape will serve as a decision-making tool for researchers and product manufacturers in selecting appropriate methods, and a means to prioritise research and development. We call for collective efforts in the pro-active development, validation, and consistent implementation of suitable methods in vector control to produce the data needed to make robust decisions.
Collapse
Affiliation(s)
- Katherine Gleave
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Liverpool, Merseyside, L17 9QQ, UK
| | - Rosemary Susan Lees
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Liverpool, Merseyside, L17 9QQ, UK
| |
Collapse
|
3
|
Fairbanks EL, Saeung M, Pongsiri A, Vajda E, Wang Y, McIver DJ, Richardson JH, Tatarsky A, Lobo NF, Moore SJ, Ponlawat A, Chareonviriyaphap T, Ross A, Chitnis N. Inference for entomological semi-field experiments: Fitting a mathematical model assessing personal and community protection of vector-control interventions. Comput Biol Med 2024; 168:107716. [PMID: 38039890 DOI: 10.1016/j.compbiomed.2023.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The effectiveness of vector-control tools is often assessed by experiments as a reduction in mosquito landings using human landing catches (HLCs). However, HLCs alone only quantify a single characteristic and therefore do not provide information on the overall impacts of the intervention product. Using data from a recent semi-field study which used time-stratified HLCs, aspiration of non-landing mosquitoes, and blood feeding, we suggest a Bayesian inference approach for fitting such data to a stochastic model. This model considers both personal protection, through a reduction in biting, and community protection, from mosquito mortality and disarming (prolonged inhibition of blood feeding). Parameter estimates are then used to predict the reduction of vectorial capacity induced by etofenpox-treated clothing, picaridin topical repellents, transfluthrin spatial repellents and metofluthrin spatial repellents, as well as combined interventions for Plasmodium falciparum malaria in Anopleles minimus. Overall, all interventions had both personal and community effects, preventing biting and killing or disarming mosquitoes. This led to large estimated reductions in the vectorial capacity, with substantial impact even at low coverage. As the interventions aged, fewer mosquitoes were killed; however the impact of some interventions changed from killing to disarming mosquitoes. Overall, this inference method allows for additional modes of action, rather than just reduction in biting, to be parameterised and highlights the tools assessed as promising malaria interventions.
Collapse
Affiliation(s)
- Emma L Fairbanks
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland.
| | - Manop Saeung
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Arissara Pongsiri
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Elodie Vajda
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland; Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, USA
| | - Yuqian Wang
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland
| | - David J McIver
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, USA
| | | | - Allison Tatarsky
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, USA
| | | | - Sarah J Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland; Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania; The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health, Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Zahouli JZB, Edi CAV, Yao LA, Lisro EG, Adou M, Koné I, Small G, Sternberg ED, Koudou BG. Small-scale field evaluation of PermaNet ® Dual (a long-lasting net coated with a mixture of chlorfenapyr and deltamethrin) against pyrethroid-resistant Anopheles gambiae mosquitoes from Tiassalé, Côte d'Ivoire. Malar J 2023; 22:36. [PMID: 36726160 PMCID: PMC9893697 DOI: 10.1186/s12936-023-04455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Due to the rapid expansion of pyrethroid-resistance in malaria vectors in Africa, Global Plan for Insecticide Resistance Management (GPIRM) has recommended the development of long-lasting insecticidal nets (LLINs), containing insecticide mixtures of active ingredients with different modes of action to mitigate resistance and improve LLIN efficacy. This good laboratory practice (GLP) study evaluated the efficacy of the chlorfenapyr and deltamethrin-coated PermaNet® Dual, in comparison with the deltamethrin and synergist piperonyl butoxide (PBO)-treated PermaNet® 3.0 and the deltamethrin-coated PermaNet® 2.0, against wild free-flying pyrethroid-resistant Anopheles gambiae sensu lato (s.l.), in experimental huts in Tiassalé, Côte d'Ivoire (West Africa). METHODS PermaNet® Dual, PermaNet® 3.0 and PermaNet® 2.0, unwashed and washed (20 washes), were tested against free-flying pyrethroid-resistant An. gambiae s.l. in the experimental huts in Tiassalé, Côte d'Ivoire from March to August 2020. Complementary laboratory cone bioassays (daytime and 3-min exposure) and tunnel tests (nightly and 15-h exposure) were performed against pyrethroid-susceptible An. gambiae sensu stricto (s.s.) (Kisumu strain) and pyrethroid-resistant An. gambiae s.l. (Tiassalé strain). RESULTS PermaNet® Dual demonstrated significantly improved efficacy, compared to PermaNet® 3.0 and PermaNet® 2.0, against the pyrethroid-resistant An. gambiae s.l. Indeed, the experimental hut trial data showed that the mortality and blood-feeding inhibition in the wild pyrethroid-resistant An. gambiae s.l. were overall significantly higher with PermaNet® Dual compared with PermaNet® 3.0 and PermaNet® 2.0, for both unwashed and washed samples. The mortality with unwashed and washed samples were 93.6 ± 0.2% and 83.2 ± 0.9% for PermaNet® Dual, 37.5 ± 2.9% and 14.4 ± 3.9% for PermaNet® 3.0, and 7.4 ± 5.1% and 11.7 ± 3.4% for PermaNet® 2.0, respectively. Moreover, unwashed and washed samples produced the respective percentage blood-feeding inhibition of 41.4 ± 6.9% and 43.7 ± 4.8% with PermaNet® Dual, 51.0 ± 5.7% and 9.8 ± 3.6% with PermaNet® 3.0, and 12.8 ± 4.3% and - 13.0 ± 3.6% with PermaNet® 2.0. Overall, PermaNet® Dual also induced higher or similar deterrence, exophily and personal protection when compared with the standard PermaNet® 3.0 and PermaNet® 2.0 reference nets, with both unwashed and washed net samples. In contrast to cone bioassays, tunnel tests predicted the efficacy of PermaNet® Dual seen in the current experimental hut trial. CONCLUSION The deltamethrin-chlorfenapyr-coated PermaNet® Dual induced a high efficacy and performed better than the deltamethrin-PBO PermaNet® 3.0 and the deltamethrin-only PermaNet® 2.0, testing both unwashed and 20 times washed samples against the pyrethroid-susceptible and resistant strains of An. gambiae s.l. The inclusion of chlorfenapyr with deltamethrin in PermaNet® Dual net greatly improved protection and control of pyrethroid-resistant An. gambiae populations. PermaNet® Dual thus represents a promising tool, with a high potential to reduce malaria transmission and provide community protection in areas compromised by mosquito vector resistance to pyrethroids.
Collapse
Affiliation(s)
- Julien Z. B. Zahouli
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.449926.40000 0001 0118 0881Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire ,grid.416786.a0000 0004 0587 0574Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Constant A. V. Edi
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Laurence A. Yao
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Emmanuelle G. Lisro
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Marc Adou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,UFR Science de la Nature, Université Nagui-Abrogoua, Abidjan, Côte d’Ivoire
| | - Inza Koné
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.410694.e0000 0001 2176 6353Université Félix Houphouët-Boingy, Abidjan, Côte d’Ivoire
| | - Graham Small
- grid.452416.0Innovative Vector Control Consortium, Liverpool, UK
| | - Eleanore D. Sternberg
- Vestergaard Sàrl, Lausanne, Switzerland ,grid.48004.380000 0004 1936 9764Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA UK
| | - Benjamin G. Koudou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,UFR Science de la Nature, Université Nagui-Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
5
|
Mbuba E, Odufuwa OG, Moore J, Mmbaga S, Tchicaya E, Edi C, Chalageri V, Uragayala S, Sharma A, Rahi M, Raghavendra K, Eapen A, Koenker H, Ross A, Moore SJ. Multi-country evaluation of the durability of pyrethroid plus piperonyl-butoxide insecticide-treated nets: study protocol. Malar J 2023; 22:30. [PMID: 36707886 PMCID: PMC9881340 DOI: 10.1186/s12936-023-04465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.
Collapse
Affiliation(s)
- Emmanuel Mbuba
- Vector Control Product Testing Unit, Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland.
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland
- Epidemiology and Population Health Department, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Selemani Mmbaga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Emile Tchicaya
- Swiss Centre for Scientific Research in Côte d'Ivoire, 1303, Abidjan, Côte d'Ivoire
- Vegro Aps, Copenhagen, Denmark, Refshalevej 213A
| | - Constant Edi
- Swiss Centre for Scientific Research in Côte d'Ivoire, 1303, Abidjan, Côte d'Ivoire
| | - Vani Chalageri
- Field Unit, ICMR-National Institute of Malaria Research, Bangalore, Karnataka, India
| | - Sreehari Uragayala
- Field Unit, ICMR-National Institute of Malaria Research, Bangalore, Karnataka, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Manju Rahi
- ICMR-Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Kamaraju Raghavendra
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Alex Eapen
- Field Unit, ICMR-Indian Council of Medical Research, Chennai, India
| | | | - Amanda Ross
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland
| |
Collapse
|
6
|
Lees RS, Fornadel C, Snetselaar J, Wagman J, Spiers A. Insecticides for Mosquito Control: Improving and Validating Methods to Strengthen the Evidence Base. INSECTS 2023; 14:116. [PMID: 36835685 PMCID: PMC9961412 DOI: 10.3390/insects14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Efforts to eliminate vector-borne diseases, for example malaria which caused an estimated 619,000 deaths in 2021 [...].
Collapse
Affiliation(s)
- Rosemary Susan Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Innovation to Impact, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christen Fornadel
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Janneke Snetselaar
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joe Wagman
- PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Angus Spiers
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Innovation to Impact, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
7
|
Koinari M, Bubun N, Amos B, Kiari K, Lahu D, Karl S. WHO cone bioassay boards with or without holes: relevance for bioassay outcomes in long-lasting insecticidal net studies. Malar J 2022; 21:389. [PMID: 36536444 PMCID: PMC9762087 DOI: 10.1186/s12936-022-04412-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) cone bioassay is a key method used to evaluate the bioefficacy of long-lasting insecticidal nets (LLINs) used for malaria control. These tests also play an important role in LLIN product prequalification and longitudinal monitoring. Standardization of these assays is therefore important. While many parameters for WHO cone bioassays are defined in the respective WHO guidelines, others are not. One of these undefined parameters is the exact configuration of the bioassay boards. In cone bioassays, LLIN samples are pinned onto a bioassay board for testing. Anecdotal evidence suggests that bioassay boards with holes behind the LLIN samples lead to greater exposure to insecticide, as the mosquitoes are 'forced to stand on the net material'. This may increase the key assay outcomes of 60 min knockdown (KD60) and 24 h mortality (M24). The present study tested this hypothesis in two facilities using two fully susceptible mosquito colonies. METHODS WHO cone bioassays were performed using bioassay boards with holes and boards without holes in parallel, following WHO guidelines. Five brands of LLINs with four new and unwashed whole net samples per brand were used (total of n = 20 whole nets). Five pieces per whole net sample were prepared in duplicate resulting in a total of n = 100 pairs. Knock-down (KD) was recorded in 10 min intervals within the first hour after exposure and mortality was recorded at 24 h. Assays with Anopheles farauti were done at the Papua New Guinea Institute of Medical Research (PNGIMR) and assays with Aedes aegypti were done at James Cook University, Australia. RESULTS Results varied not only with bioassay board configuration but also with mosquito colony. In particular, with An. farauti, a significantly higher M24 was observed when boards with holes were used, while this was not observed with Ae. aegypti. WHO cone bioassay results were systematically biased between the two facilities such that the use of An. farauti at PNGIMR predicted higher KD60 and M24. CONCLUSION The present study highlights the need for further harmonization of WHO cone bioassay methodology. Parameters such as bioassay board configuration and mosquito species systematically affect the observations, which impedes generalizability of WHO cone bioassay outcomes.
Collapse
Affiliation(s)
- Melanie Koinari
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD Australia
| | - Nakei Bubun
- grid.417153.50000 0001 2288 2831Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Brogan Amos
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD Australia
| | - Kiari Kiari
- grid.417153.50000 0001 2288 2831Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - David Lahu
- grid.417153.50000 0001 2288 2831Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Stephan Karl
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD Australia ,grid.417153.50000 0001 2288 2831Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Madang Province Papua New Guinea
| |
Collapse
|
8
|
Kibondo UA, Odufuwa OG, Ngonyani SH, Mpelepele AB, Matanilla I, Ngonyani H, Makungwa NO, Mseka AP, Swai K, Ntabaliba W, Stutz S, Austin JW, Moore SJ. Influence of testing modality on bioefficacy for the evaluation of Interceptor ® G2 mosquito nets to combat malaria mosquitoes in Tanzania. Parasit Vectors 2022; 15:124. [PMID: 35410250 PMCID: PMC8996609 DOI: 10.1186/s13071-022-05207-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide-treated net (ITN) durability is evaluated using longitudinal bioefficacy and fabric integrity sampling post-distribution. Interceptor® G2 was developed for resistance management and contains two adulticides: alpha-cypermethrin and chlorfenapyr; it is a pro-insecticide that is metabolized into its active form by mosquito-detoxifying enzymes and may be enhanced when the mosquito is physiologically active. To elucidate the impact of bioassay modality, mosquito exposures of the alphacypermethrin ITN Interceptor® and dual adulticide Interceptor® G2 were investigated. Methods This study evaluated the performance of Interceptor® G2 compared to Interceptor® against local strains of mosquitoes in Tanzania. Unwashed and 20× times washed nets were tested. Efficacy of ITNs was measured by four bioassay types: (1) World Health Organisation (WHO) cone test (cone), (2) WHO tunnel test (tunnel), (3) Ifakara ambient chamber test (I-ACT) and (4) the WHO gold standard experimental hut test (hut). Hut tests were conducted against free-flying wild pyrethroid metabolically resistant Anopheles arabiensis and Culex quinquefasciatus. Cone, tunnel and I-ACT bioassays used laboratory-reared metabolically resistant An. arabiensis and Cx. quinquefasciatus and pyrethroid susceptible Anopheles gambiae sensu stricto and Aedes aegypti. Results Against resistant strains, superiority of Interceptor® G2 over Interceptor® was observed in all “free-flying bioassays”. In cone tests (which restrict mosquito flight), superiority of Interceptor® over Interceptor® G2 was recorded. Mortality of unwashed Interceptor® G2 among An. arabiensis was lowest in hut tests at 42.9% (95% CI: 37.3–48.5), although this increased to 66.7% (95% CI: 47.1–86.3) by blocking hut exit traps so mosquitoes presumably increased frequencies of contact with ITNs. Higher odds of mortality were consistently observed in Interceptor® G2 compared to Interceptor® in “free-flying” bioassays using An. arabiensis: tunnel (OR = 1.42 [95% CI:1.19–1.70], p < 0.001), I-ACT (OR = 1.61 [95% CI: 1.05–2.49], p = 0.031) and hut (OR = 2.53 [95% CI: 1.96–3.26], p < 0.001). Interceptor® and Interceptor® G2 showed high blood-feeding inhibition against all strains. Conclusion Both free-flying laboratory bioassays (WHO Tunnel and I-ACT) consistently measured similarly, and both predicted the results of the experimental hut test. For bioefficacy monitoring and upstream product evaluation of ITNs in situ, the I-ACT may provide an alternative bioassay modality with improved statistical power. Interceptor G2® outperformed Interceptor ® against pyrethroid-resistant strains, demonstrating the usefulness of chlorfenapyr in mitigation of malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05207-9.
Collapse
Affiliation(s)
- Ummi Abdul Kibondo
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, England
| | - Saphina H Ngonyani
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Ahmadi B Mpelepele
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Issaya Matanilla
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Hassan Ngonyani
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Noel O Makungwa
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Antony P Mseka
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Kyeba Swai
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Watson Ntabaliba
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Susanne Stutz
- Professional & Specialty Solutions, BASF SE, Public Health, 67117, Limburgerhof, Germany
| | - James W Austin
- Professional & Specialty Solutions, BASF Corporation, Public Health Global Development, Research Triangle Park, NC, 27709, USA
| | - Sarah Jane Moore
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
9
|
Madumla EP, Moore SJ, Moore J, Mbuba E, Mbeyela EM, Kibondo UA, C S, Mmbaga, Kobe D, Baraka J, Msellemu D, Swai JK, Mboma ZM, Odufuwa OG. "In starvation, a bone can also be meat": a mixed methods evaluation of factors associated with discarding of long-lasting insecticidal nets in Bagamoyo, Tanzania. Malar J 2022; 21:101. [PMID: 35331242 PMCID: PMC8944021 DOI: 10.1186/s12936-022-04126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Between 2000 and 2019, more than 1.8 billion long-lasting insecticidal nets (LLINs) were distributed in Africa. While the insecticidal durability of LLINs is around 3 years, nets are commonly discarded 2 years post distribution. This study investigated the factors associated with the decision of users to discard LLINs. METHODS A mixed-method sequential explanatory approach using a structured questionnaire followed by focus group discussions (FGDs) to collect information on experiences, views, reasons, how and when LLINs are discarded. Out of 6,526 households that responded to the questionnaire of LLINs durability trial, 160 households were randomly selected from the households in four villages in Bagamoyo Tanzania for FGDs but only 155 households participated in the FGDs. Five of the household representatives couldn't participate due to unexpected circumstances. A total of sixteen FGDs each comprising of 8-10 adults were conducted; older women (40-60 years), older men (40-60 years), younger women (18-39 years), younger men (18-39 years). During the FGDs, participants visually inspected seven samples of LLINs that were "too-torn" based on Proportionate Hole Index recommended by the World Health Organization (WHO) guidelines on LLIN testing, the nets were brought to the discussion and participants had to determine if such LLINs were to be kept or discarded. The study assessed responses from the same participants that attended FGD and also responded to the structured questionnaire, 117 participants fulfilled the criteria, thus data from only 117 participants are analysed in this study. RESULTS In FGDs, integrity of LLIN influenced the decision to discard or keep a net. Those of older age, women, and householders with lower income were more likely to classify a WHO "too-torn" net as "good". The common methods used to discard LLINs were burning and burying. The findings were seen in the quantitative analysis. For every additional hole, the odds of discarding a WHO "too-torn" LLIN increased [OR = 1.05 (95%CI (1.04-1.07)), p < 0.001]. Younger age group [OR = 4.97 (95%CI (3.25-7.32)), p < 0.001], male-headed households [OR = 6.85 (95%CI (4.44 -10.59)), p < 0.001], and wealthy households [OR = 3.88 (95%CI (2.33-6.46)), p < 0.001] were more likely to discard LLINs. CONCLUSION Integrity of LLIN was the main determinant for discarding or keeping LLINs and the decision to discard the net is associated with socioeconomic status of the household, and the age and gender of respondents. WHO "too torn" nets are encouraged to be used instead of none until replacement, and disposal of nets should be based on recommendation.
Collapse
Affiliation(s)
- Edith P Madumla
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.
- Nelson Mandela African Institution of Science and Technology, Tengeru, Arusha, Tanzania.
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Nelson Mandela African Institution of Science and Technology, Tengeru, Arusha, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
| | - Emmanuel Mbuba
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Edgar M Mbeyela
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ummi A Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Mmbaga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Dickson Kobe
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jitihada Baraka
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Daniel Msellemu
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Johnson K Swai
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Zawadi M Mboma
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
10
|
Lissenden N, Armistead JS, Gleave K, Irish SR, Martin JL, Messenger LA, Moore SJ, Ngufor C, Protopopoff N, Oxborough R, Spiers A, Lees RS. Developing Consensus Standard Operating Procedures (SOPs) to Evaluate New Types of Insecticide-Treated Nets. INSECTS 2021; 13:7. [PMID: 35055850 PMCID: PMC8778287 DOI: 10.3390/insects13010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
In response to growing concerns over the sustained effectiveness of pyrethroid-only based control tools, new products are being developed and evaluated. Some examples of these are dual-active ingredient (AI) insecticide-treated nets (ITNs) which contain secondary insecticides, or synergist ITNs which contain insecticide synergist, both in combination with a pyrethroid. These net types are often termed 'next-generation' insecticide-treated nets. Several of these new types of ITNs are being evaluated in large-scale randomized control trials (RCTs) and pilot deployment schemes at a country level. However, no methods for measuring the biological durability of the AIs or synergists on these products are currently recommended. In this publication, we describe a pipeline used to collate and interrogate several different methods to produce a singular 'consensus standard operating procedure (SOP)', for monitoring the biological durability of three new types of ITNs: pyrethroid + piperonyl butoxide (PBO), pyrethroid + pyriproxyfen (PPF), and pyrethroid + chlorfenapyr (CFP). This process, convened under the auspices of the Innovation to Impact programme, sought to align methodologies used for conducting durability monitoring activities of next-generation ITNs.
Collapse
Affiliation(s)
- Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (K.G.); (R.S.L.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Jennifer S. Armistead
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC 20547, USA;
| | - Katherine Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (K.G.); (R.S.L.)
| | - Seth R. Irish
- U.S. President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (S.R.I.); (L.A.M.)
| | - Jackline L. Martin
- Kilimanjaro Christian Medical University College, National Institute for Medical Research, Moshi P.O. Box 2240, Tanzania;
| | - Louisa A. Messenger
- U.S. President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (S.R.I.); (L.A.M.)
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania;
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 477, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- Faculty of Science, University of Basel, St. Petersplatz 1, 4002 Basel, Switzerland
| | - Corine Ngufor
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (C.N.); (N.P.)
- Centre de Recherche Entomologique de Cotonou, Cotonou BP 2604, Benin
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (C.N.); (N.P.)
| | | | - Angus Spiers
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (K.G.); (R.S.L.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
11
|
Lissenden N, Kont MD, Essandoh J, Ismail HM, Churcher TS, Lambert B, Lenhart A, McCall PJ, Moyes CL, Paine MJI, Praulins G, Weetman D, Lees RS. Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. INSECTS 2021; 12:insects12090826. [PMID: 34564266 PMCID: PMC8465213 DOI: 10.3390/insects12090826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary A group of insecticides, called pyrethroids, are the main strategy for controlling the mosquito vectors of malaria. Pyrethroids are used in all insecticide-treated bednets, and many indoor residual spray programmes (in which insecticides are sprayed on the interior walls of houses). There are different types of pyrethroids within the class (e.g., deltamethrin and permethrin). Across the world, mosquitoes are showing signs of resistance to the pyrethroids, such as reduced mortality following contact. However, it is unclear if this resistance is uniform across the pyrethroid class (i.e., if a mosquito is resistant to deltamethrin, whether it is resistant to permethrin at the same level). In addition, it is not known if switching between different pyrethroids can be used to effectively maintain mosquito control when resistance to a single pyrethroid has been detected. This review examined the evidence from molecular studies, resistance testing from laboratory and field data, and mosquito behavioural assays to answer these questions. The evidence suggested that in areas where pyrethroid resistance exists, different mortality seen between the pyrethroids is not necessarily indicative of an operationally relevant difference in control performance, and there is no reason to rotate between common pyrethroids (i.e., deltamethrin, permethrin, and alpha-cypermethrin) as an insecticide resistance management strategy. Abstract Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.
Collapse
Affiliation(s)
- Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Audrey Lenhart
- U.S. Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA;
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | | | - Mark J. I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Giorgio Praulins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| |
Collapse
|
12
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
13
|
Lorenz LM, Bradley J, Yukich J, Massue DJ, Mageni Mboma Z, Pigeon O, Moore J, Kilian A, Lines J, Kisinza W, Overgaard HJ, Moore SJ. Comparative functional survival and equivalent annual cost of 3 long-lasting insecticidal net (LLIN) products in Tanzania: A randomised trial with 3-year follow up. PLoS Med 2020; 17:e1003248. [PMID: 32946451 PMCID: PMC7500675 DOI: 10.1371/journal.pmed.1003248] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Two billion long-lasting insecticidal nets (LLINs) have been procured for malaria control. A functional LLIN is one that is present, is in good physical condition, and remains insecticidal, thereby providing protection against vector-borne diseases through preventing bites and killing disease vectors. The World Health Organization (WHO) prequalifies LLINs that remain adequately insecticidal 3 years after deployment. Therefore, institutional buyers often assume that prequalified LLINs are functionally identical with a 3-year lifespan. We measured the lifespans of 3 LLIN products, and calculated their cost per year of functional life, to demonstrate the economic and public health importance of procuring the most cost-effective LLIN product based on its lifespan. METHODS AND FINDINGS A randomised double-blinded trial of 3 pyrethroid LLIN products (10,571 nets in total) was conducted at 3 follow-up points: 10 months (August-October 2014), 22 months (August-October 2015), and 36 months (October-December 2016) among 3,393 households in Tanzania using WHO-recommended methods. Primary outcome was LLIN functional survival (LLIN present and in serviceable condition). Secondary outcomes were (1) bioefficacy and chemical content (residual insecticidal activity) and (2) protective efficacy for volunteers sleeping under the LLINs (bite reduction and mosquitoes killed). Median LLIN functional survival was significantly different between the 3 net products (p = 0.001): 2.0 years (95% CI 1.7-2.3) for Olyset, 2.5 years (95% CI 2.2-2.8) for PermaNet 2.0 (hazard ratio [HR] 0.73 [95% CI 0.64-0.85], p = 0.001), and 2.6 years (95% CI 2.3-2.8) for NetProtect (HR = 0.70 [95% CI 0.62-0.77], p < 0.001). Functional survival was affected by accumulation of holes, leading to users discarding nets. Protective efficacy also significantly differed between products as they aged. Equivalent annual cost varied between US$1.2 (95% CI $1.1-$1.4) and US$1.5 (95% CI $1.3-$1.7), assuming that each net was priced identically at US$3. The 2 longer-lived nets (PermaNet and NetProtect) were 20% cheaper than the shorter-lived product (Olyset). The trial was limited to only the most widely sold LLINs in Tanzania. Functional survival varies by country, so the single country setting is a limitation. CONCLUSIONS These results suggest that LLIN functional survival is less than 3 years and differs substantially between products, and these differences strongly influence LLIN value for money. LLIN tendering processes should consider local expectations of cost per year of functional life and not unit price. As new LLIN products come on the market, especially those with new insecticides, it will be imperative to monitor their comparative durability to ensure that the most cost-effective products are procured for malaria control.
Collapse
Affiliation(s)
- Lena M. Lorenz
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine, London, United Kingdom
- Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joshua Yukich
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Dennis J. Massue
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zawadi Mageni Mboma
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine, London, United Kingdom
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Olivier Pigeon
- Plant Protection Products and Biocides Physico-chemistry and Residues Unit, Agriculture and Natural Environment Department, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Jason Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Basel, Switzerland
| | | | - Jo Lines
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine, London, United Kingdom
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Hans J. Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Odufuwa OG, Ross A, Mlacha YP, Juma O, Mmbaga S, Msellemu D, Moore S. Household factors associated with access to insecticide-treated nets and house modification in Bagamoyo and Ulanga districts, Tanzania. Malar J 2020; 19:220. [PMID: 32576180 PMCID: PMC7313165 DOI: 10.1186/s12936-020-03303-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/18/2020] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and house modifications are proven vector control tools, yet in most regions, full coverage has not been achieved. This study investigates household factors associated with access to ITNs and house modification in Tanzania. METHODS Baseline cross-sectional survey data from previous studies on spatial repellants and indoor residual spray evaluation was analysed from 6757 households in Bagamoyo (60 km north of Dar es Salaam) and 1241 households in Ulanga (a remote rural area in southeast Tanzania), respectively. Regression models were used to estimate the associations between the outcomes: population access to ITNs, access to ITN per sleeping spaces, window screens and closed eaves, and the covariates household size, age, gender, pregnancy, education, house size, house modification (window screens and closed eaves) and wealth. RESULTS Population access to ITNs (households with one ITN per two people that stayed in the house the previous night of the survey) was 69% (n = 4663) and access to ITNs per sleeping spaces (households with enough ITNs to cover all sleeping spaces used the previous night of the survey) was 45% (n = 3010) in Bagamoyo, 3 years after the last mass campaign. These findings are both lower than the least 80% coverage target of the Tanzania National Malaria Strategic Plan (Tanzania NMSP). In Ulanga, population access to ITNs was 92% (n = 1143) and ITNs per sleeping spaces was 88% (n = 1093), 1 year after the last Universal Coverage Campaign (UCC). Increased household size was significantly associated with lower access to ITNs even shortly after UCC. House modification was common in both areas but influenced by wealth. In Bagamoyo, screened windows were more common than closed eaves (65% vs 13%), whereas in Ulanga more houses had closed eaves than window screens (55% vs 12%). CONCLUSION Population access to ITNs was substantially lower than the targets of the Tanzania NMSP after 3 years and lower among larger households after 1 year following ITN campaign. House modification was common in both areas, associated with wealth. Improved access to ITNs and window screens through subsidies and Behaviour Change Communication (BCC) strategies, especially among large and poor households and those headed by people with a low level of education, could maximize the uptake of a combination of these two interventions.
Collapse
Affiliation(s)
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yeromin P Mlacha
- Ifakara Health Institute, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Omary Juma
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Daniel Msellemu
- Ifakara Health Institute, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sarah Moore
- Ifakara Health Institute, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Grossman MK, Oliver SV, Brooke BD, Thomas MB. Use of alternative bioassays to explore the impact of pyrethroid resistance on LLIN efficacy. Parasit Vectors 2020; 13:179. [PMID: 32264935 PMCID: PMC7140572 DOI: 10.1186/s13071-020-04055-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is substantial concern that the spread of insecticide resistance will render long-lasting insecticide-treated nets (LLINs) ineffective. However, there is limited evidence supporting a clear association between insecticide resistance and malaria incidence or prevalence in the field. We suggest that one reason for this disconnect is that the standard WHO assays used in surveillance to classify mosquito populations as resistant are not designed to determine how resistance might impact LLIN efficacy. The standard assays expose young, unfed female mosquitoes to a diagnostic insecticide dose in a single, forced exposure, whereas in the field, mosquitoes vary in their age, blood-feeding status, and the frequency or intensity of LLIN exposure. These more realistic conditions could ultimately impact the capacity of "resistant" mosquitoes to transmit malaria. METHODS Here, we test this hypothesis using two different assays that allow female mosquitoes to contact a LLIN as they host-seek and blood-feed. We quantified mortality after both single and multiple exposures, using seven different strains of Anopheles ranging in pyrethroid resistance intensity. RESULTS We found that strains classified as 1×-resistant to the pyrethroid insecticide deltamethrin in the standard WHO assay exhibited > 90% mortality over 24 h following more realistic LLIN contact. Mosquitoes that were able to blood-feed had increased survival compared to their unfed counterparts, but none of the 1×-resistant strains survived for 12 days post-exposure (the typical period for malaria parasite development within the mosquito). Mosquitoes that were 5×- and 10×-resistant (i.e. moderate or high intensity resistance based on the WHO assays) survived a single LLIN exposure well. However, only about 2-3% of these mosquitoes survived multiple exposures over the course of 12 days and successfully blood-fed during the last exposure. CONCLUSIONS These results suggest that the standard assays provide limited insight into how resistance might impact LLIN efficacy. In our laboratory setting, there appears little functional consequence of 1×-resistance and even mosquitoes with moderate (5×) or high (10×) intensity resistance can suffer substantial reduction in transmission potential. Monitoring efforts should focus on better characterizing intensity of resistance to inform resistance management strategies and prioritize deployment of next generation vector control products.
Collapse
Affiliation(s)
- Marissa K. Grossman
- Department of Entomology, Pennsylvania State University, University Park, PA USA
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Matthew B. Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
16
|
Musa JJ, Moore SJ, Moore J, Mbuba E, Mbeyela E, Kobe D, Swai JK, Odufuwa OG. Long-lasting insecticidal nets retain bio-efficacy after 5 years of storage: implications for malaria control programmes. Malar J 2020; 19:110. [PMID: 32169081 PMCID: PMC7071702 DOI: 10.1186/s12936-020-03183-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Long-lasting insecticidal nets (LLINs) are the most sustainable and effective malaria control tool currently available. Global targets are for 80% of the population living in malaria endemic areas to have access to (own) and use a LLIN. However, current access to LLINs in endemic areas is 56% due to system inefficiencies and budget limitations. Thus, cost-effective approaches to maximize access to effective LLINs in endemic areas are required. This study evaluated whether LLINs that had been stored for 5 years under manufacturer’s recommended conditions may be optimally effective against Anopheles mosquitoes, to inform malaria control programmes and governments on the periods over which LLINs may be stored between distributions, in an effort to maximize use of available LLINs. Methods Standard World Health Organization (WHO) bioassays (cone and tunnel test) were used to evaluate the bio-efficacy and wash resistance of Olyset® and DawaPlus® 2.0 (rebranded Tsara® Soft) LLINs after 5 years of storage at 25 °C to 33.4 °C and 40% to 100% relative humidity. In addition, a small scale Ifakara Ambient Chamber test (I-ACT) was conducted to compare the bio-efficacy of one long stored LLINs to one new LLIN of the same brand, washed or unwashed. LLINs were evaluated using laboratory reared fully susceptible Anopheles gambiae sensu stricto (s.s.) (Ifakara strain) and pyrethroid resistant Anopheles arabiensis (Kingani strain). Results After 5 years of storage, both unwashed and washed, Olyset® and DawaPlus® 2.0 (Tsara® Soft) LLINs passed WHO bio-efficacy criteria on knockdown (KD60) ≥ 95%, 24-h mortality ≥ 80% and ≥ 90% blood-feeding inhibition in WHO assays against susceptible An. gambiae s.s. DawaPlus® 2.0 LLINs also passed combined WHO bioassay criteria against resistant An. arabiensis. Confirmatory I-ACT tests using whole nets demonstrated that long-stored LLINs showed higher efficacy than new LLINs on both feeding inhibition and mortality endpoints against resistant strains. Conclusions Even after long-term storage of around 5 years, both Olyset® and DawaPlus® 2.0 LLINs remain efficacious against susceptible Anopheles mosquitoes at optimal storage range of 25 °C to 33.4 °C for temperature and 40% to 100% relative humidity measured by standard WHO methods. DawaPlus® 2.0 (Tsara® Soft) remained efficacious against resistant strain.
Collapse
Affiliation(s)
- Jeremiah J Musa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania. .,Department of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P. O. BOX 447, Arusha, Tanzania.
| | - Sarah J Moore
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Socinstrasse. 57, 4002, Basel 4, Switzerland
| | - Jason Moore
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Swiss Tropical and Public Health Institute, Socinstrasse. 57, 4002, Basel 4, Switzerland
| | - Emmanuel Mbuba
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Socinstrasse. 57, 4002, Basel 4, Switzerland
| | - Edgar Mbeyela
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Dickson Kobe
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Johnson K Swai
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
17
|
Herrera-Bojórquez J, Trujillo-Peña E, Vadillo-Sánchez J, Riestra-Morales M, Che-Mendoza A, Delfín-González H, Pavía-Ruz N, Arredondo-Jimenez J, Santamaría E, Flores-Suárez AE, Vazquez-Prokopec G, Manrique-Saide P. Efficacy of Long-lasting Insecticidal Nets With Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:503-510. [PMID: 31603517 DOI: 10.1093/jme/tjz176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Fitting long-lasting insecticidal nets (LLIN) as screens on doors/windows has a significant impact on indoor-adult Aedes aegypti (L.), with entomological reductions measured in a previous study being significant for up to 2 yr post-installation, even in the presence of pyrethroid-resistant Aedes populations. To better understand the mode of LLIN protection, bioassays were performed to evaluate the effects of field deployment (0, 6, and 12 mo) and damage type (none, central, lateral, and multiple) on LLIN efficacy. Contact bioassays confirmed that LLIN residual activity (median knockdown time, in minutes, or MKDT) decreased significantly over time: 6.95 (95% confidence interval [CI]: 5.32-8.58) to 9.24 (95% CI: 8.69-9.79) MKDT at 0- and 12-mo age, respectively, using a pyrethroid-susceptible Aedes strain. Tunnel tests (exposing human forearm for 40 min as attractant) showed that deployment time affected negatively Aedes passage inhibition from 54.9% (95% CI: 43.5-66.2) at 0 mo to 35.7% (95% CI: 16.3-55.1) at 12 mo and blood-feeding inhibition from 65.2% (95% CI: 54.2-76.2) to 48.9% (95% CI: 26.4-71.3), respectively; both the passage/blood-feeding inhibition increased by a factor of 1.8-2.9 on LLINs with multiple and central damages compared with nets with lateral damage. Mosquito mortality was 74.6% (95% CI: 65.3-83.9) at 0 mo, 72.3% (95% CI: 64.1-80.5) at 6 mo, and 59% (95% CI: 46.7-71.3) at 12 mo. Despite the LLIN physical integrity could be compromised over time, we demonstrate that the remaining chemical effect after field conditions would still contribute to killing/repelling mosquitoes.
Collapse
Affiliation(s)
- Josué Herrera-Bojórquez
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Emilio Trujillo-Peña
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - José Vadillo-Sánchez
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Martin Riestra-Morales
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Azael Che-Mendoza
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Hugo Delfín-González
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Norma Pavía-Ruz
- Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Juan Arredondo-Jimenez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, San Nicolas de los Garza, N.L., Mexico
| | | | - Adriana E Flores-Suárez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, San Nicolas de los Garza, N.L., Mexico
| | | | - Pablo Manrique-Saide
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| |
Collapse
|