1
|
Alum EU, Tufail T, Agu PC, Akinloye DI, Obaroh IO. Malaria pervasiveness in Sub-Saharan Africa: Overcoming the scuffle. Medicine (Baltimore) 2024; 103:e40241. [PMID: 39654176 PMCID: PMC11630951 DOI: 10.1097/md.0000000000040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Malaria has posed a momentous health and economic burden to the Sub-Saharan African region. The Sub-Saharan African region accounts for more than 90% of global malaria-related mortality and morbidity. Pregnant women and children under 5 years old are the most vulnerable. Mosquitoes transmit the plasmodium which is the parasite responsible for malaria. The climatic conditions, poverty, and poor healthcare system of the Sub-Saharan African region are some factors fueling this menace. There have been concerted efforts to annihilate malaria but the scuffle has been a tedious one. Malarial eradication campaigns have been focused on mosquito control through the use of insecticide-treated bed nets, use of indoor insecticide sprays, and use of larvicides. The use of artemisinin in combination with other drugs has been effective to some extent. Despite the aforementioned strategies, the pervasiveness of malaria infection in the Sub-Saharan African region is worrisome. Thus, strengthening the already existing control measures, finding novel measures through intensive research, and embracing malaria vaccination could help accelerate the overcoming of this scuffle. In this review, we utilized relevant published data from various databases to reexamine the factors fueling malaria pervasiveness in this region and spelled out point-by-point intervention protocols to end malaria scuffle.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, College of Science, Evangel University, Akaeze, Ebonyi State, Nigeria
| | - Dorcas Ibukun Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Israel O. Obaroh
- Department of Biological and Environmental Sciences, School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
2
|
Zhu H, Zhu D, Li Y, Li Y, Song X, Mo J, Liu L, Liu Z, Wang S, Yao Y, Yan H, Wu K, Wang W, Yin J, Lin M, Li J. Rapid detection of mutations in the suspected piperaquine resistance gene E415G-exo in Plasmodium falciparum exonuclease via AS‒PCR and RAA with CRISPR/Cas12a. Int J Parasitol Drugs Drug Resist 2024; 26:100568. [PMID: 39476461 PMCID: PMC11550206 DOI: 10.1016/j.ijpddr.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/13/2024]
Abstract
Malaria remains a major public health concern. The rapid spread of resistance to antimalarial drugs is a major challenge for malaria eradication. Timely and accurate molecular monitoring based on practical detection methods is a critical step toward malaria control and elimination. In this study, two rapid detection techniques, allele-specific PCR (AS‒PCR) and recombinase-aided amplification (RAA) combined with CRISPR/Cas12a, were established, optimized and assessed to detect single nucleotide polymorphisms in the Plasmodium falciparum exonuclease (Pfexo) gene related to suspected piperaquine resistance. Moreover, phosphorothioate and artificial mismatches were introduced into the allele-specific primers for AS‒PCR, and crRNA-mismatched bases were introduced into the RAA‒CRISPR/Cas12a assay because crRNAs designed according to conventional rules fail to discriminate genotypes. As a result, the detection limits of the AS‒PCR and RAA‒CRISPR/Cas12a assays were 104 copies/μL and 103 copies/μL, respectively. The detection threshold for dried blood spots was 100‒150 parasites/μL, with no cross-reactivity against other genotypes. The average cost of AS‒PCR is approximately $1 per test and takes 2-3 h, whereas that of the RAA‒CRISPR/Cas12a system is approximately $7 per test and takes 1 h or less. Therefore, we provide more options for testing single nucleotide polymorphisms in the Pfexo gene, considering economic conditions and the availability of instruments, equipment, and reagents, which can contribute to the molecular monitoring of antimalarial resistance.
Collapse
Affiliation(s)
- Huiyin Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Daiqian Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yuting Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Yun Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jinyu Mo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Kai Wu
- Wuhan Center for Disease Control and Prevention, Wuhan, China.
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.
| | - Jian Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
3
|
Adegbola AJ, Ndwiga L, Wamae K, Osoti V, Bolaji OO, Bejon P, Ochola-Oyier LI. ONT sequencing identifies a high prevalence of crt sensitive, triple mutant dhfr and single mutant dhps parasites within an ANC population in Nigeria. Front Genet 2024; 15:1470156. [PMID: 39483850 PMCID: PMC11525066 DOI: 10.3389/fgene.2024.1470156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Malaria in pregnancy is a major public health issue, particularly among vulnerable populations in malaria-endemic sub-Saharan African countries. To mitigate its risks, WHO recommends sulphadoxine-pyrimethamine (SP) for chemoprevention and artemisinin-based combination therapy (ACT) to treat uncomplicated Plasmodium falciparum malaria. These interventions have helped to alleviate the risk associated with malaria in pregnancy; however, in the context of the emergence of SP- and ACT-resistant P. falciparum, maintained efficacy is under threat. Molecular surveillance is a reliable tool to monitor the emergence of resistance where molecular markers are known. Thus, the objective of the study was to use a multiplexed amplicon Oxford Nanopore sequencing approach to assess the molecular markers for antimalarial resistance among pregnant women in Nigeria. Methods Dried blood spots (DBS) were collected from pregnant women who received IPTp-SP at the enrollment and follow-up visits. P. falciparum genomic DNA was extracted by the Chelex® method and Pf18S qPCR was used to detect parasite DNA in each sample. With nested PCR assays, fragments of Pfdhps, Pfdhfr, Pfmdr1, Pfcrt, Pfk13 and Pfama1 genes were amplified and multiplexed amplicon-based sequencing was conducted on the minION Oxford Nanopore Technology. Result In total, 251 pregnant women were enrolled in the study and 457 DBS samples were collected. P. falciparum genomic DNA was detected in 12% (56/457) of the samples, 31 at baseline and the remaining during the follow-up visits. Pfama1, pfk13, Pfdhps, Pfdhfr, Pfmdr1 and Pfcrt were successfully sequenced in a single run. Notably, k13 artemisinin resistance mutations were absent, the frequencies of Pfdhfr and Pfdhps SP resistance haplotypes, IRN for pyrimethamine resistance and ISGKA/IAGKA associated with sulphadoxine resistance were 82% (36/44) and 64% (27/42), respectively, and the Pfcrt CVIET resistant haplotype was at approximately 22% (7/32). Conclusion and recommendations Here a multiplexed amplicon-based ONT assay established that triple mutant Pfdfhr-IRN, double mutant Pfdhps-SG haplotypes and the chloroquine sensitive strain were prevalent among pregnant women in Nigeria.
Collapse
Affiliation(s)
- Adebanjo Jonathan Adegbola
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Leonard Ndwiga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Kevin Wamae
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Victor Osoti
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | | | - Philip Bejon
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | | |
Collapse
|
4
|
Maiga H, Morrison RD, Duffy PE. Sanger sequencing and deconvolution of polyclonal infections: a quantitative approach to monitor drug-resistant Plasmodium falciparum. EBioMedicine 2024; 103:105115. [PMID: 38636200 PMCID: PMC11031737 DOI: 10.1016/j.ebiom.2024.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Anti-malarial drug resistance in Plasmodium falciparum is a major public health problem in malaria-endemic regions. Although various technical improvements in sequencing methods have been introduced to identify SNPs, the conventional approach with current tools does not discriminate mixed infections, and thus can be improved for more sensitive surveillance of anti-malarial resistance to better inform control strategies. METHODS We developed a computational approach for deconvolution of chromatograms generated by standard Sanger sequencing of PCR amplicons in order to quantify molecular marker variants of anti-malarial drug resistance genes [Plasmodium falciparum dihydropteorate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr)]. We validated this computational approach using mixtures of V1/S and FCR3 at varying proportions between 0 and 100%, then applied it to field samples collected in Doneguebougou, Mali in 2018. We determined the mean fraction of resistance alleles in individual samples, as well as the prevalence of infections carrying resistant parasites. FINDINGS We observed a highly significant correlation between the predicted and measured proportions of V1/S and FCR3 alleles in mixed laboratory samples (all p < 0.001). Among field samples, the mean fraction of resistant Pfdhps alleles was 4.7% 431V, 95.9% 436F/A, 49.9% 437G, 0.0% 540E, 1.2% 581G and 1.5% 613S/T; corresponding prevalences were 50.0%, 100%, 72.5%, 0.0%, 25.0%, and 12.5%, respectively. The mean fraction of resistant Pfdhfr alleles was 0.6% 16V, 11.1% 50R, 89.0% 51I, 98.3% 59R, 74.7% 108T/N, 8.6% 140L and 8.7% 164L; corresponding prevalences were 12.5%, 75.0%, 100%, 100%, 100%, 50.0%, and 28.6%, respectively. We identified two new point mutations on the Pfdhps gene at codons D484T and D545N. INTERPRETATION Computational deconvolution of sequencing chromatograms can discriminate varying proportions of antimalarial drug-sensitive versus -resistant alleles. This cost-effective and quantitative variant-sequencing approach will be useful for population-based surveys that characterize mixed infections at the individual level to survey known and unknown mutations in P. falciparum drug-resistance genes. FUNDING This work was supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH). HM was supported by the African Postdoctoral Training Initiative (APTI) Fellowship program jointly managed by the US NIH, The African Academy of Sciences (AAS) and Bill & Melinda Gates Foundation (BMGF); Grant Reference Number: APTI-18-01.
Collapse
Affiliation(s)
- Hamma Maiga
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA; Institut National de Santé Publique (INSP), Ministère de la Santé et du Développement Social (MSDS), Bamako, BP: 1771, Mali.
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology (LMIV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 29 Lincoln Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Reeha S, Nikhil MT, Thakur A. A Deep Learning Approach for Prediction of Binding Affinity for Anti Malerial Drugs and Their Target Proteins. 2024 3RD INTERNATIONAL CONFERENCE FOR INNOVATION IN TECHNOLOGY (INOCON) 2024:1-5. [DOI: 10.1109/inocon60754.2024.10512173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Shaik Reeha
- Amrita Vishwa Vidyapeetham,Amrita School of Computing,Dept. of Computer Science & Engineering,Bengaluru
| | - Masabattula Teja Nikhil
- Amrita Vishwa Vidyapeetham,Amrita School of Computing,Dept. of Computer Science & Engineering,Bengaluru
| | - Amrita Thakur
- Amrita Vishwa Vidyapeetham,Amrita School of Engineering,Dept. of Chemistry,Bengaluru,India
| |
Collapse
|
6
|
Matrevi SA, Adams T, Tandoh KZ, Opoku-Agyeman P, Bruku S, Ennuson NA, Apau-Danso PK, Fiagbedzi E, Avornyo M, Myers CJ, Futagbi J, Hagan OC, Abuaku B, Koram KA, Awandare G, Quashie NB, Duah-Quashie NO. Putative molecular markers of Plasmodium falciparum resistance to antimalarial drugs in malaria parasites from Ghana. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1279835. [PMID: 38456076 PMCID: PMC10910922 DOI: 10.3389/fepid.2024.1279835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Antimalarial drugs including artemisinin-based combination therapy (ACT) regimens and sulphadoxine-pyrimethamine (SP) are used in Ghana for malaria therapeutics and prophylaxis respectively. The genetic basis of Plasmodium falciparum development of drug resistance involves single nucleotide polymorphisms in genes encoding proteins for multiple cellular and metabolic processes. The prevalence of single nucleotide polymorphisms in nine P. falciparum genes linked to ACT and SP resistance in the malaria parasite population was determined. Methods Archived filter paper blood blot samples from patients aged 9 years and below with uncomplicated malaria reporting at 10 sentinel sites located in three ecological zones for the Malaria Therapeutic Efficacy Studies were used. The samples used were collected from 2007-2018 malaria transmission seasons and mutations in the genes were detected using PCR and Sanger sequencing. Results In all 1,142 samples were used for the study. For falcipain-2 gene (pffp2), Sanger sequencing was successful for 872 samples and were further analysed. The prevalence of the mutants was 45% (392/872) with pffp2 markers V51I and S59F occurring in 15.0% (128/872) and 3.0% (26/872) of the samples respectively. Prevalence of other P. falciparum gene mutations: coronin (pfcoronin) was 44.8% (37/90); cysteine desulfurase (pfnfs) was 73.9% (68/92); apicoplast ribosomal protein S10 (pfarps10) was 36.8% (35/95); ferredoxin (pffd) was 8.8% (8/91); multidrug resistance protein-1 (pfmrp1) was 95.2.0% (80/84); multidrug resistance protein-2 (pfmrp2) was 91.4% (32/35); dihydrofolate reductase (pfdhfr) was 99.0% (84/85); dihydropteroate synthase (pfdhps) was 72% (68/95). Discussion The observation of numerous mutations in these genes of interest in the Ghanaian isolates, some of which have been implicated in delayed parasite clearance is of great interest. The presence of these genotypes may account for the decline in the efficacies of ACT regimens being used to treat uncomplicated malaria in the country. The need for continuous monitoring of these genetic markers to give first-hand information on parasite susceptibility to antimalarial drugs to inform policy makers and stakeholders in malaria elimination in the country is further discussed.
Collapse
Affiliation(s)
- Sena Adzoa Matrevi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tryphena Adams
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwesi Zandoh Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Selassie Bruku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paa Kwesi Apau-Danso
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Emmanuel Fiagbedzi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Mary Avornyo
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Charles James Myers
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Joy Futagbi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Oheneba Charles Hagan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Toure M, Shaffer JG, Sanogo D, Keita S, Keita M, Kane F, Traore B, Dabitao D, Kone A, Doumbia CO, Keating J, Yukich J, Hansson HH, Barry AE, Diakité M, Alifrangis M, Doumbia S. Seasonal Malaria Chemoprevention Therapy in Children Up To 9 Years of Age: Protocol for a Cluster-Randomized Trial Study. JMIR Res Protoc 2024; 13:e51660. [PMID: 38252481 PMCID: PMC10845024 DOI: 10.2196/51660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) is recommended by the World Health Organization for the sub-Sahel region in sub-Saharan Africa for preventing malaria in children 3 months old to younger than 5 years. Since 2016, the Malian National Malaria Control Program has deployed SMC countrywide during its high malaria transmission season at a rate of 4 monthly cycles annually. The standard SMC regimen includes sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ). Resistance against SP is suspected to be rising across West Africa; therefore, assessing the effectiveness of an alternative antimalarial drug for SMC is needed to provide a second-line regimen when it is ultimately needed. It is not well understood whether SMC effectively prevents malaria in children aged 5 years or older. OBJECTIVE The primary goal of the study is to compare 2 SMC regimens (SP-AQ and dihydroartemisinin-piperaquine [DHA-PQ]) in preventing uncomplicated Plasmodium falciparum malaria in children 3 months to 9 years old. Secondly, we will assess the possible use of DHA-PQ as an alternative SMC drug in areas where resistance to SP or AQ may increase following intensive use. METHODS The study design is a 3-arm cluster-randomized design comparing the SP-AQ and DHA-PQ arms in 2 age groups (younger than 5 years and 5-9 years) and a control group for children aged 5-9 years. Standard SMC (SP-AQ) for children younger than 5 years was provided to the control arm, while SMC with SP-AQ was delivered to children aged 3 months to 9 years (arm 2), and SMC with DHA-PQ will be implemented in study arm 3 for children up to 9 years of age. The study was performed in Mali's Koulikoro District, a rural area in southwest Mali with historically high malaria transmission rates. The study's primary outcome is P falciparum incidence for 2 SMC regimens in children up to 9 years of age. Should DHA-PQ provide an acceptable alternative to SP-AQ, a plausible second-line prevention option would be available in the event of SP resistance or drug supply shortages. A significant byproduct of this effort included bolstering district health information systems for rapid identification of severe malaria cases. RESULTS The study began on July 1, 2019. Through November 2022, a total of 4556 children 3 months old to younger than 5 years were enrolled. Data collection ended in spring 2023, and the findings are expected to be published later in early 2024. CONCLUSIONS Routine evaluation of antimalarial drugs is needed to establish appropriate SMC age targets. The study goals here may impact public health policy and provide alternative therapies in the event of drug shortages or resistance. TRIAL REGISTRATION ClinicalTrials.gov NCT04149106, https://clinicaltrials.gov/ct2/show/NCT04149106. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51660.
Collapse
Affiliation(s)
- Mahamoudou Toure
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Jeffrey G Shaffer
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Daouda Sanogo
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Soumba Keita
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Moussa Keita
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Fousseyni Kane
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Bourama Traore
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Djeneba Dabitao
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Aissata Kone
- Mali National Malaria Control Program, Bamako, Mali
| | - Cheick Oumar Doumbia
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Joseph Keating
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Joshua Yukich
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Helle H Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alyssa E Barry
- Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Melbourne, Australia
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
| | - Mahamadou Diakité
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Seydou Doumbia
- University Clinical Research Center, Universite des Sciences, des Techniques et des Technologies, Bamako, Mali
| |
Collapse
|
8
|
Lamine MM, Maman R, Maiga AA, Laminou IM. Genetic polymorphism of merozoite surface protein 1 and antifolate-resistant genes in Plasmodium falciparum from Mali and Niger. PARASITES, HOSTS AND DISEASES 2023; 61:455-462. [PMID: 38043541 PMCID: PMC10693970 DOI: 10.3347/phd.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Since 2015, countries in the Sahel region have implemented large-scale seasonal malaria chemoprevention (SMC). However, the mass use of sulfadoxine-pyrimethamine (SP) plus amodiaquine impacts the genetic diversity of malaria parasites and their sensitivity to antimalarials. This study aimed to describe and compare the genetic diversity and SP resistance of Plasmodium falciparum strains in Mali and Niger. We collected 400 blood samples in Mali and Niger from children aged 3-59 months suspected of malaria. Of them, 201 tested positive (Niger, 111, 55.2%; Mali, 90, 44.8%). Polymorphism of merozoite surface protein 1 (msp1) genetic marker showed 201 allotypes. The frequency of the RO33 allotype was significantly higher in Niger (63.6%) than in Mali (39.3%). There was no significant difference in the frequency of the K1 and MAD20 allotypes between the 2 countries. The multiplicity of infection was 2 allotypes per patient in Mali and one allotype per patient in Niger. The prevalence of strains with the triple mutants Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H and Pfdhfr51I/Pfdhfr59R/Pfdhps437G was 18.1% and 30.2%, respectively, and 7.7% carried the quadruple mutant Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H/Pfdhps437G. Despite the significant genetic diversity of parasite populations, the level of SP resistance was comparable between Mali and Niger. The frequency of mutations conferring resistance to SP still allows its effective use in intermittent preventive treatment in pregnant women and in SMC.
Collapse
Affiliation(s)
- Mahaman Moustapha Lamine
- Faculté de Science et Technique, Université André Salifou, Zinder,
Niger
- Unité de Parasitologie et Entomologie Médicale, Centre de Recherche Médicale et Sanitaire, Niamey,
Niger
| | - Rabia Maman
- Molecular Biology Laboratory of Bamako in Mali,
Mali
| | - Abdoul Aziz Maiga
- Université de Ouagadougou, Laboratory of Fundamental and Applied Entomology, Ouagadougou Centre,
Burkina Faso
| | - Ibrahim Maman Laminou
- Unité de Parasitologie et Entomologie Médicale, Centre de Recherche Médicale et Sanitaire, Niamey,
Niger
| |
Collapse
|
9
|
Vanheer LN, Mahamar A, Manko E, Niambele SM, Sanogo K, Youssouf A, Dembele A, Diallo M, Maguiraga SO, Phelan J, Osborne A, Spadar A, Smit MJ, Bousema T, Drakeley C, Clark TG, Stone W, Dicko A, Campino S. Genome-wide genetic variation and molecular surveillance of drug resistance in Plasmodium falciparum isolates from asymptomatic individuals in Ouélessébougou, Mali. Sci Rep 2023; 13:9522. [PMID: 37308503 DOI: 10.1038/s41598-023-36002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.
Collapse
Affiliation(s)
- Leen N Vanheer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - William Stone
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kong X, Feng J, Xu Y, Yan G, Zhou S. Molecular surveillance of artemisinin resistance-related Pfk13 and pfcrt polymorphisms in imported Plasmodium falciparum isolates reported in eastern China from 2015 to 2019. Malar J 2022; 21:369. [PMID: 36464686 PMCID: PMC9719650 DOI: 10.1186/s12936-022-04398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment by the World Health Organization to treat uncomplicated Plasmodium falciparum malaria. However, the emergence and spread of P. falciparum resistant to artemisinins and their partner drugs is a significant risk for the global effort to reduce disease burden facing the world. Currently, dihydroartemisinin-piperaquine (DHA-PPQ) is the most common drug used to treat P. falciparum, but little evidence about the resistance status targeting DHA (ACT drug) and its partner drug (PPQ) has been reported in Shandong Province, China. METHODS A retrospective study was conducted to explore the prevalence and spatial distribution of Pfk13 and Pfcrt polymorphisms (sites of 72-76, and 93-356) among imported P. falciparum isolates between years 2015-2019 in Shandong Province in eastern China. Individual epidemiological information was collected from a web-based reporting system were reviewed and analysed. RESULTS A total of 425 P. falciparum blood samples in 2015-2019 were included and 7.3% (31/425) carried Pfk13 mutations. Out of the isolates that carried Pfk13 mutations, 54.8% (17/31) were nonsynonymous polymorphisms. The mutant alleles A578S, Q613H, C469C, and S549S in Pfk13 were the more frequently detected allele, the mutation rate was the same as 9.7% (3/31). Another allele Pfk13 C580Y, closely associated with artemisinin (ART) resistance, was found as 3.2% (2/31), which was found in Cambodia. A total of 14 mutant isolates were identified in Western Africa countries (45.2%, 14/31). For the Pfcrt gene, the mutation rate was 18.1% (77/425). T76T356 and T76 were more frequent in all 13 different haplotypes with 26.0% (20/77) and 23.4% (18/77). The CVIET and CVIKT mutant at loci 72-76 have exhibited a prevalence of 19.5% (15/77) and 3.9% (3/77), respectively. The CVIET was mainly observed in samples from Congo (26.7%, 4/15) and Mozambique (26.7%, 4/15). No mutations were found at loci 97, 101 and 145. For polymorphisms at locus 356, a total of 24 isolates were identified and mainly from Congo (29.2%, 7/24). CONCLUSION These findings indicate a low prevalence of Pfk13 in the African isolates. However, the emergence and increase in the new alleles Pfcrt I356T, reveals a potential risk of drug pressure in PPQ among migrant workers returned from Africa. Therefore, continuous molecular surveillance of Pfcrt mutations and in vitro susceptibility tests related to PPQ are necessary.
Collapse
Affiliation(s)
- Xiangli Kong
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China ,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Jun Feng
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yan Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Ge Yan
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Shuisen Zhou
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
13
|
Doumbia S, Sogoba N, Diakite M, Toure M, Keita M, Konaté D, Diawara SI, Diarra A, Sanogo D, Kane F, Diakite SAS, Traore K, Thiam SM, Traoré SF, Cisse I, Mihigo J, Coulibaly MB, Dabitao D, Alifrangis M, Barry AE, Müller GC, Beier JC, Shaffer JG. A Decade of Progress Accelerating Malaria Control in Mali: Evidence from the West Africa International Center of Excellence for Malaria Research. Am J Trop Med Hyg 2022; 107:75-83. [PMID: 36228923 PMCID: PMC9662231 DOI: 10.4269/ajtmh.21-1309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/06/2022] [Indexed: 11/07/2022] Open
Abstract
This article highlights over a decade of signature achievements by the West Africa International Centers for Excellence in Malaria Research (WA-ICEMR) and its partners toward guiding malaria prevention and control strategies. Since 2010, the WA-ICEMR has performed longitudinal studies to monitor and assess malaria control interventions with respect to space-time patterns, vector transmission indicators, and drug resistance markers. These activities were facilitated and supported by the Mali National Malaria Control Program. Research activities included large-scale active and passive surveillance and expanded coverage of universal long-lasting insecticide-treated bed nets and seasonal malaria chemoprevention (SMC). The findings revealed substantial declines in malaria occurrence after the scale-up of control interventions in WA-ICEMR study sites. WA-ICEMR studies showed that SMC using sulfadoxine-pyrimethamine plus amodiaquine was highly effective in preventing malaria among children under 5 years of age. An alternative SMC regimen (dihydroartemisinin plus piperaquine) was shown to be potentially more effective and provided advantages for acceptability and compliance over the standard SMC regimen. Other findings discussed in this article include higher observed multiplicity of infection rates for malaria in historically high-endemic areas, continued antimalarial drug sensitivity to Plasmodium falciparum, high outdoor malaria transmission rates, and increased insecticide resistance over the past decade. The progress achieved by the WA-ICEMR and its partners highlights the critical need for maintaining current malaria control interventions while developing novel strategies to disrupt malaria transmission. Enhanced evaluation of these strategies through research partnerships is particularly needed in the wake of reported artemisinin resistance in Southeast Asia and East Africa.
Collapse
Affiliation(s)
- Seydou Doumbia
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou Diakite
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamoudou Toure
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Keita
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Konaté
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sory I. Diawara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ayouba Diarra
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Daouda Sanogo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fousseyni Kane
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Seidina A. S. Diakite
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidibé M’Baye Thiam
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Idrissa Cisse
- National Malaria Control Program, Ministry of Health, Bamako, Mali
| | - Jules Mihigo
- U.S. President’s Malaria Initiative, United States Agency for International Development Office, Bamako, Mali
| | - Mamadou B. Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Djeneba Dabitao
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Günter C. Müller
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - John C. Beier
- Miller School of Medicine, University of Miami, Miami, Florida
| | - Jeffrey G. Shaffer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
14
|
Kagoro FM, Allen E, Mabuza A, Workman L, Magagula R, Kok G, Davies C, Malatje G, Guérin PJ, Dhorda M, Maude RJ, Raman J, Barnes KI. Making data map-worthy-enhancing routine malaria data to support surveillance and mapping of Plasmodium falciparum anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study. Malar J 2022; 21:207. [PMID: 35768869 PMCID: PMC9244181 DOI: 10.1186/s12936-022-04224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04224-4.
Collapse
Affiliation(s)
- Frank M Kagoro
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth Allen
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aaron Mabuza
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa
| | - Lesley Workman
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ray Magagula
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Gerdalize Kok
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Craig Davies
- Malaria Programme, Clinton Health Access Initiative, Pretoria, South Africa
| | - Gillian Malatje
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA.,The Open University, Milton Keynes, UK
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Johannesburg, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,UP Institute for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Karen I Barnes
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa. .,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa. .,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Boonyalai N, Kirativanich K, Thamnurak C, Praditpol C, Vesely BA, Wojnarski M, Griesenbeck JS, Waters NC. A single point mutation in the Plasmodium falciparum 3'-5' exonuclease does not alter piperaquine susceptibility. Malar J 2022; 21:130. [PMID: 35459163 PMCID: PMC9034581 DOI: 10.1186/s12936-022-04148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background The rise in Plasmodium falciparum resistance to dihydroartemisinin–piperaquine (DHA–PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. Methods Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. Results The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. Conclusions Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance. Supplementary information The online version contains supplementary material available at 10.1186/s12936-022-04148-z.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
16
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
17
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
18
|
Appiah-Opong R, Agyemang K, Dotse E, Atchoglo P, Owusu KBA, Aning A, Sakyiamah M, Adegle R, Ayertey F, Appiah AA, Nyarko AK. Anti-plasmodial, Cytotoxic and Antioxidant Activities of Selected Ghanaian Medicinal Plants. J Evid Based Integr Med 2022; 27:2515690X211073709. [PMID: 35037519 PMCID: PMC8772010 DOI: 10.1177/2515690x211073709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Malaria affects about half of the world's population. The sub-Saharan African region is the most affected. Plant natural products have been a major source of antimalarial drugs; the first (quinine) and present (artemisinin) antimalarials are of natural product origin. Some secondary metabolites demonstrate adjuvant antioxidant effects and selective activity. The focus of this study was to investigate the anti-plasmodial activity, cytotoxicities and antioxidant properties of eight (8) Ghanaian medicinal plants. The anti-plasmodial activity was determined using the SYBR green assay and the tetrazolium-based colorimetric assay (MTT) was employed to assess cytotoxicity of extracts to human RBCs and HL-60 cells. Antioxidant potential of plant extracts was evaluated using Folin-Ciocalteu and superoxide dismutase assays. Phytochemical contstituents of the plant extracts were also assessed. All the extracts demonstrated anti-plasmodial activities at concentrations <50 μg/ml. Parkia clappertoniana and Terminalia ivorensis elicited the strongest anti-plasmodial activities with 50% inhibitory concentrations (IC50) of 1.13 μg/ml and 0.95 μg/ml, respectively. This is the first report on anti-plasmodial activities of Baphia nitida, Tabernaemontana crassa and Treculia Africana. T. Africana showed moderate anti-plasmodial activity with IC50 value of 6.62 µg/mL. Extracts of P. clappertoniana, T. Africana and T. ivorensis (0.4 mg/mL) showed >50% antioxidant effect (SOD). The extracts were not cytotoxicity towards RBCs at the concentration tested (200 μg/ml) but were weakly cytotoxic to HL-60 cell. Selectivity indices of most of the extracts were greater than 10. Our results suggest that most of the plant extracts have strong anti-plasmodial activity and antioxidant activity which warrants further investigations.
Collapse
Affiliation(s)
- Regina Appiah-Opong
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kojo Agyemang
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eunice Dotse
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Philip Atchoglo
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kofi Baffour-Awuah Owusu
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abigail Aning
- 118922Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Richard Adegle
- Centre for Plant Medicine Research, Mampong-Akuapim, Ghana
| | | | | | - Alexander K Nyarko
- University of Ghana School of Pharmacy, College of Health Sciences, 58835University of Ghana, Accra, Ghana
| |
Collapse
|
19
|
Maiga FO, Wele M, Toure SM, Keita M, Tangara CO, Refeld RR, Thiero O, Kayentao K, Diakite M, Dara A, Li J, Toure M, Sagara I, Djimdé A, Mather FJ, Doumbia SO, Shaffer JG. Artemisinin-based combination therapy for uncomplicated Plasmodium falciparum malaria in Mali: a systematic review and meta-analysis. Malar J 2021; 20:356. [PMID: 34461901 PMCID: PMC8404312 DOI: 10.1186/s12936-021-03890-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) was deployed in 2005 as an alternative to chloroquine and is considered the most efficacious treatment currently available for uncomplicated falciparum malaria. While widespread artemisinin resistance has not been reported to date in Africa, recent studies have reported partial resistance in Rwanda. The purpose of this study is to provide a current systematic review and meta-analysis on ACT at Mali study sites, where falciparum malaria is highly endemic. METHODS A systematic review of the literature maintained in the bibliographic databases accessible through the PubMed, ScienceDirect and Web of Science search engines was performed to identify research studies on ACT occurring at Mali study sites. Selected studies included trials occurring at Mali study sites with reported polymerase chain reaction (PCR)-corrected adequate clinical and parasite response rates (ACPRcs) at 28 days. Data were stratified by treatment arm (artemether-lumefantrine (AL), the first-line treatment for falciparum malaria in Mali and non-AL arms) and analysed using random-effects, meta-analysis approaches. RESULTS A total of 11 studies met the inclusion criteria, and a risk of bias assessment carried out by two independent reviewers determined low risk of bias among all assessed criteria. The ACPRc for the first-line AL at Mali sites was 99.0% (95% CI (98.3%, 99.8%)), while the ACPRc among non-AL treatment arms was 98.9% (95% CI (98.3%, 99.5%)). The difference in ACPRcs between non-AL treatment arms and AL treatment arms was not statistically significant (p = .752), suggesting that there are potential treatment alternatives beyond the first-line of AL in Mali. CONCLUSIONS ACT remains highly efficacious in treating uncomplicated falciparum malaria in Mali. Country-specific meta-analyses on ACT are needed on an ongoing basis for monitoring and evaluating drug efficacy patterns to guide local malaria treatment policies, particularly in the wake of observed artemisinin resistance in Southeast Asia and partial resistance in Rwanda.
Collapse
Affiliation(s)
- Fatoumata O Maiga
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Mamadou Wele
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sounkou M Toure
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Makan Keita
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Randi R Refeld
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street #8310, Suite 1610, New Orleans, LA, 70112-2703, USA
| | - Oumar Thiero
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou Diakite
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Antoine Dara
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jian Li
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street #8310, Suite 1610, New Orleans, LA, 70112-2703, USA
| | - Mahamoudou Toure
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Frances J Mather
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street #8310, Suite 1610, New Orleans, LA, 70112-2703, USA
| | - Seydou O Doumbia
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Jeffrey G Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street #8310, Suite 1610, New Orleans, LA, 70112-2703, USA.
| |
Collapse
|
20
|
Characterization of pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu in Travelers Returning from Africa with Plasmodium falciparum Infections Reported in China from 2014 to 2018. Antimicrob Agents Chemother 2021; 65:e0271720. [PMID: 33903109 DOI: 10.1128/aac.02717-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The artemisinin-based combination therapies (ACTs) used to treat Plasmodium falciparum in Africa are threatened by the emergence of parasites in Asia that carry variants of the Kelch 13 (K13) locus with delayed clearance in response to ACTs. Single nucleotide polymorphisms (SNPs) in other molecular markers, such as ap2mu and ubp1, were associated with artemisinin resistance in rodent malaria and clinical failure in African malaria patients. Here, we characterized the polymorphisms in pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu among African isolates reported in Shandong and Guangxi provinces in China. Among 144 patients with P. falciparum returning from Africa from 2014 to 2018, pfmdr1 N86Y (8.3%) and pfcrt K76T (2.1%) were the major mutant alleles. The most common genotype for pfcrt was I74E75T76 (8.3%), followed by E75T76 (2.1%). For K13 polymorphisms, a limited number of mutated alleles were observed, and A578S was the most frequently detected allele in 3 isolates (2.1%). A total of 27.1% (20/144) of the isolates were found to contain pfubp1 mutations, including 6 nonsynonymous and 2 synonymous mutations. The pfubp1 genotypes associated with artemisinin resistance were D1525E (10.4%) and E1528D (8.3%). Furthermore, 11 SNPs were identified in pfap2mu, and S160N was the major polymorphism (4.2%). Additionally, 4 different types of insertions were found in pfap2mu, and the codon AAT, encoding aspartic acid, was more frequently observed at codons 226 (18.8%) and 326 (10.7%). Moreover, 4 different types of insertions were observed in pfubp1 at codon 1520, which was the most common (6.3%). These findings indicate a certain degree of variation in other potential molecular markers, such as pfubp1 and pfap2mu, and their roles in either the parasite's mechanism of resistance or the mode of action should be evaluated or elucidated further.
Collapse
|
21
|
Diarra Y, Koné O, Sangaré L, Doumbia L, Haidara DBB, Diallo M, Maiga A, Sango HA, Sidibé H, Mihigo J, Nace D, Ljolje D, Talundzic E, Udhayakumar V, Eckert E, Woodfill CJ, Moriarty LF, Lim P, Krogstad DJ, Halsey ES, Lucchi NW, Koita OA. Therapeutic efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Mali, 2015-2016. Malar J 2021; 20:235. [PMID: 34034754 PMCID: PMC8146210 DOI: 10.1186/s12936-021-03760-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. METHODS Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000-200,000 asexual parasites/μL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. RESULTS A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5-88.4%) in the AL arm and 93.1% (95% CI 89.7-96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0-95.9%) in the AL arm and 97.1% (93.6-100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. CONCLUSIONS The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.
Collapse
Affiliation(s)
- Youssouf Diarra
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar Koné
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Lansana Sangaré
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Lassina Doumbia
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mouctar Diallo
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ababacar Maiga
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamadoun A Sango
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Halidou Sidibé
- National Malaria Control Programme, Ministry of Health and Public Hygiene, Bamako, Mali
| | - Jules Mihigo
- U.S. President's Malaria Initiative, USAID Office, Bamako, Mali
| | - Douglas Nace
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dragan Ljolje
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eldin Talundzic
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Leah F Moriarty
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Pharath Lim
- Medical Care Development International, Silver Spring, MD, USA
| | - Donald J Krogstad
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Eric S Halsey
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Naomi W Lucchi
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ousmane A Koita
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
| |
Collapse
|
22
|
Ghazali SZ, Mohamed Noor NR, Mustaffa KMF. Anti-plasmodial activity of aqueous neem leaf extract mediated green synthesis-based silver nitrate nanoparticles. Prep Biochem Biotechnol 2021; 52:99-107. [PMID: 33890844 DOI: 10.1080/10826068.2021.1913602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.
Collapse
Affiliation(s)
- Siti Zulaiha Ghazali
- Institute of Research in Molecular Medicine, (INFORMM), Health Campus Universiti Sains Malaysia (USM), Kelantan, Malaysia
| | | | - Khairul Mohd Fadzli Mustaffa
- Institute of Research in Molecular Medicine, (INFORMM), Health Campus Universiti Sains Malaysia (USM), Kelantan, Malaysia
| |
Collapse
|
23
|
Evolution of Malaria Incidence in Five Health Districts, in the Context of the Scaling Up of Seasonal Malaria Chemoprevention, 2016 to 2018, in Mali. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020840. [PMID: 33478166 PMCID: PMC7844620 DOI: 10.3390/ijerph18020840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Context: In Mali, malaria transmission is seasonal, exposing children to high morbidity and mortality. A preventative strategy called Seasonal Malaria Chemoprevention (SMC) is being implemented, consisting of the distribution of drugs at monthly intervals for up to 4 months to children between 3 and 59 months of age during the period of the year when malaria is most prevalent. This study aimed to analyze the evolution of the incidence of malaria in the general population of the health districts of Kati, Kadiolo, Sikasso, Yorosso, and Tominian in the context of SMC implementation. Methods: This is a transversal study analyzing the routine malaria data and meteorological data of Nasa Giovanni from 2016 to 2018. General Additive Model (GAM) analysis was performed to investigate the relationship between malaria incidence and meteorological factors. Results: From 2016 to 2018, the evolution of the overall incidence in all the study districts was positively associated with the relative humidity, rainfall, and minimum temperature components. The average monthly incidence and the relative humidity varied according to the health district, and the average temperature and rainfall were similar. A decrease in incidence was observed in children under five years old in 2017 and 2018 compared to 2016. Conclusion: A decrease in the incidence of malaria was observed after the SMC rounds. SMC should be applied at optimal periods.
Collapse
|
24
|
Ghosh A, Banerjee T. Nanotized curcumin-benzothiophene conjugate: A potential combination for treatment of cerebral malaria. IUBMB Life 2020; 72:2637-2650. [PMID: 33037778 DOI: 10.1002/iub.2394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/07/2022]
Abstract
The declining effectiveness of the available antimalarial drugs due to drug resistance requires a continued effort to develop new therapeutic approaches. In this context, combination therapies hold a great promise for developing effective first-line antimalarial treatments for reducing malaria mortality. The present study explores the antimalarial efficacy of nanotized formulation of curcumin in combination with benzothiophene compound 6 (3-bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide) with a view to achieve better efficacy at a very low dose in comparison to that accomplished with monotherapy alone. Herein, we formulated nanotized conjugate of curcumin and compound 6 (cur-compound 6) in the size range of 30-90 nm as observed via TEM, AFM and DLS analysis in the study. The nanotized preparation was found to be readily dispersible in water, physically and chemically stable and exhibited sustained release profile of both curcumin and compound 6 till 48 hr. Treatment of P. falciparum parasites with the nanotized conjugate for 24 hr resulted in rapid clearance of the parasites. Furthermore, P. berghei infected mice treated with nanotized conjugate formulation survived till 90 days with complete eradication of the parasites from RBC. This improved efficacy of the nanotized formulation was possible because of the increased absorption of the compounds via oral administration owing to enhanced dispersibility of the formulation in aqueous medium. Moreover, an improved oral bioavailability of the nanotized formulation lowered the dosage at which the pharmacological effect was achieved while avoiding any observable adverse harmful side effects.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanushree Banerjee
- Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
25
|
Ateba FF, Febrero-Bande M, Sagara I, Sogoba N, Touré M, Sanogo D, Diarra A, Magdalene Ngitah A, Winch PJ, Shaffer JG, Krogstad DJ, Marker HC, Gaudart J, Doumbia S. Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6339. [PMID: 32878174 PMCID: PMC7504016 DOI: 10.3390/ijerph17176339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023]
Abstract
Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012-2017) from 1400 persons who sought treatment at Dangassa's community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.
Collapse
Affiliation(s)
- François Freddy Ateba
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
- Department of Mathematics, University of Quebec at Montreal (UQAM), Montréal, QC H2X 3Y7, Canada
- Faculty of Health Sciences, University of Buea, Buea BP 63, Cameroon;
| | - Manuel Febrero-Bande
- Department of Statistics, Mathematical Analysis and Optimization, University of Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain;
| | - Issaka Sagara
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
- Department of Public Health Education and Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako 1805, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
| | - Mahamoudou Touré
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
| | - Daouda Sanogo
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
| | - Ayouba Diarra
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
| | | | - Peter J. Winch
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (P.J.W.); (H.C.M.)
| | - Jeffrey G. Shaffer
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street New Orleans, New Orleans, Louisiana, LA 70112, USA; (J.G.S.); (D.J.K.)
| | - Donald J. Krogstad
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street New Orleans, New Orleans, Louisiana, LA 70112, USA; (J.G.S.); (D.J.K.)
| | - Hannah C. Marker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (P.J.W.); (H.C.M.)
| | - Jean Gaudart
- Aix Marseille University, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Biostatistics & ICT, 13005 Marseille, France;
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali; (F.F.A.); (I.S.); (N.S.); (M.T.); (D.S.); (A.D.)
- Department of Public Health Education and Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
26
|
Guirou EA, Schindler T, Hosch S, Donfack OT, Yoboue CA, Krähenbühl S, Deal A, Cosi G, Gondwe L, Mwangoka G, Masuki H, Salim N, Mpina M, Said J, Abdulla S, Hoffman SL, Nlavo BM, Maas C, Falla CC, Phiri WP, Garcia GA, Tanner M, Daubenberger C. Molecular malaria surveillance using a novel protocol for extraction and analysis of nucleic acids retained on used rapid diagnostic tests. Sci Rep 2020; 10:12305. [PMID: 32703999 PMCID: PMC7378824 DOI: 10.1038/s41598-020-69268-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
The use of malaria rapid diagnostic tests (RDTs) as a source for nucleic acids that can be analyzed via nucleic acid amplification techniques has several advantages, including minimal amounts of blood, sample collection, simplified storage and shipping conditions at room temperature. We have systematically developed and extensively evaluated a procedure to extract total nucleic acids from used malaria RDTs. The co-extraction of DNA and RNA molecules from small volumes of dried blood retained on the RDTs allows detection and quantification of P. falciparum parasites from asymptomatic patients with parasite densities as low as 1 Pf/µL blood using reverse transcription quantitative PCR. Based on the extraction protocol we have developed the ENAR (Extraction of Nucleic Acids from RDTs) approach; a complete workflow for large-scale molecular malaria surveillance. Using RDTs collected during a malaria indicator survey we demonstrated that ENAR provides a powerful tool to analyze nucleic acids from thousands of RDTs in a standardized and high-throughput manner. We found several, known and new, non-synonymous single nucleotide polymorphisms in the propeller region of the kelch 13 gene among isolates circulating on Bioko Island, Equatorial Guinea.
Collapse
Affiliation(s)
- Etienne A Guirou
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Salome Hosch
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Charlene Aya Yoboue
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Silvan Krähenbühl
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anna Deal
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Glenda Cosi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Linda Gondwe
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo Branch, United Republic of Tanzania
| | - Grace Mwangoka
- Ifakara Health Institute, Bagamoyo Branch, United Republic of Tanzania
| | - Heavenlight Masuki
- Department of Paediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Nahya Salim
- Department of Paediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Maxmillian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo Branch, United Republic of Tanzania
| | - Jongo Said
- Ifakara Health Institute, Bagamoyo Branch, United Republic of Tanzania
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, United Republic of Tanzania
| | | | | | - Carl Maas
- Marathon EG Production Ltd, Malabo, Equatorial Guinea
| | | | - Wonder P Phiri
- Medical Care Development International, Malabo, Equatorial Guinea
| | | | - Marcel Tanner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|