1
|
Cao Y, da Silva Araujo M, Lorang CG, Dos Santos NAC, Tripathi A, Vinetz J, Kumar N. Distinct immunogenicity outcomes of DNA vaccines encoding malaria transmission-blocking vaccine target antigens Pfs230D1M and Pvs230D1. Vaccine 2025; 47:126696. [PMID: 39787798 DOI: 10.1016/j.vaccine.2024.126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax. Antibodies induced by immunization with a recombinant P. falciparum protein encompassing a portion of N-terminal prodomain and domain 1 (Pfs230D1M) have revealed strong transmission-reducing activity (TRA) in preclinical studies. While a recombinant Pvs230D1, the P. vivax homolog of Pfs230D1M, has not been evaluated in preclinical immunogenicity studies, both Pfs230D1M and Pvs230D1 are currently scheduled for evaluation in clinical trials. In this study, we developed DNA vaccines encoding Pfs230D1M and Pvs230D1 for a side-by-side comparison of their immunogenicity. Potent antibody responses were induced in mice immunized with each DNA vaccine delivered by in vivo electroporation (EP). Anti-Pfs230D1M IgG exhibited potent dose-dependent TRA in a complement-dependent manner in standard membrane feeding assays (SMFA). In contrast, anti-Pvs230D1 IgG exhibited only moderate TRA in direct membrane feeding assay (DMFA) using blood from multiple P. vivax-infected donors. Antibodies induced by the Pfs230D1M DNA vaccine revealed a strong IgG1 bias and higher avidity as compared to a balanced IgG1/IgG2 response and lower antibody avidity by the Pvs230D1 DNA vaccine. Our results demonstrate the potential of both Pfs230D1M and Pvs230D1 DNA vaccines as TBV candidates against P. falciparum and P. vivax, and provide a rationale for future optimization to enhance the efficacy of DNA vaccines based on Pfs230 and Pvs230.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, George Washington University, Washington, D.C., USA
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho, RO, Brazil; Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brazil
| | - Cynthia G Lorang
- Department of Global Health, George Washington University, Washington, D.C., USA
| | - Najara Akira Costa Dos Santos
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho, RO, Brazil
| | - Abhai Tripathi
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nirbhay Kumar
- Department of Global Health, George Washington University, Washington, D.C., USA.
| |
Collapse
|
2
|
Bansal GP, Kumar N. Immune mechanisms targeting malaria transmission: opportunities for vaccine development. Expert Rev Vaccines 2024; 23:645-654. [PMID: 38888098 PMCID: PMC11472754 DOI: 10.1080/14760584.2024.2369583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination. AREAS COVERED In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector. EXPERT OPINION To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.
Collapse
Affiliation(s)
- Geetha P. Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70122, USA
| | - Nirbhay Kumar
- Department of Global Health, The Milken Institute School of Public Health, George Washington University, Washington DC, 20052, USA
| |
Collapse
|
3
|
Ivanochko D, Fabra-García A, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Newton J, Semesi A, de Bruijni M, Bolscher J, Ramjith J, Szabat M, Vogt S, Kraft L, Duncan S, Lee SM, Kamya MR, Feeney ME, Jagannathan P, Greenhouse B, Sauerwein RW, Richter King C, MacGill RS, Bousema T, Jore MM, Julien JP. Potent transmission-blocking monoclonal antibodies from naturally exposed individuals target a conserved epitope on Plasmodium falciparum Pfs230. Immunity 2023; 56:420-432.e7. [PMID: 36792575 PMCID: PMC9942874 DOI: 10.1016/j.immuni.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.
Collapse
Affiliation(s)
- Danton Ivanochko
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Karina Teelen
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Jocelyn Newton
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | | | - Jordache Ramjith
- Radboud Institute for Health Sciences, Department for Health Evidence, Biostatistics Section, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | | | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Prasanna Jagannathan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada; Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Miura K, Pham TP, Lee SM, Plieskatt J, Diouf A, Sagara I, Coelho CH, Duffy PE, Wu Y, Long CA. Development and Qualification of an Antigen Integrity Assay for a Plasmodium falciparum Malaria Transmission Blocking Vaccine Candidate, Pfs230. Vaccines (Basel) 2022; 10:vaccines10101628. [PMID: 36298492 PMCID: PMC9607959 DOI: 10.3390/vaccines10101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
During development of a subunit vaccine, monitoring integrity of the recombinant protein for process development and quality control is critical. Pfs230 is a leading malaria transmission blocking vaccine candidate and the first to reach a Phase 2 clinical trial. The Pfs230 protein is expressed on the surface of gametes, and plays an important role in male fertility. While the potency of Pfs230 protein can be determined by a standard membrane-feeding assay (SMFA) using antibodies from immunized subjects, the precision of a general in vivo potency study is known to be poor and is also time-consuming. Therefore, using a well-characterized Pfs230 recombinant protein and two human anti-Pfs230 monoclonal antibodies (mAbs), which have functional activity judged by SMFA, a sandwich ELISA-based in vitro potency assay, called the Antigen Integrity Assay (AIA), was developed. Multiple validation parameters of AIA were evaluated to qualify the assay following International Conference on Harmonization (ICH) Q2(R1) guidelines. The AIA is a high throughput assay and demonstrated excellent precision (3.2 and 5.4% coefficients of variance for intra- and inter-assay variability, respectively) and high sensitivity (>12% impurity in a sample can be detected). General methodologies and the approach to assay validation described herein are amenable to any subunit vaccine as long as more than two functional, non-competing mAbs are available. Thus, this study supports future subunit vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Correspondence:
| | - Thao P. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shwu-Maan Lee
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Jordan Plieskatt
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Issaka Sagara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies, Bamako 1805, Mali
| | - Camila H. Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yimin Wu
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
5
|
Vaccine co-display of CSP and Pfs230 on liposomes targeting two Plasmodium falciparum differentiation stages. Commun Biol 2022; 5:773. [PMID: 35915227 PMCID: PMC9341416 DOI: 10.1038/s42003-022-03688-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
A vaccine targeting multiple stages of the Plasmodium falciparum parasite life cycle is desirable. The sporozoite surface Circumsporozoite Protein (CSP) is the target of leading anti-infective P. falciparum pre-erythrocytic vaccines. Pfs230, a sexual-stage P. falciparum surface protein, is currently in trials as the basis for a transmission-blocking vaccine, which inhibits parasite development in the mosquito vector. Here, recombinant full-length CSP and a Pfs230 fragment (Pfs230D1+) are co-displayed on immunogenic liposomes to induce immunity against both infection and transmission. Liposomes contain cobalt-porphyrin phospholipid (CoPoP), monophosphoryl lipid A and QS-21, and rapidly bind His-tagged CSP and Pfs230D1+ upon admixture to form bivalent particles that maintain reactivity with conformational monoclonal antibodies. Use of multicolor fluorophore-labeled antigens reveals liposome binding upon admixture, stability in serum and enhanced uptake in murine macrophages in vitro. Bivalent liposomes induce humoral and cellular responses against both CSP and Pfs230D1+. Vaccine-induced antibodies reduce parasite numbers in mosquito midguts in a standard membrane feeding assay. Mice immunized with liposome-displayed antigens or that passively receive antibodies from immunized rabbits have reduced parasite liver burden following challenge with transgenic sporozoites expressing P. falciparum CSP.
Collapse
|
6
|
Duffy PE. The Virtues and Vices of Pfs230: From Vaccine Concept to Vaccine Candidate. Am J Trop Med Hyg 2022; 107:tpmd211337. [PMID: 35895391 DOI: 10.4269/ajtmh.21-1337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 02/18/2024] Open
Abstract
Among the Plasmodium falciparum surface antigens reported by Richard Carter and his colleagues decades ago, Pfs230 is currently the target of the most advanced candidate for a malaria transmission-blocking vaccine. First identified by its orthologue in the avian malaria parasite Plasmodium gallinaceum, the large cysteine-rich 14-domain Pfs230 antigen is displayed on the surface of gametes that emerge in the mosquito midgut. Gametes lacking Pfs230 cannot bind to red blood cells nor develop further into oocysts. Human antibodies against Pfs230 lyse gametes in the presence of complement, which largely explains serum transmission-blocking activity in Pfs230 antisera. A protein-protein conjugate vaccine that incorporates the first domain of the Pfs230 antigen induced greater serum transmission-reducing activity versus a similarly manufactured Pfs25 vaccine in U.S. trials, and is currently in phase II field trials in Mali.
Collapse
|
7
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Wang PP, Jiang X, Bai J, Yang F, Yu X, Wu Y, Zheng W, Zhang Y, Cui L, Liu F, Zhu X, Cao Y. Characterization of PSOP26 as an ookinete surface antigen with improved transmission-blocking activity when fused with PSOP25. Parasit Vectors 2022; 15:175. [PMID: 35606790 PMCID: PMC9125894 DOI: 10.1186/s13071-022-05294-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background The Plasmodium zygote-to-ookinete developmental transition is an essential step for establishing an infection in the mosquito vector, and antigens expressed during this stage are potential targets for transmission-blocking vaccines (TBVs). The secreted ookinete protein 26 (PSOP26) is a newly identified ookinete surface protein. The anti-PSOP26 serum has moderate transmission-blocking activity, indicating the benefit of further investigating this protein as a target for TBVs. Methods The function of psop26 was analyzed by targeted gene disruption. A chimeric PSOP25-PSOP26 protein was expressed in the Escherichia coli system. The PSOP25-PSOP26 fusion protein, along with mixed (PSOP25 + PSOP26) or single proteins (PSOP26 or PSOP25), were used for the immunization of mice. The antibody titers and immunogenicity of individual sera were analyzed by enzyme-linked immunoassay (ELISA), indirect immunofluorescence assay (IFA), and Western blot. The transmission-blocking activity of sera from different immunization schemes was assessed using in vitro and in vivo assays. Results PSOP26 is a surface protein expressed in Plasmodium gametes and ookinetes. The protein is dispensable for asexual blood-stage development, gametogenesis, and zygote formation, but is essential for the zygote-to-ookinete developmental transition. Specifically, both the prevalence of infections and oocyst densities were decreased in mosquitoes fed on psop26-null mutants. Mixtures of individual PSOP25 and PSOP26 fragments (PSOP25 + PSOP26), as well as chimeras (PSOP25-PSOP26), elicited high antibody levels in mice, with no immunological interference. Antisera against the mixed and fusion proteins elicited higher transmission-reducing activity (TRA) than antisera against the single PSOP26 antigen, but comparable to antisera against PSOP25 antigen alone. Conclusions PSOP26 plays a critical role in the zygote-to-ookinete developmental transition. PSOP25 is a promising TBV candidate that could be used alone to target the ookinete stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05294-8.
Collapse
Affiliation(s)
- Peng-Peng Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuefeng Jiang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yudi Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Inner Mongolia, Huhhot, 150000, China
| | - Yongzhe Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612-9415, USA
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
9
|
Ochwedo KO, Ariri FO, Otambo WO, Magomere EO, Debrah I, Onyango SA, Orondo PW, Atieli HE, Ogolla SO, Otieno ACA, Mukabana WR, Githeko AK, Lee MC, Yan G, Zhong D, Kazura JW. Rare Alleles and Signatures of Selection on the Immunodominant Domains of Pfs230 and Pfs48/45 in Malaria Parasites From Western Kenya. Front Genet 2022; 13:867906. [PMID: 35656326 PMCID: PMC9152164 DOI: 10.3389/fgene.2022.867906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Malaria elimination and eradication efforts can be advanced by including transmission-blocking or reducing vaccines (TBVs) alongside existing interventions. Key transmission-blocking vaccine candidates, such as Pfs230 domain one and Pfs48/45 domain 3, should be genetically stable to avoid developing ineffective vaccines due to antigenic polymorphisms. We evaluated genetic polymorphism and temporal stability of Pfs230 domain one and Pfs48/45 domain three in Plasmodium falciparum parasites from western Kenya. Methods: Dry blood spots on filter paper were collected from febrile malaria patients reporting to community health facilities in endemic areas of Homa Bay and Kisumu Counties and an epidemic-prone area of Kisii County in 2018 and 2019. Plasmodium speciation was performed using eluted DNA and real-time PCR. Amplification of the target domains of the two Pfs genes was performed on P. falciparum positive samples. We sequenced Pfs230 domain one on 156 clinical isolates and Pfs48/45 domain three on 118 clinical isolates to infer the levels of genetic variability, signatures of selection, genetic diversity indices and perform other evolutionary analyses. Results: Pfs230 domain one had low nucleotide diversity (π = 0.15 × 10-2) with slight variation per study site. Six polymorphic sites with nonsynonymous mutations and eight haplotypes were discovered. I539T was a novel variant, whereas G605S was nearing fixation. Pfs48/45 domain three had a low π (0.063 × 10-2), high conservation index, and three segregating sites, resulting in nonsynonymous mutation and four haplotypes. Some loci of Pfs230 D1 were in positive or negative linkage disequilibrium, had negative or positive selection signatures, and others (1813, 1955) and (1813, 1983) had a history of recombination. Mutated loci pairs in Pfs48/45 domain three had negative linkage disequilibrium, and some had negative and positive Tajima's D values with no history of recombination events. Conclusion: The two transmission blocking vaccine candidates have low nucleotide diversity, a small number of zone-specific variants, high nucleotide conservation index, and high frequency of rare alleles. With the near fixation a polymorphic site and the proximity of mutated codons to antibody binding epitopes, it will be necessary to continue monitoring sequence modifications of these domains when designing TBVs that include Pfs230 and Pfs48/45 antigens.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Fredrick O. Ariri
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Kisumu, Kenya
| | - Wilfred O. Otambo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Kisumu, Kenya
| | - Edwin O. Magomere
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Egerton University, Nakuru, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Frasse PM, Miller JJ, Polino AJ, Soleimani E, Zhu JS, Jakeman DL, Jez JM, Goldberg DE, Odom John AR. Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. J Biol Chem 2022; 298:101550. [PMID: 34973333 PMCID: PMC8808168 DOI: 10.1016/j.jbc.2021.101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022] Open
Abstract
The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.
Collapse
Affiliation(s)
- Philip M Frasse
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Razi University, Kermanshah, Iran
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Elucidating functional epitopes within the N-terminal region of malaria transmission blocking vaccine antigen Pfs230. NPJ Vaccines 2022; 7:4. [PMID: 35027567 PMCID: PMC8758780 DOI: 10.1038/s41541-021-00423-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Pfs230 is a leading malaria transmission blocking vaccine (TBV) candidate. Comprising 3135 amino acids (aa), the large size of Pfs230 necessitates the use of sub-fragments as vaccine immunogens. Therefore, determination of which regions induce functional antibody responses is essential. We previously reported that of 27 sub-fragments spanning the entire molecule, only five induced functional antibodies. A “functional” antibody is defined herein as one that inhibits Plasmodium falciparum parasite development in mosquitoes in a standard membrane-feeding assay (SMFA). These five sub-fragments were found within the aa 443–1274 range, and all contained aa 543–730. Here, we further pinpoint the location of epitopes within Pfs230 that are recognized by functional antibodies using antibody depletion and enrichment techniques. Functional epitopes were not found within the aa 918–1274 region. Within aa 443–917, further analysis showed the existence of functional epitopes not only within the aa 543–730 region but also outside of it. Affinity-purified antibodies using a synthetic peptide matching aa 543–588 showed activity in the SMFA. Immunization with a synthetic peptide comprising this segment, formulated either as a carrier-protein conjugate vaccine or with a liposomal vaccine adjuvant system, induced antibodies in mice that were functional in the SMFA. These findings provide key insights for Pfs230-based vaccine design and establish the feasibility for the use of synthetic peptide antigens for a malaria TBV.
Collapse
|
12
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
13
|
Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. NPJ Vaccines 2021; 6:120. [PMID: 34642303 PMCID: PMC8511065 DOI: 10.1038/s41541-021-00383-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
The Plasmodium falciparum Pfs230 and Pfs48/45 proteins are leading candidates for a malaria transmission-blocking vaccine (TBV). Previously, we showed that a Pfs230–Pfs48/45 fusion protein elicits higher levels of functional antibodies than the individual antigens, but low yields hampered progression to clinical evaluation. Here we identified a modified construct (ProC6C) with a circumsporozoite protein (CSP) repeat-linker sequence that enhances expression. A scalable and reproducible process in the Lactococcus lactis expression system was developed and ProC6C was successfully transferred for manufacturing under current Good Manufacturing Practices (cGMP). In addition, a panel of analytical assays for release and stability were developed. Intact mass spectrometry analysis and multiangle light scattering showed that the protein contained correct disulfide bonds and was monomeric. Immunogenicity studies in mice showed that the ProC6C adsorbed to Alhydrogel®, with or without Matrix-MTM, elicited functional antibodies that reduced transmission to mosquitoes and sporozoite invasion of human hepatocytes. Altogether, our data support manufacture and clinical evaluation of ProC6C as a multistage malaria-vaccine candidate.
Collapse
|
14
|
Duffy PE. Transmission-Blocking Vaccines: Harnessing Herd Immunity for Malaria Elimination. Expert Rev Vaccines 2021; 20:185-198. [PMID: 33478283 PMCID: PMC11127254 DOI: 10.1080/14760584.2021.1878028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transmission-blocking vaccines (TBV) prevent community spread of malaria by targeting mosquito sexual stage parasites, a life-cycle bottleneck, and will be used in elimination programs. TBV rely on herd immunity to reduce mosquito infections and thereby new infections in both vaccine recipients and non-recipients, but do not provide protection once an individual receives an infectious mosquito bite which complicates clinical development. AREAS COVERED Here, we describe the concept and biology behind TBV, and we provide an update on clinical development of the leading vaccine candidate antigens. Search terms 'malaria vaccine,' 'sexual stages,' 'transmission blocking vaccine,' 'VIMT' and 'SSM-VIMT' were used for PubMed queries to identify relevant literature. EXPERT OPINION Candidates targeting P. falciparum zygote surface antigen Pfs25, and its P. vivax orthologue Pvs25, induced functional activity in humans that reduced mosquito infection in surrogate assays, but require increased durability to be useful in the field. Candidates targeting gamete surface antigens Pfs230 and Pfs48/45, respectively, are in or nearing clinical trials. Nanoparticle platforms and adjuvants are being explored to enhance immunogenicity. Efficacy trials require special considerations, such as cluster-randomized designs to measure herd immunity that reduces human and mosquito infection rates, while addressing human and mosquito movements as confounding factors.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Scaria PV, Chen BB, Rowe CG, Alani N, Muratova OV, Barnafo EK, Lambert LE, Zaidi IU, Lees A, Rausch KM, Narum DL, Duffy PE. Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230. Vaccine 2020; 38:5480-5489. [PMID: 32600913 PMCID: PMC11127250 DOI: 10.1016/j.vaccine.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM197 produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.
Collapse
Affiliation(s)
- Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher G Rowe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nada Alani
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga V Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Irfan U Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|